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Abstract

While a large family of unfolding models for Likert-scale response data have been devel-

oped for decades, very few applications of these models have been witnessed in practice.

There may be several reasons why these have not appeared more widely in published

research, however one obvious limitation appears to be the absence of suitable software for

model estimation. In this article, the authors demonstrate how the mirt package can be

adopted to estimate parameters from various unidimensional and multidimensional unfold-

ing models. To concretely demonstrate the concepts and recommendations, a tutorial and

examples of R syntax are provided for practical guidelines. Finally, the performance of mirt

is evaluated via parameter-recovery simulation studies to demonstrate its potential effec-

tiveness. The authors argue that, armed with the mirt package, applying unfolding models

to Likert-scale data is now not only possible but can be estimated to real-datasets with little

difficulty.

Introduction

In item response theory (IRT) modeling for categorical data [1], two cognitive processes are

typically modeled: the cumulative process, and the unfolding process. The former process pos-

tulates that the probability of responding to higher rank-ordered categorical response stimuli

can be understood as a monotonic function that rises as the intensity of the person underlying

trait increases (termed the cumulative process), while the latter process assumes the probability

depends on the proximity between person and item location [2–4]. The cumulative process is

commonly assumed for scholastic performance on science, mathematics, or other literacy

tests. The partial credit model [5], for example, is one of the IRT models (also commonly

referred to as dominance models) frequently used for polytomous items with a cumulative

process, and is expressed as follows on a logit scale:

logðPrnik=Prniðk� 1ÞÞ ¼ gn � ki � tik: ð1Þ

In the above equation, Prnik and Prni(k-1) are short for the item response function of scoring k
and k– 1 on item i for person n, γn is the ability of person n, κi is the difficulty of item i,τik

(k = 0, . . ., C) is the kth threshold parameter of item i, which indicates the intersection of two
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adjacent item category functions, and C is the number of categories minus one. As a special

case, the partial credit model encompasses the Rasch model [6] when the response data are

binary.

Unfolding models

The unfolding process postulates that the closer the distance between an individual’s latent

trait and item location the higher the probability of endorsement to a given response category.

In these IRT models, the probability reaches its peak when the individual’s trait is equal to the

item location. The unfolding process has attracted great interests in constructs of personality,

attitudes, job performance, vocational interests, leadership, emotion measurements, and so

forth [7–13]. The unfolding model has also seen a wide variety of applications in that it has

been applied to computerized adaptive testing [14, 15], response styles [16], computerized clas-

sification testing [17], multilevel data analysis [18], multidimensional latent scaling [19, 20],

and random threshold modeling [15].

In social behavior surveys, [21] discussed two types of measurement stimuli—a direct-

response item stimuli, such as Likert-type items (e.g., strongly disagree, disagree, agree,

strongly agree), and a comparative-response stimuli (e.g., pairwise preference). For these data,

the underlying process of respondents may be explained by either the cumulative or unfolding

process, depending on the nature of the response stimuli administered. The resulting combi-

nations of processes and stimuli will therefore be one of the following two-by-two arrays:

[cumulative process and direct response], [cumulative process and comparative response],

[unfolding process and direct response], and [unfolding process and comparative response].

In the present study, the focus is on the third combination.

For the combination of unfolding process and direct response, asking individuals to express

their level of agreement with an attitude statement, for example, provides information as to

whether they agree with the item to the extent that it is close to their location on the latent trait

continuum. On the contrary, a negative response to this stimulus may result because the

respondent may disagree with the item statement from either a negative or positive perspec-

tive. For example, consider the Likert-scale item, “I think capital punishment is necessary but I

wish it were not” [3]. Participants with more positive attitudes towards capital punishment

tend to disagree with this statement because they believe that capital punishment is very neces-

sary (positive), whereas participants with more negative attitudes towards capital punishment

are also likely to disagree because they believe capital punishment is very unnecessary (nega-

tive). Hence, there are two possible latent responses—“disagree from below” and “disagree

from above”—associated with the single observed response of “disagree.” As such, a U-shape

item response function is generally more appropriate to illustrate the two disagreements,

where the probability of agreement typically follows a single-peaked item response function.

Regarding the types of unfolding models to fit to empirical data, there are two general statis-

tical modeling strategies—the first is a parametric approach, and the second is a nonparamet-

ric approach [22]. The nonparametric approach does not assume any specific form of the item

response function, and only considers the proximity between person and item. A typical non-

parametric approach is the Coombs scaling [2], whose purpose is to map the proximity

between persons and items into a lower dimensional representation for visual illustration (cf.

smacof package). Unfortunately, Coombs scaling is a non-probabilistic type of unfolding

approach, and is mainly used for visual presentation of data in two or three dimensions. In

contrast, parametric unfolding models aim to scale persons and items under a probabilistic

framework, which are typically more useful for subsequent applications [23]. Thus, compared

to the Coombs scaling, the parametric unfolding models are more advantageous for model-
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data fit assessment, model comparison, prediction of persons’ current and future ratings,

assessment of differential item functioning, applications to computerized adaptive/classifica-

tion testing, among others. Therefore, in this study we chose to focus only on parametric

unfolding models and how to recover the population generating parameters for various

unfolding models of interest.

Available estimation software

The most commonly used IRT unfolding model is the generalized graded unfolding model

[GGUM; 24]. In part, the popularity of the GGUM may be contributed to its distribution of

the freeware software package GGUM2004 [25], which allows many variations of the GGUM

model to be estimated via maximum-likelihood and maximum a posteriori methods. How-

ever, the item characteristic curve (ICC) kernel of the GGUM cannot be changed; hence, this

limits the capability of fitting unfolding data outside the form supported by the GGUM. Addi-

tionally, while the τ coefficients modeled generally represent the location of intersection

between adjacent ICCs in the partial credit model (see below for notation), such interpretation

disappears in the GGUM parameterization [24]. To circumvent this limitation, the authors

demonstrate how to employ an alternative class of unfolding models proposed by Luo [26],

which can provide more flexible ICCs and boast more explicit interpretations of the threshold

parameters.

To date, no general-purpose estimation software has been made available specifically for

unfolding models, except perhaps the general purpose Markov chain Monte Carlo (MCMC)

sampling software (e.g., JAGS [27]) and RUMMFOLD software [28]. However, conducting

MCMC is practically time-consuming and demands relevant expertise on Bayesian inference

(e.g., specifying proper prior distribution, assessing convergence, etc.) [15, 20, 29], while the

program RUMMFOLD is currently restricted to one specific unidimensional unfolding model

for binary response data. Various sorts of popular IRT software for dominance models, such as

ConQuest [30], Winsteps [31], BILOG-MG [32], IRTPRO [33], and so forth, have been devel-

oped for calibrating the parameters of cumulative IRT models. However, despite their popular-

ity, none of these software packages are currently capable of estimating IRT unfolding models.

As an alternative to these commercial IRT programs, the authors propose using the open-

source mirt [34] package in the R environment for parameter estimation of the unfolding

models. mirt has been widely used in educational measurement [35], personality assessment

[36, 37], and IRT modeling [38], for cumulative IRT models, yet few authors are aware that

mirt can be used to create real-world, fully customized IRT models; including, but not limited

to, a wide variety of developed unfolding models.

According to the user software manual, GGUM2004 only allows for maximum (1) 2,000

subjects, (2) 100 items, (3) 10 categories of an item, (4) 50 quadrature points for marginal max-

imum likelihood estimation with expectation-maximization (MML-EM) algorithm [39], (5)

prior standard normal distribution for latent trait [25], (6) only expected a posteriori (EAP)

estimates are available, and (7) requires unidimensionality. In contrast, mirt by default is free

from all these practically limiting restrictions. Although mirt adopts a normal distribution for

latent traits by default, for instance, it also allows for estimating the mean and variance of the

distribution (so long as the model is well identified). GGUM2004, on the other hand, assumes

the standard normal distribution for eight models available in the GGUM2004, which often

can lead to over-constrained estimation of a selection of GGUMs.

To demonstrate the usefulness of the mirt package in fitting unfolding models, the remain-

der of this article is organized as follows. First, a class of unidimensional unfolding models for

Likert-scale items is introduced, which includes eight models of GGUM2004 and Luo’s general
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unfolding models [26]. Second, a class of Luo’s multidimensional unfolding models for Likert-

scale items [40] is introduced. Following this introduction, a series of Monte Carlo simulation

studies are conducted to investigate the parameter recovery of the various unfolding models

using mirt, including (1) direct comparisons between mirt and GGUM2004, (2) parameter

recovery of Luo’s unidimensional models, and (3) parameter recovery of Luo’s multidimen-

sional models. Results are presented in each respective study, and concluding remarks are

given in the final sections.

Unidimensional unfolding model for Likert Scale Data

Unfolding models of GGUM2004

In the following simulation studies, eight models estimable by GGUM2004 (version 1.1) were

adopted [25]. We begin by discussing the sixth model in the command options because of its

generality. This model is known as the generalized multiple unit unfolding model (denoted

UM6 for short), given by

PrðzÞ ¼
expfai½zðyn � diÞ þ zðM � zÞli�g þ expfai½ðM � zÞðyn � diÞ þ zðM � zÞli�g

XC

w¼0

expfai½wðyn � diÞ þ wðM � wÞli�g þ expfai½ðM � wÞðyn � diÞ þ wðM � wÞli�g

; ð2Þ

where z is the observed value of categorical random variable Znik, M = 2C + 1, C is number of

categories minus one, and the λi is the unit threshold for item i [25]. In this model, a total of 3I
item parameters (i.e., αi, δi, and λi) are to be estimated, where I is the number of items. When

αi = 1, UM6 reduces to the multiple unit model (denoted UM2). When λi = λ, UM6 reduces to

the generalized constant unit model (denoted UM5). When αi = 1 and λi = λ, UM6 reduces to

the constant unit unfolding model (denoted UM1).

The GGUM itself [24], denoted UM8, is given by

PrðzÞ ¼

exp

(

ai

"

zðyn � diÞ �
Xz

k¼0

tik

#)

þ exp

(

ai

"

ðM � zÞðyn � diÞ �
Xz

k¼0

tik

#)

XC

w¼0

exp

(

ai

"

wðyn � diÞ �
Xw

k¼0

tik

#)

þ exp

(

ai

"

ðM � wÞðyn � diÞ �
Xw

k¼0

tik

#) ; ð3Þ

where τik is the threshold k of item i. A total of 2I + CI item parameters (i.e., αi, δi, and τik) are

to be estimated. When αi = 1, UM8 reduces to the partial credit unfolding model (denoted

UM4). When τik = τk, UM8 reduces to the generalized rating scale unfolding model (denoted

UM7). Finally, when αi = 1 and τik = τk, UM8 reduces to the graded unfolding model [41],

denoted UM3. Note that the GGUM2004 constrains the latent trait variance parameter σ2 = 1

for UM1-UM4, which is not always necessary. To demonstrate this, σ2 was freely estimated by

mirt for UM1-UM4.

Of the models mentioned above, the UM3 (graded unfolding model) and UM8 (GGUM)

have attracted the most attention in the literature. Also, in order to make the narrative of this

article coherent and reduce excessive acronyms, the authors only focus on UM3 and UM8 for

illustration purposes in the example sections.

Luo’s unfolding models

In 2001, Luo introduced a general form for unidimensional unfolding models, which is

expressed as follows. Let Zni � (0, 1, . . ., C) be the categorical score to item i for person n,

whose category probability Pr(Zni) is equal to a product of C successive binary operational
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probabilities, where Ynik � (0, 1) and k = 1, 2, . . ., C. The probability of polytomous response

Znik, given the person and item parameters, is

PrðZnik ¼ zÞ ¼

YC

k¼1
PUzk

nik Q1� Uzk
nik

XC

w¼0

YC

k¼1
PUwk

nik Q1� Uwk
nik

; ð4Þ

where the dummy variable Uzk = 1 if z� k and Uzk = 0 otherwise, and Qnik = 1 –Pnik. As well,

Uwk = 1 if w� k, and Uwk = 0 otherwise. Pnik is defined as

Pnik ¼ PrðYnik ¼ 1Þ ¼
ckðrkÞ

ck½aiðyn � diÞ� þ ckðrkÞ
; ð5Þ

where αi is the discrimination parameter of item i, θn is the latent trait of person n, δn is the

location of item i, andρk is the threshold parameter [26]. In the above equation, ψ(·) represents

the operational function that must satisfy the following properties to form a valid unfolding

response function [26, 42]: (1) non-negativity: ψ(x)�0 for any real x, (2) monotonicity in the

positive domain: ψ(x)> ψ(y) for any x> y> 0, and (3) symmetry of the function: ψ(x) = ψ(-x)

for any real x. The x can be, for example, αiρk or αi(θn—δi), as in Eq (5).

This model formula has two main advantages over the GGUM. The first is the flexibility of

the operational function, and the second is that the threshold parameter, ρ, has direct interpre-

tation—that is, the crossing point between curves of adjacent categories is the threshold loca-

tion from the reference point, which incidentally corresponds to the .5 probability of

endorsement. As well, different operational functions can lead to different shapes of item char-

acteristic curves. In the interested of space, the authors only consider five operational

functions.

The first operational function studied with Luo’s model is

cðxÞ ¼ expðjxjÞ; ð6Þ

which is called an absolute logistic model (ALM) [43], where x is a real number. The resulting

probability density is similar to Laplace distribution but, in contrast, the ALM contains explicit

threshold parameters. The prominent part of ALM is that the location of the threshold corre-

sponds to the two peaks of the information function for binary responses [43]. That property

may be useful to easily construct a customized item pool for computerized adaptive testing.

The second operational function we consider is

cðxÞ ¼ expðx2Þ; ð7Þ

which is the simple squared logistic model (SSLM) [3], while the third model studied is

cðxÞ ¼ x2; ð8Þ

which is called the Parallellogram Analysis model [PARELLA; 44]. The ICC of PARELLA

model has an endorsement of probability of 1 if θ = δ. The fourth model studied herein is

hyperbolic cosine model [HCM; 45, 46] whose operational function is

cðxÞ ¼ coshðxÞ: ð9Þ

Finally, the fifth operational function studied is

cðxkÞ ¼
cosh 2Cþ1

2
þ 1 � k

� �
x

� �

cosh 2Cþ1

2
� k

� �
x

� � ; ð10Þ

which is called graded unfolding model [GUM; 26]. For these unfolding models, the item
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characteristic curves (ICCs) and Fisher information function of θ are given in S1 Fig, where

the definition of the Fisher information of θ is given by

IðyÞ ¼ E
@

@y
log PrðZjyÞ

� �2
( )

¼
XC

z¼0

@

@y
log PrðzjyÞ

� �2

PrðzjyÞ: ð11Þ

Interested readers can refer to Luo and Andrich [43] for the properties of ICC and Fisher

information.

To further demonstrate the difference between the unfolding model and dominance model,

the ICCs of partial credit model [5] and various unfolding models are depicted in S1 Fig.

When θ = 0 and δ = 0, it is obvious that the unfolding models reach the peak of probability of a

positive response, whereas the PCM reaches the .5 probability. The probability of the PCM

monotonically increases as the values of θ increases, irrespective to δ. In contrast, the ICC of

unfolding models depends on the relative distance between θ and δ, which reflects the proxim-

ity concept of an unfolding process [2].

Multidimensional unfolding model for Likert Scale Data

In addition to the unidimensional models presented in the previous section, Luo [40] dis-

cussed a class of multidimensional unfolding model (MUM) which replace the θn−δi compo-

nent by some distance between ||θn−δi ||. This can be expressed as

PðYnik ¼ 1jθn; δi; rdkÞ ¼
ckðrdkÞ

ckðkθn � δikÞ þ ckðrdkÞ
; ð12Þ

where θn = (θn1, θn2, . . ., θnD) and δi = (δi1, δi2, . . ., δiD) are vectors with D dimension coordi-

nates. There are various candidate measures of the distance possible for these models. One

simple approach is the Euclidean distance between θn and δi in the D-dimension space

kθn � δik ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XD

d¼1

½aidðynd � didÞ�
2

s

; ð13Þ

where the αid is a discrimination parameter of item i and dimension d. When α1 = 1 and αd 6¼ 1

= 0, the distance becomes θn−δi; thus, the MUM reduces to the UUM.

The MUM has several interesting properties. First, the model preserves proximity—the

shorter distance the θd−δd, the higher probability of endorsement. In contrast to other unfold-

ing models, this property is often not present [19, 20]. For illustration, the ICCs and Fisher

information function of two-dimensional HCM are given in Supporting Information (see S3,

S4 and S5 Figs). Second, different dimensions have different respective item locations, δd,

which represent the ideal item location on each dth dimension. Third, α can be used to specify

which dimension an item measures; for instance, α = [α1, 0, α3] indicates only the first and

third dimensions are measured within a given item.

The δid is the ith unobserved item location on dth dimension, which will increase as the

number of dimensions increases. This model is useful for exploratory data analyses, in a man-

ner similar to multidimensional scaling and exploratory factor analysis, in that it aims to dis-

cover a low-dimensional representation embedded in the high-dimensional space. However,

such models will be over-parameterized for confirmatory modeling purposes. Typically, it is

assumed that there is only one ideal item location, δid = δi, for within-item multidimensional

IRT models [47].

Additionally, the MUM has an additional threshold parameter for binary scoring, as well as

for polytomous cases. Therefore, estimating all of the parameters in MUM may be demanding
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given the amount of data required to achieve sufficient stability and precision. The MUM is

over-parameterized and imposing constraints is necessary for sufficient identification.

Another approach used for educational data is to impose a design matrix by test developers or

subject matter experts [48–51], where each item may only measure one or a few dimensions.

With limited space, the authors focus on the between-item design, whereby each item solely

measures one dimension [47].

To estimate the MUM there are three essential constraints that must be considered—(1) loca-

tion, (2) scale, and (3) rotation [52]. A multivariate normal distribution is employed to deal with

the first two indeterminacies; that is, the means of θ are set to zero and the variance-covariance

matrix is a (potentially non-diagonal) symmetric matrix whose diagonal elements are ones. The

rotational indeterminacy means that the axes could switch between dimensions during the esti-

mation process. Minimum constraints are imposed by setting the αid = 0 when d> I (i.e., D(D–

1)/2 zeros) [52] and δid = δi. However, these minimum constraints do not necessarily stabilize

the estimation in practical analyses [48–50, 53]. For cumulative multidimensional IRT models,

at least two or three items measuring a single dimension are recommended for the compensatory

model [53], and at least six items are suggested for the noncompensatory model [48–51].

Marginal maximum likelihood with the expectation-maximization

algorithm

This section provides a brief overview of the marginal maximum likelihood (MML) estimation

criteria utilized by both the mirt and GGUM2004 software packages. For any defined IRT

model, the logarithm of the marginal likelihood function given the response patterns X is

logL
�
ξ;X

�
¼
XS

s¼1

log
Z

f ðθÞ
YI

i¼1

PrðZi ¼ xsijθ; ξiÞ
wðxsiÞdθ

" #

; ð14Þ

where the ξ is the collection of all item parameters, S is the number of response patterns, I is

test length, C is category length minus one, f(θ) is probability density function of the latent

traits (typically assumed to be a multivariate normal distribution with mean μ and variance-

covariance matrix S), and the χ(xsi) is the data indicator function where χ(xsi) = 1if Zi = xsi and

χ(xsi) = 0 otherwise. To locate the item parameter estimates by maximum likelihood, one has

to find the values that can set the first-order derivatives of the log-likelihood function with

respect to the parameters equal to zero. Unfortunately, however, solving the MML criteria

directly is largely limited to shorter tests because the integrals run across all I items. To avoid

this computational burden, the MML-EM algorithm can be adopted instead.

In the MML-EM algorithm, the general form of the first-order partial derivative with

respective to ξi is given by

@logLðξ;XÞ
@xi

¼
XS

s¼1

Z

Prðθjxs; ξ
ðoldÞ
Þ
@log PrðZi ¼ xsijθ; xiÞ

wðxsiÞ

@xi
dθ ð15Þ

[39, 54], which involves the posterior distribution conditioned on xs and ξ(old) and a score

function of ξi (i.e., @log PrðZi ¼ xsijθ; xiÞ
wðxsiÞ=@xi), where ξ(old) is the estimates from the previ-

ous iteration. In practice, the following complete-data equations of gradient vector and Hes-

sian matrix can be used to form a Newton-Raphson optimization scheme:

@logLðξ;XÞ
@xi

¼
XQ

q¼1

XC

z¼0

rizq

@log½PrðZi ¼ zjVq; xiÞ�

@xi
; ð16Þ
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@2logLðξ;XÞ
@x

2

i

¼
XQ

q¼1

XC

z¼0

rizq

@2log½PrðZi ¼ zjVq; xiÞ�

@x
2

i

second partial derivativeð Þ; ð17Þ

@2logLðξ;XÞ
@xi@xi0

¼
XQ

q¼1

XC

z¼0

rizq

@2log½PrðZi ¼ zjVq; xi; xi0 Þ�

@xi@xi0
cross partial derivativeð Þ ð18Þ

[39, 54, 55], where Q is the number of numerical quadrature points required for numerical

integration, Vq is a quadrature point, rizq is the expected frequency of response z for item i at

Vq given by

rizq ¼
XS

s¼1

wðxsiÞns f ðVqÞ
YI

i¼1

PrðZi ¼ xsijVq; ξ
ðoldÞ
i Þ

XQ

q¼1

f ðVqÞ
YI

i¼1

PrðZi ¼ xsijVq; ξ
ðoldÞ
i Þ

: ð19Þ

For a wide variety of quasi-Newton optimization algorithms, providing only the gradient vec-

tor is adequate for estimation.

In the MML-EM algorithm, the posterior distribution of θ is computed given previous item

estimates in the expectation step (E-step), followed by the maximization step (M-step) which

is used to maximize the more manageable complete-data log-likelihood function with respect

to item parameters given fixed rizq. The E-step and M-step are repeated successively until some

termination criteria are satisfied (e.g., differences of estimates between iterations are smaller

than 10−4). The MML-EM algorithm is widely used for the unidimensional models, and is the

default estimation method in GGUM2004 and mirt.

mirt description and how-to

mirt is a comprehensive psychometric package for multidimensional item response theory in

R, which contains various model-based functions for fitting and analyzing IRT models. These

features include: parameter estimation, item fit, person fit, model fit, reliability calculation, mul-

tilevel modeling, graphical output options, etc. [34]. Various MIRT models supported by mirt

have been listed on the online manual of mirt. However, most of the internally optimized mod-

els are restricted to the family of dominance models. To inform researchers and practitioners

that mirt not only supports dominance models, this section demonstrates that unfolding mod-

els can also be analyzed by controlling several of the more recent functional developments in

the package. We aim to make these features in mirt more transparent to practitioners, and pro-

vide instructions regarding how to set up customized IRT models. We take the unfolding mod-

els, for instance, to illustrate the idea in the following, though strictly speaking the presentation

is not limited solely to unfolding models.

To implement the estimation by mirt for non-native item probability functions, one must

first build customized probability functions for the respective IRT models. First, the user must

construct a single R function whose output is a probability matrix (where each row represents a

given θ value and each column represents the respective response category) with three input

arguments: a parameter vector, a matrix of quadrature points of θ, and the number of observed

categories for the item. After this has been defined, a customized item type object can be created

in the working environment with suitable starting values, parameter boundary constraints, ana-

lytical or numerical derivative computations for the MML-EM algorithm, and so on. A tutorial
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is given in the following empirical example, which can be replicated for other IRT models of the

same form.

An empirical example applying unfolding models

In this example, a classical unfolding dataset about attitudes towards capital punishment [41]

is adopted for illustration purpose (see S1 Capital Punishment). The data for this example is

publicly available at http://ggum.gatech.edu/cpdat.txt, and detailed descriptions of the items

can be found at http://ggum.gatech.edu/capsdesc.html. In total there were 245 subjects in this

dataset who indicated their attitudes towards capital punishment on multiple 6-point rating

scale items, where 1 = Strongly Disagree, 2 = Disagree, 3 = Slightly Disagree, 4 = Slightly

Agree, 5 = Agree and 6 = Strongly Agree. Previously, Roberts and Laughlin [41] conducted a

preliminary analysis on these data by principal component analysis and found a two-factor

solution with a simplex pattern of component loadings, which suggests the data is likely to

respect the unidimensional unfolding mechanism [for more information, see 56]. Further-

more, Roberts and Laughlin [41] used the infit statistics [57] to heuristically screen poorly fit

items, and subsequently retained only items 2, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20, and 24 for

subsequent analyses. After creating this subset of items, Roberts and Laughlin [41] selected the

graded unfolding model (UM3) to fit to this data set.

In this example, we demonstrate how to replicate this analysis and compare the results

from mirt and GGUM2004 based on the 12 retained items using the UM3 response model.

The intention of this example analysis is to give readers back-reference for previously analyzed

data, the appropriateness of using the open-source mirt package, and to provide a more struc-

tured description of how front-end users can define customized item response models in their

own analyses.

Writing a customized IRT model in mirt

First, the most general probability function—the GGUM (UM8)—for six-point items in R is

defined and presented in the Step 1 of Supporting Information (see S1 R Syntax). As well, the

GGUM can be reduced to the graded unfolding model (UM3) with appropriate constraints.

The first observations to note is in regards to the three required input objects: the argument x
is constructed to represent a vector for the respective parameters (e.g., x[1] is the δ, x[2] is the

α, x[3] is the τ1, x[4] is the τ2, x[5] is the τ3, x[6] is the τ4, x[7] is the τ5), Theta is a matrix

representing the values of θ and their quadrature instantiations (e.g., the rows reflect the quad-

rature and column the number of dimensions), and ncat is the number of categories.

For the MML-EM with Newton-based optimizers, one also has to provide the gradient vec-

tor and potentially the Hessian matrix of the probability function with respect to item parame-

ters. The mirt package provides two approaches to accomplish this: one is to supply user-

defined functions for calculating the analytical gradient and Hessian, and the other is to use

numerical approximations (e.g., forward/central/Richardson extrapolation differentiation) or,

if possible, symbolic evaluations. The former approach is primarily useful for speeding up

computations of these required derivative functions, but also may be a step towards research-

ers formally contributing their customized models into the mirt package. The latter numerical

or symbolic derivative approaches, on the other hand, can be used when no analytic gradient

and Hessian have been defined because they are too cumbersome or error prone to derive

explicitly. In this study, we adopt the quasi-Newton optimization algorithm in the M-step for

its estimation stability, and because only the gradient functions are needed.

Continuing on, to create a customized unfolding model for mirt, one has to specify the

name of model, initial values of parameters, parameter estimability logical values, and whether
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bounds are present in the parameter space. Step 2 illustrates the R code for these general defi-

nition steps. If the quasi-Newton method is preferred with symbolic derivatives, one has to

either define the gradient function in R, or rely on the derivType = ‘symbolic’ argu-

ment to be passed when defining the model object; otherwise, the Richardson extrapolation

approximation will be used by default, which while often slower will typically result it models

as accurate and stable when symbolic methods are used. See Step 3 for R code. Finally, the

defined R code, combined with the createItem function, can then be used to create the UM8

for mirt, as shown in Step 4.

For the starting values of unfolding models, it is often wise to assign appropriate signs of

item locations, δ, based on the positive or negative descriptions of the items [4, 15, 24, 41, 58].

Although assigning signs of δ should be adequate, starting values of δ could be obtained by

using correspondence analysis [56] from the ade4 package [59]. Also, the sign of init_d also

has to be modified based on the item contents. The syntax associated with obtaining and defin-

ing suitable starting values is shown in Step 5.

In situations where there are missing data present, the authors suggest temporarily using

simple methods such as list-wise deletion or simple imputation when obtaining the associated

starting values, because the magnitude of the starting values are less critical for estimation than

the sign of the values. When ready, one can readily estimate the GGUM by passing the argu-

ments to mirt to obtain the item and person estimates respectively shown in Step 6. In addi-

tion to UM8, one can readily estimate graded unfolding model (UM3). The details were

shown in Step 7.

Parameter estimates

The results of item estimates and standard errors obtained from joint maximum likelihood

estimation [JML; 41], mirt, and GGUM2004, were shown in Fig 1. Note that while the JML

estimates were retrieved from Roberts and Laughlin (41), the mean of θ was rescaled to zero

for comparison. Fig 1A and 1B indicate similar patterns of item estimates (δ and τ) among the

three estimation criteria, where mirt and GGUM2004 yielded more similar results. Fig 1C and

1D show the JML estimation and GGUM2004, which used the empirical cross-product

approach, tended to underestimate standard errors [60], whereas mirt yielded reliable stan-

dard error estimates by the more theoretically optimal Oakes identity approximation method

[61]. The correlations of person estimates between mirt and GGUM2004 were .9998, implying

that both software packages yielded nearly the same estimates. Note that Roberts and Laughlin

[41] did not report standard error of thresholds for JML estimation.

Further analyses by mirt

In addition to parameter estimates, mirt also provides several options for further analysis. For

example, item-fit statistics can be computed by the itemfit function in mirt via, for example,

itemfit(mod), where mod is the model object in R obtained from mirt function (See Step 8).

Empirical reliability coefficients can be readily obtained by empirical_rxx(person), where per-
son is an object in R that contains point estimates for θ and the associated standard error esti-

mates via the fscores function. For UM3 in the above example, the reliability coefficient was

found to be .89. The ICC of each item can also easily be obtained by calling itemplot(mod,

index), where index is the item index, or via plot(mod, type) to generate several plots for the test

as a whole. Unfortunately, due to space constraints, we cannot exhaust all the options available

in mirt within this study, but encourage readers to investigate the secondary analysis options

currently supported by mirt. Specifically, interested readers should refer to the online manual
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of mirt (https://cran.r-project.org/web/packages/mirt/mirt.pdf) to discover many more

options and features available.

Numerical examples and simulations

Simulated data were used to investigate the parameter recovery via mirt under the R software

environment. Here, the focus is to assess the recovery of item parameters where the latent trait

is integrated (i.e., marginalized) out of the likelihood function. Once the estimates of item

parameters are available, it is usual to estimate the individual’s estimates via maximum likeli-

hood estimation, expected a posteriori, maximum a posteriori, and so on given the point-esti-

mates of item parameters [55]. Therefore, the quality of individual estimates highly depend on

how well the item parameters are recovered. With limited space, the following simulations

cannot exhaust all possible conditions; however, the authors aim to demonstrate the utilities of

mirt in regular empirical situations.

To begin, the performances of parameter recovery between mirt and GGUM2004 were

compared based on the eight models found within GGUM2004 [25]. The purpose was to assess

whether mirt could perform as well or better than the well-studied GGUM2004 software. Sec-

ond, focus was on whether the parameter recovery of Luo’s [26] unidimensional unfolding

models for Likert-scale data could also be obtained with sufficient accuracy. Lastly, Luo’s [40]

multidimensional unfolding Likert-scale data with a between-item design was simulated so

that the parameter recovery properties of mirt could be studied for these multidimensional

models.

Fig 1. The estimates and standard errors of item locations and threshold parameters obtained from joint maximum likelihood estimation [JML; 41], mirt, and

GGUM2004, for the capital punishment dataset of 245 respondents and 12 select items.

https://doi.org/10.1371/journal.pone.0196292.g001
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The overall assessment was determined by the bias and root-mean-square error (RMSE) of

an estimator x̂ computed by R� 1
PR

r¼1
ðx̂r � xÞ and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R� 1
PR

r¼1
ðx

^
r � xÞ

2

q

, respectively, where ξ
was the true parameter and R = 100 [20, 48, 49]. Other studies for the unfolding models have

used as few as 30 replications [15, 20, 29, 41] or fewer [3, 62], however 100 replications appeared

to be sufficient to obtain stable RMSE and bias estimates for comparison between the respective

software packages.

In addition to parameter recovery, the behavior of the standard errors was studied for these

respective models. The standard error of estimates can be obtained by numerically evaluating

the observed data log-likelihood at a grid of points in the ξ space (e.g., forward, central, Rich-

ardson extrapolation, or the Oakes Identity Approximation method) in mirt [63]. Due to the

heavy computation of the Monte Carlo studies, the authors used the central difference for uni-

dimensional models and the forward difference for multidimensional models for illustration;

however, front-end users should generally adopt the Oakes Identity method for its precision.

The average of SEðx̂rÞ across replications was compared with the empirical standard deviation

of the estimator (i.e., SDðx̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RMSE2 � bias2
p

), described by a relative measure (RM):

RMðx̂Þ ¼ ½R� 1
PR

r¼1
SEðx̂rÞ�SDðx̂Þ� 1

� 1. Values of RE > 0 indicates the standard error is

overestimated; otherwise, it is underestimated when RM < 0. RM close to 0 means the stan-

dard error is well estimated.

Complete syntax for all numeric examples are provided in S2 R Syntax. Finally, although

the authors adopted the quasi-Newton method with analytical gradient vectors only (via sym-

bolic differentiation) throughout simulation studies, an example of providing a user-defined

analytical Hessian matrix function is also given in the tutorial for completeness.

Example 1: Performances between mirt and GGUM2004

Design. The UM3 (graded unfolding model) and UM8 (GGUM) of GGUM2004 were

adopted for simulating data, and were estimated by mirt and GGUM2004. The sample sizes

studied were 250, 500, and 1,500, and the θ was generated from a standard normal distribu-

tion. The test length was 10 and 20, respectively. The true values of δi and τik were generated

consistent with the first simulation study of Wang, Liu [15]: the values of δ ranged from -2 to 2

with equal distance, and a four-point scale for every item were assumed for simplicity, where

τ = (-1.10, -0.72, -0.30) for each item of UM3 and UM8. The true values of α were randomly

generated within 0.76 and 1.34 for UM8 [15], whereas α = 1 for UM3. The MML-EM method

was used, where the quadrature points were 50 ranging from -4 to 4 for GGUM2004 and mirt.

In the maximization step, the GGUM2004 adopted the Newton-Raphson algorithm as the

default, while the authors used a quasi-Newton method (via the nlminb solver) in mirt. The

MML-EM was terminated early based on whether the absolute maximum difference of esti-

mates between iterations fell below 0.0001 for GGUM2004 and mirt within 500 of possible

EM iterations; otherwise, the data were discarded and resimulated.

Results. The maximum absolute values of biases and RMSEs for the parameter estimates

are summarized in Table 1 when 10 items for UM3 and UM8. Overall, the maximum absolute

values of biases and RMSEs for the parameter estimates were close to zero for UM3, except for

UM8 when using 10 items estimated by GGUM2004. Other results for 20 items and 30 items

were not shown here because the patterns of results were similar, but are available from the

author upon request. Based on the observed behavior, it was evident that the bias and RMSEs

were close between GGUM2004 and mirt for UM3; however, the performance of GGUM2004

was markedly worse than mirt for UM8. For instance, the maximum absolute value of bias

and RMSE were respectively 0.327 and 0.790 for t̂ of UM8 for GGUM2004 when sample size
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was 250, but they were only .056 and .480 for mirt. Note that the most severe bias and RMSE

of the estimators were primarily associated with smaller sample size conditions.

It is interesting to compare all the bias estimates of the parameter estimators between

GGUM2004 and mirt when there were only 250 observed responses and 10 items for UM8.

To help illustrate these observations, the authors plotted the values of â; d̂ and t̂ of UM8. Fig

2A shows the results estimated by GGUM2004. Trivially positive bias estimates were found for

â, but the d̂ and t̂ were noticeably biased for both ends of items (i.e., relatively extreme items

on the scale). The d̂ estimations for extremely positive items tended to be biased more posi-

tively, where the d̂ in the opposite tended to be biased more negatively. For t̂, extreme items

tended to be more negatively biased. These results may be explained due to sparse data in both

extreme regions when coupled with the more unstable Newton-Raphson algorithm utilized in

the M-step. This phenomenon has been rediscovered in the literature as well [25, 62]. The bias

estimates were less severe for mirt, as shown in Fig 2B, which might be due to the stability of

the select quasi-Newton method. When using larger sample size (e.g., 2000), the bias estimates

were however reduced. Notably, to help with model stability, a practical approach has been

suggested to regard ρik = ρk equal across items (e.g., UM3) because the common scoring rubric

is used for every item [15, 16, 41, 58, 62]. Overall, the results demonstrated that GUMM2004

provided more bias when estimating the eight studied unfolding models compared to mirt

with the quasi-Newton method.

Regarding the performance of the standard error estimators, the results of UM8 were illus-

trated. For UM3, the results were omitted because the patterns were similar between the two

programs. Fig 3 shows the results of RMs for three sample sizes (250, 500, and 1,500) given 10

items, respectively, for GGUM2004 and mirt. It is evident from these figures that GGUM2004

Table 1. Maximum absolute values of the bias and root mean square error (RMSE) among items when 10 items were used in the Example 1.

Bias RMSE

UM3

(graded unfolding model)

Sample Size 250 500 1500 250 500 1500

d̂

GGUM2004 .018 .021 .015 .126 .089 .055

mirt .018 .023 .013 .132 .096 .060

t̂

GGUM2004 .014 .019 .008 .082 .056 .031

mirt .014 .021 .006 .096 .067 .035

ŝ 2

mirt .012 .021 .002 .136 .094 .053

UM8

(generalized graded unfolding model)

â

GGUM2004 .104 .039 .016 .292 .197 .114

mirt .106 .043 .020 .288 .195 .115

d̂

GGUM2004 .327 .207 .071 .722 .577 .280

mirt .056 .030 .022 .340 .252 .169

t̂

GGUM2004 .323 .241 .076 .790 .630 .291

mirt .077 .059 .022 .480 .352 .204

https://doi.org/10.1371/journal.pone.0196292.t001
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provided overestimated standard error estimates for both ends of items (e.g., RM = 6.28 for

the d̂ of the first item) when sample size was 250. Fortunately, the RM reduced as the sample

size increased. In contrast, the overall RM for mirt ranged from -0.18 to 0.39 for all parame-

ters, generally indicating that the standard errors were properly reflecting the sampling vari-

ability of the parameter estimates.

For latent trait recovery, the correlation of true values and estimates (MLEs or EAPs) for

mirt was around .96 under all conditions, and the correlation was also around .96 (only for

EAP) for GGUM2004. This implies that both programs can effectively recover the linear rela-

tionship between true values and estimates. Overall, based on the performances of item param-

eter and standard error estimation, mirt appears to be a suitable alternative to GGUM2004 for

parameter estimation of the unfolding models studied.

Example 2: Unidimensional unfolding models with different operational

function designs

In this numerical example, the parameter recoveries of unidimensional unfolding models were

investigated. The five models in question were derived from the HCM and the GUM. For con-

sistency, the simulation setting was almost identical to Example 1: sample size (250, 500, and

1,500), standard normal distribution for latent trait, test length (10 and 20), values of δ ranging

from -2 to 2 with equal distance, four-point scales, and the values of α were randomly sampled

within 0.76 and 1.34 (19). The ρ = (1.102, 0.794, 0.587) was adopted which was used in the

work of Wang et al. [19]. With the common scoring rubric, only a set of common thresholds

Fig 2. The bias values of parameter estimators of UM8 for 250 people and 10 four-point items from (a) GGUM2004

and (b) mirt.

https://doi.org/10.1371/journal.pone.0196292.g002
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across items were selected to be estimated—that is, r̂ ik ¼ r̂k [15, 41, 62]. The arguments of

mirt were the same as in Example 1.

Results. Table 2 represents the maximum absolute values of the bias and RMSE estimates

for the item parameters. The absolute maximum values of bias were smaller than 0.128 in all

conditions, whereas the absolute maximum values of RMSEs were all smaller than 0.446.

Higher sample sizes tended to lower the RMSEs (i.e., lower the sampling error). Also, longer

test lengths resulted in slightly lower RMSEs. For the condition of 10 items and sample size

1,500, the maximum absolute values of the bias and RMSE for the GUM were 0.011 and 0.124

for d̂, 0.018 and 0.068 for â, and 0.014 and 0.044 for r̂, which could be compared with the

Fig 3. The relative measure of standard error estimators of UM8 for three sample sizes (250, 500, and 1,500) and 10 four-point items for GGUM2004 and mirt.

Note. The y-axis limits are -7 and 7 for GGUM2004; the y-axis limits are -1 and 1 for mirt.

https://doi.org/10.1371/journal.pone.0196292.g003

Table 2. Maximum absolute values of the bias and root mean square error (RMSE) among items for five models in the Example 2.

Bias RMSE

Test length 10 20 10 20

Sample size 250 500 1500 250 500 1500 250 500 1500 250 500 1500

d̂

HCM .128 .017 .019 .078 .030 .035 .446 .298 .172 .326 .228 .135

GUM .071 .010 .011 .043 .021 .025 .305 .202 .124 .263 .168 .095

â

HCM .053 .035 .018 .069 .042 .025 .212 .151 .088 .213 .149 .080

GUM .053 .032 .018 .058 .035 .020 .160 .109 .068 .186 .128 .069

r̂

HCM .050 .029 .012 .041 .020 .009 .139 .101 .063 .112 .071 .040

GUM .056 .028 .014 .033 .023 .009 .117 .079 .044 .075 .058 .029

https://doi.org/10.1371/journal.pone.0196292.t002
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results of Table 1 (under Condition 1) of Wang, Liu [15], who obtained the maximum absolute

values of bias and RMSE of 0.033 and 0.066 for d̂, 0.050 and 0.089 for â, and 0.022 and 0.038

for r̂, from their Bayesian MCMC estimation approach. Although the two results are not

based on the same replicated data or estimators, but rather the same ‘true’ item parameters,

the comparison indicates that mirt performs very similar to the MCMC estimation. For other

models, the results are similar to those of the GUM. Overall, the parameter recovery appeared

to be satisfactory.

The RM for the standard error estimator ranged from -0.19 to 0.20 for the five models

under the three sample sizes with 10 items, and ranged from -0.31 to 0.35 with 20 items.

Regarding the trait recovery, the correlation of true values and estimates (MLEs) for mirt ran-

ged from 0.92 to 0.99 for the five models under the three sample sizes with 10 items, and it ran-

ged from 0.96 to 0.99 with 20 items. These ranges were similar to the results in Example 1.

Thus, the trait correlation estimator and the standard error estimator of mirt were acceptable

for the five models.

Example 3: Multidimensional unfolding models

Design. The numerical example here investigates the parameter recovery of a class of mul-

tidimensional unfolding models for Likert-scale items. Two multidimensional unfolding mod-

els were considered for the simulation: MHCM, and MGUM, which are multidimensional

versions of HCM and GUM. Because the parameter estimation of these models have not been

investigated in the literature, the simulation settings were set similar to the work of Wang and

Wu [20]. A three-dimension design with between-item responses [47] was adopted for illustra-

tive purpose; that is, each item only measured a single latent trait. Two test lengths were used,

7 and 14, for each dimension [20]. Regarding item parameters, δ ranged between -2 and 2 with

equal steps; ρ = (1.102, 0.794, 0.587) for each dimension; the value of α was sampled randomly

from the range from 0.76 to 1.34, which are the same settings as Example 2. There were 500

and 1,500 randomly drawn latent traits which were sampled from a multivariate normal distri-

bution with μ = 0 and

S ¼

1 r21 r31

r21 1 r32

r31 r32 1

2

6
6
4

3

7
7
5; ð20Þ

which represents the true correlations between dimensions. For simplicity, all correlations

were organized to be equal, and were set to either 0, .4, and .8, respectively in three respective

conditions [58]. For estimation purposes, however, the three correlations were freely esti-

mated. Although zero correlation rarely occurs in practice, it was included to serve as a perfor-

mance baseline. The means and variances of θ were set to zero and one, respectively, for model

identification. Finally, although selecting the number of quadrature point is an empirical ques-

tion, and should be increased if the accuracy incurred by numerical integration is too low, the

default number of quadrature points was set equal to 15 per dimension (i.e., 3,375 in total) by

mirt.

Results. The maximum absolute values of the bias and RMSE estimates are shown in

Table 3. Comparing the absolute maximum values of bias and RMSE between sample size 500

and 1,500 for the five models, the estimates were overall slightly lower for the larger sample

size. For sample size 500 and test length 7 for the three correlation conditions, the highest bias

value was .068 for the â of MGUM, whereas for sample size 500 and test length 14 the highest

bias value was .050 for d̂ of MHCM. In terms of RMSEs, the d̂ of MHCM tended to have
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higher sampling variability. The highest value was .380 when sample size 500 and test length 7

when correlation was zero. For sample size 1,500 and test length 7 for the three correlation

conditions, the highest RMSE value was .184 for the d̂ of MHCM, whereas for sample size

1,500 and test length 14 the highest RMSE estimate was .173 for d̂ of MHCM. The bias range

of correlation estimates for all conditions (not shown in Table 3) was between 0.000 and 0.041,

whereas the RMSE range was between 0.012 and 0.073. Overall, the performance of mirt with

respect to recovering the parameters for the five models appeared to be satisfactory.

The RM for the standard error estimator ranged from -0.29 to 0.50 for the five models

under all the conditions. Regarding the trait recovery, the correlation of true values and esti-

mates (MLEs) for mirt ranged from 0.80 to 0.97 for the two models under all the conditions.

For the EAPs, the correlation estimates ranged from 0.87 to 0.97, which were slightly larger

than the MLEs because a correct Gaussian prior distribution was used for the EAPs.

Concluding remarks

Unfolding models are suitable when the underlying measurement process contains a proxim-

ity property with respect to the item-level stimuli. Although they have attracted huge attention

recently [9, 12, 15, 20, 64], the development of parameter estimation software for various

unfolding models has largely been left behind. To enhance the utilities of unfolding models in

practice, the mirt package was adopted in this article and evaluated using Monte Carlo simula-

tion studies. Overall results show that the parameters can be well recovered in a number of

known simulation conditions for several unfolding models. The numerical examples and

Table 3. Maximum absolute value of the bias values and root mean square error (RMSE) among items for five multidimensional unfolding models in the Example

3.

Bias

Sample size 500 1,500

Test length 7 14 7 14

Correlation 0 .4 .8 0 .4 .8 0 .4 .8 0 .4 .8

d̂

MHCM .056 .060 .045 .046 .045 .050 .027 .034 .028 .037 .030 .037

MGUM .033 .056 .044 .040 .033 .041 .028 .036 .045 .026 .022 .023

â

MHCM .064 .067 .050 .039 .040 .029 .027 .031 .025 .041 .033 .023

MGUM .052 .068 .054 .034 .037 .027 .030 .031 .027 .033 .027 .022

r̂

MHCM .047 .033 .037 .027 .019 .018 .014 .011 .014 .012 .008 .007

MGUM .036 .022 .028 .019 .019 .021 .010 .011 .012 .008 .006 .005

RMSE

d̂

MHCM .380 .327 .275 .293 .285 .277 .184 .170 .153 .173 .162 .147

MGUM .225 .216 .195 .183 .187 .187 .120 .123 .114 .109 .109 .104

â

MHCM .225 .212 .205 .167 .170 .152 .107 .112 .113 .106 .093 .081

MGUM .181 .171 .157 .136 .141 .122 .105 .097 .087 .083 .078 .069

r̂

MHCM .137 .130 .157 .085 .088 .084 .075 .077 .070 .053 .055 .050

MGUM .100 .104 .097 .054 .057 .055 .052 .056 .051 .033 .032 .036

https://doi.org/10.1371/journal.pone.0196292.t003
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simulations explored also provided partial evidence that the mirt package can serve as an alter-

native to the GGUM2004 software. As was also apparent, Luo’s unidimensional and multidi-

mensional models can be well estimated by mirt for Likert-scale data. Although the remaining

six models in GGUM2004, as well as the ALM, SSLM, and PARELLA, were not presented in

the above simulation studies, our preliminary study suggests that the parameters in these

respective models can also be recovered well. These results are available from the authors upon

request.

Regarding future applications with the parameters of unfolding models estimated using

mirt, researchers could also feasibly begin to construct an item bank for administering online

real-time scoring [65]. Relatedly, the application of the MUM to computerized adaptive testing

and computerized classification testing is of great value in practice. With the advent of com-

puters and apps on smartphones, tablets, and other portable devices, the survey time is often

greatly reduced, and therefore multidimensional tests can be constructed with maximum pre-

cision [66]. Relevant developments of item selection algorithms and classification strategies

are still open area for the MUMs.

With space limitations, the authors only provide a profile of mirt for parameter estimation

of unfolding models. However, there are a number of post-hoc analysis functions available in

mirt package that analysts will often also be interested in, which are also supported whenever

customized IRT models have been defined. For instance, item-fit statistics such as Zh values

[67], S-X2 statistics [68], Stone’s X2� [69] and the PV-Q1 statistics [70], model-fit with M2

[71], person estimates, plotting methods, and so on are available for assessing the quality of

items and overall model in the analysis. Interested readers in these topics should refer to the

online manual of mirt package. As it stands, however, the S-X2 statistics may require some

modifications for unfolding models [72].

Another interesting area of future research involves studying and modeling pairwise prefer-

ence response data. An IRT unfolding model proposed by Andrich [3] is specifically appropri-

ate for this type of comparative data. Though naturally applicable to these types of data, the

unfolding pairwise preference models are seldom used in the literature as well, which again

may be due to the absence of available software. Thus, using mirt to estimate the parameters of

pairwise unfolding models is left for further study, but is another area where mirt may be of

substantial practical use.

In this article, the authors echo Luo’s [42] need for additional general computer programs

that are useful for unfolding analyses. The authors demonstrated the utilities of mirt to estimate

Likert-scale data following various unfolding models. Based on the simulations studied and

example code provided, we recommend that researchers and practitioners adopt the mirt pack-

age in their own item response modeling work whenever they are interested in investigating

both common and less common unfolding models. Although the features demonstrated in this

article are new to the mirt software package, the current estimation functions for constructing

and analyzing customized item response models clearly provide users with a powerful level of

flexibility which ought to be adopted by practitioners and further studied in subsequent bodies

of simulation-based research.

Supporting information

S1 Fig. The probability of endorsement for binary responses.

(TIF)

S2 Fig. The corresponding Fisher information function of θ, where δ = 0 and ρ = 1 for

ALM, SSLM, PARELLA, HCM, and GUM.

(TIF)
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S3 Fig. The two-dimensional hyperbolic cosine model’s probability function of θ1 and θ2

for a four-point Likert-scale item of α = (1,1), δ = (0, 0), and ρ = (3, 2, 1), where the three

bold circles represent the threshold locations. Arrows annotate the regions of four catego-

ries.

(TIF)

S4 Fig. The Fisher information function of θ1 from two views. The Fisher function of θ2 is

similar to that of θ1, and omitted here.

(TIF)

S5 Fig. The Fisher information function of θ1 from a single view. The Fisher function of θ2

is similar to that of θ1, and omitted here.

(TIF)

S1 Capital Punishment. The classical unfolding dataset about attitudes towards capital

punishment.

(DAT)

S1 R Syntax. Syntax of mirt for estimating parameters of generalized graded unfolding

model (GGUM; Roberts, Donoghue, & Laughlin, 2000) for capital punishment dataset of

six-point Likert scale.

(DOCX)

S2 R Syntax. Syntax of mirt for estimating parameters of generalized graded unfolding

model (GGUM; Roberts, Donoghue, & Laughlin, 2000) for four-point Likert scale. Syntax

of mirt for estimating parameters of unidimensional graded unfolding model (GUM; Luo,

2001) for four-point Likert scale. Syntax of mirt for estimating parameters of three-dimen-

sional graded unfolding model for four-point Likert scale.

(DOCX)
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