
INTRODUCTION

Influenza A H1N1 Virus (INV) is a RNA virus belonging to 
the family Orthomyxoviridae. Commonly referred to as the 
flu virus, H1N1 is specific to birds and mammals. The latest 
worldwide flu pandemic occurred in April 2009 and accounted 
for an estimated 284,500 global deaths (Dawood et al., 2012). 

In general, a variety of host responses during viral infec-
tion have been identified, including activation of numerous 
cell death and survival pathways. These pathways include: 
1) programmed cell death I (apoptosis), 2) programmed cell 
death II (autophagy), and 3) endoplasmic reticulum stress 
with subsequent unfolded protein response (UPR). There 
has been extensive research on the regulatory roles of these 
pathways during the influenza virus life cycle (Yeganeh et al., 
2013). Pathogen sensory pathways (e.g., RIG-I) displayed 
long-lasting associations with cytokine/chemokine signaling 
through day 8 (Dimitrakopoulou et al., 2014). Transcriptome 
research for H1N1 infection revealed that host cell innate im-

munity is induced at 3 to 5 days post infection (Zou et al., 
2013). Another report described that the influenza induced an 
early immune response 3 to 7 days after infection (Park et 
al., 2015). However, influenza symptoms typically begin two 
days after exposure to the virus (Nair et al., 2011). In order 
to understand host cell pathway hijacking in H1N1 infection 
within two days, transcriptome changes during the first 48 h 
post infection could provide important insights into the mecha-
nisms underlying the pathogenicity of influenza A viruses. The 
host cell transcriptome profile was rapidly changed in the early 
stages of infection (within 8 h of infection). Several mediators 
of apoptosis were activated in this stage. After 8 h, the most 
significant change was found to be that in expression of genes 
encoding drug-metabolizing enzymes.
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MATERIALS AND METHODS

Host cell preparation 
A549 cells are adenocarcinoma human alveolar basal epi-

thelial cells. The A549 cell line is widely used as an in vitro 
model as a type II pulmonary epithelial cell model for studies 
of drug metabolism and as a transfection host. A549 cells were 
maintained in Dulbecco’s modified Eagle’s medium (DMEM). 
All media contained 10% fetal bovine serum and antibiotics 
(penicillin streptomycin). 

Viral infection and total RNA extraction
A549 cells were infected with influenza A virus at a multi-

plicity of infection (MOI) of 3 for 30 min at 37°C. The virus was 
propagated at 37°C in 11-day-old chicken embryos. After be-
ing washed with phosphate-buffered saline (PBS), cells were 
infected with influenza virus (IV) at an MOI of 3 for 30 min 
at 37°C. Infection media consisted of 0.1% glucose, 0.05% 
vitamin solution, and 0.5 mg/ml L-(tosylamido-2-phenyl) ethyl 
chloromethyl ketone (TPCK)-treated trypsin in DMEM. Infect-
ed cells were then washed and incubated in medium without 
serum for varying lengths of time. All infected cells were in-
oculated at less than 37 CT (cycle of threshold) for RT-PCR 
validation experiments. Total RNA was extracted from A549 
cells with the RNeasy Mini Kit (74104, QIAGEN, MD, USA).

Sample QC & RNA quantification
RNA integrity was assessed using an Agilent Technologies 

2100 Bioanalyzer with an RNA Integrity Number (RIN) value 
greater than or equal to 7. Cell-to-cell variability of influenza 
viral infection was quantified by subjecting the cell superna-
tant to a plaque assay to determine the load of infectious viral 
particles and then performing real-time reverse transcription 
quantitative PCR (RT–qPCR) on cell lysates to quantify the 
level intracellular viral RNA (vRNA) of individual genome seg-
ments. The size of PCR-enriched fragments was verified by 
assessing the template size distributions on an Agilent Tech-
nologies 2100 Bioanalyzer using a DNA 1000 chip (Agilent, 
CA, USA). 

Next generation sequencing 
The sequencing library was prepared by random frag-

mentation of the DNA or cDNA sample, followed by 5’ and 3’ 
adapter ligation. The Illumina Hiseq 4000 generated raw imag-
es utilizing HiSeq Control Software (HCS, Illumina, CA, USA) 
v3.3 for system control and base calling through the integrated 
primary analysis software Real Time Analysis (RTA, Illumina) 
v2.5.2. The binary BCL (base calls) value was converted into 
FASTQ utilizing Illumina package bcl2fastq (V2.16.0.10, Illu-
mina).

Sequence alignment
The alignment software application “New Tuxedo Protocol” 

was used for transcript assembly (Pertea et al., 2016). In the 
alignment step, HISAT2 was used to generate the alignment 
data (Kim et al., 2015a), which is a fast alignment program for 
mapping next-generation sequencing to read segments of the 
human genome (Siren et al., 2014).

Transcript assembly
In the transcript assembly, StringTie (Pertea et al., 2015) 

is known a fast and highly efficient assembler of RNA-Seq 

alignments into potential transcripts. It uses a novel network 
flow algorithm and an optional de novo assembly step to as-
semble and quantitate full-length transcripts representing mul-
tiple splice variants for each gene locus. StringTie estimates 
gene-level measurements by appropriately combining frag-
ments per kilobase of exon per million reads (FPKMs) from 
the transcripts of each gene. 

Time-series expression analysis
Ballgown (Frazee et al., 2015) is a bioconductor-based 

suite that hosts a comprehensive set of bioconductor com-
munities. The “stattest” function of Ballgown is available with 
a gene feature that prevents data skewing in the time series 
and was used for statistical tests of time-series expression. 
Gene-level measurements were performed by appropriately 
combining FPKMs from the transcripts comprising the gene 
(Li and Dewey, 2011) and it proposed a directed graph model 
combined with an expectation-maximization algorithm to es-
timate abundance. Ballgown generates a reference index by 
preparing reference transcript data and calculated RSEM val-
ues by inputting RNA-Seq data. A natural splines model with 
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Fig. 1. Unsupervised hierarchical clustering of gene set variation 
analysis. Gene set variation analysis (GSVA) is a non-parametric, 
unsupervised method for estimating variation of gene set enrich-
ment through the expression data of infected cell. GSVA trans-
formed each line gene-based expression matrix of gene by sample 
to matrix of a gene-set by sample. The matrix shows clear separa-
tion between the groups.
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default settings was used to fit time profiles and six degrees of 
freedom (df) were used to fit the splines. “Timecourse=TRUE” 
parameters were assigned for time profiling using the natural 
splines function (Supplementary Table 1). 

Functional annotation
DAVID bioinformatics resources consist of an integrated 

biological knowledgebase and analytic tools aimed at system-
atically extracting biological meaning from large gene/protein 
lists (Huang et al., 2009).

Gene set variation analysis (GSVA) 
GSVA is a gene set enrichment method which estimates 

variation of pathway activity over a sample population in an 
unsupervised manner. Program operation was employed us-
ing basic parameters in ‘RNA-seq’ mode and ‘kernel=TRUE’ 
using ‘gsva’ function (release version 3.5). The known-gene 
sets database was updated with the ‘Hallmark class’ and 
‘c7 class’ by extending the default class (Hänzelmann et al., 
2013).

Weighted correlation network analysis (WGCNA)
Time-series differentially expressed genes (DEGs) were 

categorized by WGCNA. Categorized data were divided into 
300-1000 gene categories with respect to their biological an-
notation-interpretation (Supplemetal Table 2). Constructing a 
weighted gene network entails calculation of the soft thresh-
olding power β, to which co-expression similarity is increased 
to calculate adjacency. We did this with a power of 16, which 
is the lowest power for which the scale-free topology fit index 
curve flattens upon reaching a high value (in this case, ap-

proximately 0.95), a relatively large minimum module size of 
30, and a moderate sensitivity (Supplementary Table 3).

Biological metabolic network in-silico validation
Elsevier’s Pathway Studio Mammalian, ChemEffect, Dis-

easeFX analysis: The set of biological networks in this study 
was created using Pathway Studio 11.0 (Ariadne) software 
(https://mammalcedfx.pathwaystudio.com/). Elsevier’s Path-
way Studio® enables users to explore molecular interactions 
and cause-and-effect relationships associated with biological 
processes by integrating a vast knowledge base of biological 
relationships with analytical and visualization tools. 

Ingenuity Pathway Analysis (IPA) metabolomics analysis: 
DEGs were analyzed using QIAGEN’s IPA software. The 
canonical pathways and functional processes with the most 
significant biological importance were identified using the list 
of DEGs identified with RNA-seq and the Ingenuity Pathways 
Knowledge Base. Pathway enrichment p-values (Fisher’s ex-
act test) and activation z-scores were calculated using IPA.

RESULTS

The biological functions are divided into two groups  
approximately 8 h after infection

In hierarchical clustering, all samples were divided two 
groups (Supplementary Fig. 1). Early infection and late in-
fection state samples were clustered into separate groups 
(Supplementary Fig. 2). Known biological function pathways 
were calculated using GSVA and all samples were divided into 
two groups by pathway activity score (Fig. 1). GSVA provides 
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increased power to detect subtle pathway activity changes 
with the ‘Hallmark class’ and ‘c7 class’: ‘Apoptosis (p<0.002)’, 
‘G2M checkpoint (p<0.002)’, ‘Interferon alpha response 
(p<0.002)’ and other biological functions were highly enriched 
in samples collected from cells infected for less than 8 h. ‘Ara-
chidonic acid metabolism (p<0.001)’, ‘glutathione metabolism 
(p<0.001)’ and others were highly enriched in samples collect-
ed from cells infected for more than 8 h. The clustering result 
for whole transcriptome profile and pathway activity showed 
the same pattern, indicating that 8 h is a critical point for func-
tional changes in host cells.

Changes in gene expression were observed in the two 
groups at 8 h

To identify host cell pathway hijacking, DEGs were selected 
by statistical testing of time-series expression data (Fig. 2). 
Gene expression changes were divided into two major groups. 
Fig. 2 shows 1,031 genes of the time-series DEGs, which 
were filtered by a threshold Q-value<0.05 (Supplementary 
Table 1). To find gene expression patterns in a functional mod-
ule, WGCNA was used to predict groups of highly correlated 
genes. The results of the WGCNA analysis package analysis 
divided the DEGs into two groups. The biological functions are 
divided into two groups at approximately 8 h after infection 
(Supplementary Table 2). The blue module (blue line) shows 
increases expression after 4 h and decreases after 8 h, while 
the turquoise module (turquoise line) decreases at 4 h and 
then increases after 24 h.

Gene ontology (GO) enrichment analysis (Dennis et al., 
2003) results of these two modules are displayed in Table 1. 
The envelop surface glycoprotein gp120 (p<0.007) was en-
riched in group 1. The neuroactive ligand-receptor interaction 
(p<1.97E−04) and metabolism of xenobiotics by cytochrome 

P450 (p<2.60E−04) were enriched in group 2.

Biological features of host cell before 8 h after infection: 
apoptosis

The protein gp120 is essential for viral entry into cells as 
it plays a vital role in attachment to specific cell surface re-
ceptors (Gram and Hansen, 1998). Viruses, such as HIV, with 
gp120 in their genome induce cellular apoptosis (Kapasi et al., 
2002). Apoptosis is important in an infection response and is 
activated at the early infection stage (Fig. 1). Supplementary 
Fig. 3 shows that apoptosis marker genes were expressed 
in early infection stage (Subramanian et al., 2005). The viral 
gene gp120 is known to be associated with BCL-2 expres-
sion (Gaubin et al., 1999). BCL-2 and other apoptosis-related 
genes are down-regulated in the early stages of influenza A 
infection. At timepoints before 8 h post-infection, expression 
of apoptosis marker genes, including BCL2, was decreased 
(Supplementary Fig. 4A).

Specific biological features after 8 h: DME-centric pathways 
DMEs are the set of metabolic pathways that modify the 

chemical structure of xenobiotics, which are compound of 
foreign materials such as replicated viral RNA and other me-
tabolites (Mackenzie et al., 2017). Suppression of DMEs is 
necessary for viruses to maintain their presence in a cell and 
replicate themselves. In general, ‘endoplasmic reticulum (ER) 
stress response’ and ‘cytochrome P450’ are typical examples 
of DMEs. Both were found to be DEGs in the experimental 
results (Supplementary Fig. 4B, 4C). 

In the Supplementary Fig. 4B, the endoplasmic reticulum 
(ER) stress response, also known as the unfolded protein re-
sponse (UPR), is a primitive, evolutionary conserved molecu-
lar signaling cascade which has been implicated in multiple 

Table 1. Time series DEGs: GO annotation and pathway menrichment analysis for all timepoints and early- and late-specific timepoints

Gene 
groups

Category Term Count % p-value
Fold 

enrichment
Bonferroni Benjamini FDR

Early stage 
changed 
gene sets 
(<8 hour)

HIV_Interaction env            env:Envelope sur-
face glycoprotein 
gp120

20 5.68 0.007 1.65 0.05 0.05 3.54

Molecular function GO:0015267    Channel activity 28 5.53 2.24E-05 2.49 0.01 0.01 0.03
GO:0022803    Passive transmem-

brane transporter 
activity

28 5.53 2.34E-05 2.49 0.01 0.01 0.03

GO:0030955    Potassium ion 
binding

14 2.77 4.50E-05 4.01 0.03 0.01 0.07

GO:0022838   Substrate specific 
channel activity

26 5.14 9.05E-05 2.40 0.05 0.01 0.13

KEGG Pathway hsa04080 Neuroactive 
ligand-receptor 
interaction

19 3.75 1.97E-04 2.68 0.02 0.02 0.23

hsa00980 Metabolism of 
xenobiotics by 
cytochrome 450

9 1.78 2.06E-04 5.41 0.02 0.01 0.24

hsa00982 Drug metabolism 9 1.78 2.60E-04 5.24 0.03 0.01 0.30

Category refers to the GO functional category; Count refers to the number of enrichment DEGs.
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biological processes, including innate immunity and the patho-
genesis of certain viral infections. Influenza A virus induces 
ER stress in a pathway-specific manner (Hassan et al., 2012). 
In the Supplementary Fig. 4C, various cytochrome P450 (p< 
2.06E−04) genes were differentially expressed 8 h post infec-
tion. The major role of cytochrome P450s is in steroid and 
bile acid syntheses (Nelson, 2009; Lorbek et al., 2012). They 
are essential for the solubilization and absorption of lipids and 
fat-soluble vitamins in the intestine and they contribute to the 
major DME pathways by which cholesterol is excreted from 
the body (Lu et al., 2000). 

DISCUSSION

The timepoint of 8 h post infection is an important inflection 
point for gene expression and biological functions

Kim et al. (2015b) reported that relatively few host cell 
genes were differentially expressed at 8 h post infection. In 
this study, our data are in agreement with the report by Kim et 
al. (2015b). This study indicates that 8 h post infection is an 
inflection point for host cell function and viral transition from 
the early to late infection stage. 

In the early infection stage ‘Apoptosis’, ‘G2M checkpoint’, 
‘Interferon alpha response’, and other biological functions are 
enriched. One study reported that apoptosis of virus-infected 
cells is one important host strategy used to limit viral infection 
(Scott and Norris, 2008). Cell cycle arrest may inhibit early cell 
death of infected cells, allow the cells to evade immune de-
fenses, or help promote virus assembly (Bagga and Boucha-

rd, 2014). Innate cytokine responses, such as alpha interferon 
(IFN-alpha) have roles in determining the rate of virus replica-
tion in the initial stages of infection (Price et al., 2000). These 
results indicate that influenza virus naturally establishes an 
environment for self-reproduction in early infection stage and 
hijacks host cell pathways, termed ‘cytopathic viral effects’ 
(Heaton, 2017) (Fig. 1).

In the late infection stage, ‘Arachidonic acid metabolism’ and 
‘glutathione metabolism’ were found to be enriched. Lu et al. 
(2012) reported results from metabolic profiling and biochemi-
cal detection which indicated significant metabolic changes in 
the arachidonic acid metabolic pathway. Glutathione is par-
tially depleted in influenza A virus infection (Alsuwaidi et al., 
2013). These result suggest that late expressed genes create 
circumstances necessary to hijack host cell pathways by in-
hibiting the inflammatory response and the oxidation required 
for metabolic breakdown of xenobiotic materials by living or-
ganisms, termed the ‘Drug metabolism pathway’ (Comman-
deur et al., 1995).

However, driver modules in host cell function hijacking 
was still unclear. To identify driver function in the early infec-
tion stage, WGCNA used co-expression to predict functional 
modules. We predicted an early infection module (blue mod-
ule) and found enriched ‘GP120 pathway in HIV’ (Fig. 3). The 
MAVS gene (IPS-1, VISA or Cardif) is critical for host defenses 
to viral infection by inducing type-1 interferons (IFN-I), though 
its role in virus-induced apoptotic responses has not been 
elucidated (Lei et al., 2009). Like gp120 in HIV, the PB1-F2 
gene has been shown to induce BCL2 by changing the level of 
MAVS gene expression (Varga et al., 2011). Unlike HIV, influ-
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enza A requires a mediator such as gp120. The PB1-F2 viral 
gene in the influenza genome is a candidate to be a mediator 
of gene sets regulated by gp120 (Fig. 3). The PB1-F2 viral 
gene is known to induce cell death (Chen et al., 2001) and 
apoptosis (Nicholson et al., 1998), similar to gp120. 

In the WGCNA results for late stages of infection, we pre-
dicted a late module (turquoise module) and found the ‘Drug 
metabolism enzyme pathway (DMEs)’ to be enriched (Sup-
plementary Fig. 5). DMEs were additionally found to be en-
riched in the late stage of infection by DAVID: ‘metabolism 
of xenobiotics by cytochrome 450 (p<0.004)’ and ‘drug me-
tabolism (p<0.0003)’ (Supplementary Table 3). P450 converts 
exotic materials to chemically reactive metabolites, which, 
if not detoxified, may lead to various forms of hepatic and 
extrahepatic toxicity, including cellular necrosis (Park et al., 
1995). In Supplementary Table 4, we show that CYP2C9 (P-
value=7.46E−08), CYP2C18 (p-value=9.41E-06), CYP2F1 
(p-value=0.0012), and CYP3A7 (p-value=9.95E−05) are in-
volved in drug and steroid metabolism (Nelson, 2009). 

The hub gene of the transcriptome-driven reconstruction 
network is a candidate drug targeting for influenza A

A therapeutic strategy that might escape viral resistance is 
to target host cellular mechanisms involved in viral replication 
and pathogenesis. The DGIdb integrates drug-gene interac-
tions from 15 different sources (Wagner et al., 2016) (Table 
2). Reconstruction of biological networks has been vital to un-
derstanding complex biological activities (Yu et al., 2013). In 
the gp120-regulated pathway of the early stages of infection, 
two genes (BCL-2, TERT) that surpassed the score thresholds 
(Sum score of DGIdb >2) were found. BCL2 was enriched in 
Paclitaxel, Oblimersen, Docetaxel, and Obatoclax treatments, 
while the TERT gene was only enriched in GV1001-treated 
cells. 

Brown et al. reported that Docetaxel should be further stud-
ied for its use in influenza vaccine production (Chen et al., 
2012; Brown et al., 2015). Obatoclax is a novel inhibitor of 
endosomal acidification which prevents viral fusion and could 

be pursued as a potential broad-spectrum antiviral candidate 
(Varghese et al., 2017). The TERT gene decreased rapidly at 
8 h post infection (ENSG00000164362, p-value=3.34E−05). 
TERT is the major catalytic subunit of telomerase. TERT has 
additionally reported to be associated with apoptosis (Fu et 
al., 1999).

The final goal of studying host-microbe interactions is to 
inform in silico models in order to identify crucial pathways, 
hubs, and bottlenecks, which will lead to development of new 
targets and strategies for prevention, diagnosis, risk assess-
ment, and treatment of severe influenza infection in humans 
(Kollmus et al., 2014). This study adopted functional transcrip-
tome analysis with transcriptome sequencing and identifica-
tion of genes after focusing on key time-series processes, 
providing several gene set enrichment analysis methods to 
identify genes related to seasonal influenza strains. In the fu-
ture, a series of functional validation experiments need to be 
performed to compare more virulent influenza strains.
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TNF  AMRINONE - - TRUE - - - - - - 1 5 6
TNF  CHLOROQUINE - - TRUE - - - - - - 1 5 6
TNF  CLENBUTEROL - - TRUE - - - - - - 1 5 6
TNF  PSEUDOEPHEDRINE - - TRUE - - - - - - 1 2 3

CFB: Clearity Foundation Biomarkers, CFCT: Clearity Foundation Clinical Trial, DB: Drugbank, GPI: Guide to Pharmacology Interactions 
Version: 04-March-2015, PG: PharmGKB - The Pharmacogenomics Knowledgebase, TALC: Targeted Agents in Lung Cancer, TE: Trends 
in the exploitation of novel drug targets, TT: Therapeutic Target Database, Version 4.3.02, TC: The Druggable Genome: Evaluation of Drug 
Targets in Clinical Trials Suggests Major Shifts in Molecular Class and Indication.
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