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Abstract

Aims Heart failure (HF) is an impending complication to myocardial infarction. We hypothesized that the degree of comple-
ment activation reflects severity of HF following acute myocardial infarction.

Methods and results The LEAF trial (LEvosimendan in Acute heart Failure following myocardial infarction) evaluating 61 pa-
tients developing HF within 48 h after percutaneous coronary intervention-treated ST-elevation myocardial infarction herein
underwent a post hoc analysis. Blood samples were drawn from inclusion to Day 5 and at 42 day follow-up, and biomarkers
were measured with enzyme immunoassays. Regional myocardial contractility was measured by echocardiography as wall mo-
tion score index (WMSI). The cardiogenic shock group (n = 9) was compared with the non-shock group (n = 52). Controls
(n = 44) were age-matched and sex-matched healthy individuals. C4bc, C3bc, C3bBbP, and sC5b-9 were elevated in patients
at inclusion compared with controls (P < 0.01). The shock group had higher levels compared with the non-shock group for
all activation products except C3bBbP (P < 0.05). At Day 42, all products were higher in the shock group (P < 0.05). In the
shock group, sC5b-9 correlated significantly with WMSI at baseline (r = 0.68; P = 0.045) and at Day 42 (r = 0.84; P = 0.036).
Peak sC5b-9 level correlated strongly with WMSI at Day 42 (r = 0.98; P = 0.005). Circulating endothelial cell activation markers
sICAM-1 and sVCAM-1 were higher in the shock group during the acute phase (P < 0.01), and their peak levels correlated with
sC5b-9 peak level in the whole HF population (r = 0.32; P = 0.014 and r = 0.30; P = 0.022, respectively).

Conclusions Complement activation discriminated cardiogenic shock from non-shock in acute ST-elevation myocardial in-
farction complicated by HF and correlated with regional contractility and endothelial cell activation, suggesting a pathogenic
role of complement in this condition.
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Introduction long-term morbidity and mortality in acute ST-elevation myo-

cardial infarction (STEMI).>? However, acute heart failure (HF)
The current therapeutic strategy with rapid restoration of blood  and cardiogenic shock are still important clinical complications
flow to the ischaemic myocardium by percutaneous coronary of STEMI and remains the leading cause of death in patients
intervention (PCl) has markedly reduced the short-term and  with acute myocardial infarction (MI).> Cardiogenic shock is
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defined as a state of mismatch between oxygen delivery and ox-
ygen demand caused by critical tissue hypoperfusion due to re-
duced cardiac output, and the diagnosis is based on
haemodynamic (e.g. hypotension), clinical (e.g. cold extremi-
ties), and biochemical (e.g. increased lactate) criteria.®

Acute coronary syndromes and Ml are associated with in-
flammation,” and activation of the innate immune system
such as Toll-like receptors and the complement system are
implicated in mediating both adaptive (e.g. tissue repair)
and maladaptive (e.g. cardiomyocyte necrosis and apoptosis)
responses.2 2% Cardiogenic shock following Ml would exag-
gerate the inflammatory responses by tissue hypoperfusion
and potentially induce a vicious circle.* Current manage-
ment of cardiogenic shock involves strategies to increase car-
diac output and antithrombotic treatment but do not target
the inflammatory response per se.’

The complement system, for long appreciated only as a
first line of defence against microbes, is today acclaimed for
immune surveillance by much broader means. Damage-
associated molecular patterns can trigger complement activa-
tion through three characterized pathways: the classical, the
lectin, and the alternative pathway. They all merge at the
central complement component C3 and continue into a com-
mon terminal pathway with cleavage of C5 and formation of
the terminal C5b-9 complement complex, which, when
inserted into membranes as the membrane attack complex,
can lyse bacteria and activate host cells. The soluble form
of C5b-9 (sC5b-9) is a fluid-phase marker indicating that the
terminal pathway has been activated to its very end.?

Whereas a balanced activation of the complement system is
regarded as beneficial for the host, an overwhelming activation
could promote sustained inflammation and tissue damage, as
seen during Ml and the following ischaemia/reperfusion
injury,*® but its relation to acute HF development following
Ml is not clear. However, complement is activated in patients
with chronic HF, regardless of aetiology, potentially associated
with unfavourable outcome,**® and recent studies have
highlighted the activation of the lectin pathway as central in
ischaemic heart disease and chronic HF.*"2

The present study is a post hoc study of the LEAF
(LEvosimendan in Acute heart Failure following myocardial
infarction) trial,*® an interventional study on patients devel-
oping HF within 48 h following PCl-treated STEMI. We hy-
pothesized that enhanced complement activation could be
a hallmark of acute HF in this patient group and may discrim-
inate between HF with or without cardiogenic shock.

Materials and methods
Study design and population

The patient population and study design in the LEAF trial
have previously been described in detail.’® Briefly, 61

patients with PCl-treated STEMI who (i) had successful open-
ing of the occluded coronary artery, (ii) had decreased wall
motion in at least 3 of 16 segments of the left ventricle eval-
uated by echocardiography, and (iii) developed clinical signs
of HF within 48 h (range: 14-33 h) following PCl were ran-
domized to treatment with the calcium sensitizer
levosimendan or placebo.’® HF was defined as dyspnoea at
rest and the presence of at least one of the following symp-
toms: pulmonary oedema, signs of pulmonary congestion
on X-ray, need for continuous positive airway pressure or me-
chanical ventilation, or need for intravenous diuretics due to
symptoms of congestion or persistent oliguria (urine output
<0.5 mL/kg/h) after volume therapy. Criteria for subgrouping
patients into cardiogenic shock included both of the follow-
ing: (i) systolic blood pressure < 90 mmHg after 60 min of
volume therapy or systolic blood pressure 90-100 mmHg de-
spite vasoactive support and (ii) signs of organ hypoperfusion
such as cold and clammy extremities, oliguria, or reduced
consciousness. Exclusion criteria were septic shock, acute
respiratory distress syndrome, creatinine > 450 umol/L,
severe hepatic failure, age < 20 years, heart rate > 120 b.
p.m., pregnancy, significant mechanical outflow obstruction,
haemoglobin < 8 g/dL, or allergy to the study medication
or any of its components.

In the present study, the STEMI patients who developed
cardiogenic shock (n = 9) were compared with patients
with HF without any signs of cardiogenic shock (n = 52)
in order to investigate differences in complement activation
between severe and less severe degree of HF. For compar-
ison, blood samples were obtained from 44 age-matched
and sex-matched healthy controls. Importantly, to ensure
that treatment with levosimendan did not affect the de-
gree of complement activation, we compared the two
treatment groups with respect to sC5b-9 over the whole
study period. There was no significant difference between
the groups (P = 0.72), and they were thereafter handled
as one population.

Blood sampling protocol

Blood samples were collected from patients at the time of in-
clusion (Day 0), that is at time of HF diagnosis (median 24 h
following PCl) and at Days 1, 2, 5 (acute phase of the disease),
and 42 following inclusion (follow-up sample) as previously
described.’® Briefly, blood samples were collected in
ethylendiaminetetraacetic acid (EDTA), citrate, and serum
vacutainer tubes (BD, Plymouth, UK). EDTA and citrated
plasma samples were stored on crushed ice immediately af-
ter sampling and centrifuged within 30 min at 3000 g for
20 min at 4°C to obtained platelet-poor plasma. Blood for se-
rum preparation was allowed to clot for 60 min in room tem-
perature and thereafter centrifuged at 2500 g for 10 min for
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isolation of serum. All samples were stored at —80°C until
analysed and thawed only once.

Assays for complement activation markers

The complement activation products C4bc (classical and lec-
tin pathway), C3bc (common pathway), C3bBbP (alternative
pathway), and sC5b-9 (terminal pathway) were measured in
EDTA-plasma samples from patients and controls by in-house
enzyme-linked immunosorbent assays. All assays are based
on either monoclonal antibodies detecting activation-specific
neoepitopes (C4bc, C3bc, and C5b-9) or pairs of antibodies
detecting complexes formed between single components
upon activation (C3bBbP) as previously described in detail.>®
The level of the respective marker was related to the Interna-
tional Complement Standard #2, defined to contain 1000
complement arbitrary units per millilitre.?°

Lectin pathway recognition molecules

Plasma concentrations of mannose-binding lectin (MBL),
ficolin-1 (FCN1), ficolin-2 (FCN2), and ficolin-3 (FCN3) were
determined by sandwich enzyme-linked immunosorbent as-
says using specific in-house produced monoclonal antibodies
as previously described.?*™2*

Markers of endothelial activation

Levels of soluble intercellular adhesion molecule-1 (sICAM-1)
and soluble vascular cell adhesion molecule-1 (sVCAM-1) of
the current material have previously been analysed in serum
and published.? In the present study, we extended the data
analyses by comparing these markers between patients with
and without cardiogenic shock, to explore whether they
corresponded with the degree of HF and whether there were
any correlations between these markers and markers of com-
plement activation.

Echocardiography

Left ventricular function was measured as wall motion score
index (WMSI) by echocardiography as previously described.*®
A 16-segment model was used where a normally contracting
or hyperkinetic segment was given a score of 1, a hypokinetic
segment scored 2, akinesia gave a score of 3, and a dyskinetic
segment scored 4 points. WMSI was calculated by dividing the
sum of scores by the number of segments scored. All examina-
tions were performed by two experienced echocardiog-
raphers on Days 0, 1, and 42, and the analyses were
performed by one observer. An ultrasonic device system (Vivid
i or Vivid 7, GE Vingmed Ultrasound, Horten, Norway) was

used for the examinations, and the analyses were performed
with dedicated software (Echopac GE Vingmed Ultrasound).

Infectious complications

In order to test whether infectious complications contributed
to activation of the complement system, levels of activation
makers were compared in patients with documented or
suspected infection, based on positive culture testing, X-rays,
and clinical evaluation (n = 14), to patients without infection
(n = 38). This comparison was only performed in the non-
shock group because the cardiogenic shock group did not in-
clude enough patients to ensure statistical testing. Statistical
tests for correlation between complement activation and bio-
chemical markers of infection [C-reactive protein, white blood
cell (WBC) count, or interleukin (IL)-6] were also performed.

Data presentation and statistics

In addition to the patient cohort, a control group comprising
44 age-matched and sex-matched healthy individuals was in-
cluded. The patient cohort was divided into two groups: one
group consisting of patients who developed HF without any
signs of cardiogenic shock, the non-shock group (n = 52),
and one group consisting of patients who developed cardio-
genic shock, referred to as the shock group (n = 9).%° Differ-
ences between these two groups during the first 5 days
after inclusion (Days 0-5) were analysed with linear mixed
model analyses. Differences between the two groups were
tested with t-test or alternatively with the Mann—Whitney
U-test when data were not normally distributed. To compare
categorical data between groups, the y? test or Fisher’s exact
test was used. Differences between more than two groups
were tested with Kruskal-Wallis test using Dunn’s post hoc
test. Bonferroni correction was used to correct for multiple
testing. Correlation analyses were measured by the Spear-
man correlation test. All results are given as mean and stan-
dard error of the mean. A P value of <0.05 was considered
statistically significant. IBM SPSS Statistics version 21
(Armonk, NY) was used for analysis, while GraphPad Prism
version 6 (San Diego, CA) was used for data presentation.

Ethics

The study was approved by The Regional Ethics Committee
South-Eastern Norway Regional Health Authority, and the
study was conducted in accordance with the principles of
the Declaration of Helsinki (clinicaltrials.gov NCT00324766).
All patients provided written informed consent. If a patient
was unable to give informed consent, relatives were in-
formed, and a written consent was acquired from the patient
as soon as possible.
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Results
Complement activation

Sixty-one patients were included in the study, and those who
developed cardiogenic shock (n = 9) were compared with pa-
tients with HF without any signs of cardiogenic shock (n = 52)
(Table 1). At the time of inclusion, C4bc, reflecting classical
and lectin pathway activation, C3bc, reflecting C3 activation,
C3bBbP, reflecting activation of the alternative pathway,
and sC5b-9, reflecting the terminal pathway activation, were
significantly elevated in the patient cohort (n = 61) com-
pared with the healthy controls (n = 44) (P < 0.05 for all;
Figure 1A-D). Patients developing shock had significantly
higher levels of C4bc, C3bc, and sC5b-9 in the acute phase
of the disease (Days 0-5), compared with patients without
shock (P < 0.05 for all; Figure 1A, B, and D). Even at Day
42, there was an enhanced complement activation reflected
by higher levels of all four activation markers (C4bc, C3bc,
C3bBbP, and sC5b-9) in the shock group compared with
the non-shock group (P < 0.05 for all; Figure 1E-H).

Lectin pathway recognition molecules

The level of FCN2 was at the time of inclusion lower among
patients vs. controls (P < 0.05), whereas no significant differ-
ences were observed for MBL, FCN1, or FCN3 (Figure 2A-D).

During the acute phase of the disease (Days 0-5), FCN2
increased significantly (P < 0.05) in the patient cohort as
a whole, but there were no significant group differences
between those with and without cardiogenic shock
(Figure 2C). At Day 42, however, the shock group had a signif-
icantly higher level of FCN2 compared with the non-shock
group (P < 0.05; Figure 2G). No significant group differences
were found for MBL, FCN1, or FCN3 (Figure 2E, F, and H).
Furthermore, there was no correlation between C4bc and
MBL or the ficolins.

Markers of endothelial activation

We have previously published data on endothelial activation
in these patients.25 When now analysing their relation to car-
diogenic shock, we found that sICAM-1 and sVCAM-1 were
significantly higher in the shock group compared with the
non-shock group during the acute phase of the disease (Days
0-5) (P < 0.01 for both; Figure 3A,B) with no significant dif-
ferences at Day 42, (Figure 3C,D).

Correlation between complement activation and
regional myocardial contractility

In the shock group, there was a significant correlation be-
tween complement activation as measured by sC5b-9 and

Table 1 Baseline characteristics of 61 patients with ST-elevation myocardial infarction developing acute heart failure with or without car-

diogenic shock

Shock Non-shock P value
Total number (female/male) 9 (3/6) 52 (15/37) 0.89
Age (years, mean, and range) 57 (49-68) 66 (56-74) 0.08
TnT? (ng/L) 14 640 (7580-20 925) 12 279 (7811-16 607) 0.43
Creatinine® (umol/L) 81 (52-150) 82 (69-95) 0.91
eGFR? (mL/min/m?) 60 (33-60) 60 (60-60) 0.24
NT-proBNP? (pmol/L) 315 (202-721) 463 (266-840) 0.52
C-reactive protein® (mg/L) 40 (24-100) 57 (35-97) 0.42
WBC count (><109/L)a 11 (8.9-17) 12 (10-15) 0.49
IL-6° (pg/mL) 29 (19-40) 27 (21-33) 0.54
Previous hypertension, n (%) 5 (56) 16 (31) 0.15
Previous dyslipidemia, n (%) 1(11) 12 (23) 0.42
Current smoking, n (%) 6 (67) 16 (30) <0.05
Previous diabetes mellitus, n (%) 1(11) 5(10) 0.89
Previous statin treatment, n (%) 2 (22) 13 (25) 0.86
Previous myocardial infarction, n (%) 3(33) 8 (15) 0.20
Multi-vessel disease, n (%) 5 (56) 26 (44) 0.76
Atrial fibrillation®, n (%) 1(9) 1(2) 0.16
Systolic blood pressure?, mmHg 85 (72-94) 106 (96-117) <0.001
Diastolic blood pressure®, mmHg 55 (48-58) 67 (60-72) <0.001
Hours from symptom start to PCl 3 (2-8) 3 (2-6) 0.80
Hours from PCl to baseline 17 (10-23) 23 (14-32) 0.07
LVEF?, % 44 (34-49) 41 (38-47) 0.88
Antimicrobial treatment, n (%) 8 (89) 14 (27) <0.001
Mortality within 6 months, n (%) 3(33) 2 (4) <0.05

GFR, glomerular filtration rate; IL-6, interleukin 6; LVEF, left ventricular ejection fraction; NT-proBNP, N terminal pro brain natriuretic
peptide; PCl, percutaneous coronary intervention; TnT, troponin T; WBC, white blood cell.

Data are given as median (25th and 75th percentile) or number (%).
@At the time of inclusion, that is median 24 h following PClI.
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Figure 1 Complement activation products during the first 5 days of the disease and at Day 42 after inclusion. Figures in the upper panel (A-D) show
values at inclusion and throughout the acute phase of the disease (Days 0-5). (A) Plasma levels for C4bc (classical and lectin pathway activation), (B)
C3bc (common activation of all initial pathways), (C) C3bBbP (alternative pathway activation), and (D) sC5b-9 (terminal pathway activation) are shown
for patients with cardiogenic shock (n =9, grey circles), patients with heart failure without cardiogenic shock (n = 52, open circles), and healthy controls
(n = 44, black triangles). Statistical differences between the shock group and the non-shock group of patients from inclusion (Day 0) to Day 5 (the acute
phase of the disease) are indicated with brackets and *(P < 0.05) at the right-hand side of the graph. Statistical difference between patients and con-
trols at the time of inclusion are indicated with *(P < 0.05). Figures at the lower panel (E-H) show plasma levels at Day 42 for (E) C4bc, (F) C3bc, (G)
C3bBbP, and (H) sC5b-9 for patients with cardiogenic shock (n = 7, grey columns) and patients without cardiogenic shock (n = 45, white columns). Data
are given as mean * standard error of the mean. CAU, complement arbitrary units.
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WMSI at the day of inclusion (Day 0) (r = 0.678, P = 0.045)
and at Day 42 (r = 0.841, P = 0.036; Table 2). At these two
time points, both blood sampling and WMSI were per-
formed, and thus, direct correlation tests could be per-
formed. sC5b-9 reached its highest level at Day 2, where
WMSI was not performed. Interestingly, this peak sC5b-9
level correlated significantly with WMSI at Day 42 in the
shock group (r = 0.975, P = 0.005; Table 2). Weaker or no
correlations were found for the other complement activa-
tion products: WMSI Day 1 correlated with C3bBbP mea-
sured at Days 2 (r = 0.943, P = 0.005) and 42 (r = 0.829,

Correlation between complement activation and
the markers of endothelial activation

There was a significant correlation between complement ac-
tivation in the whole patient group (n = 61) at Day 2, when
sC5b-9 peaked, and peak level of sVCAM-1 (r = 0.296,
P =0.022) and sICAM-1 (r=0.317, P =0.014), whereas no cor-
relation was found when the shock and non-shock groups
were analysed separately.

P = 0.042), and WMSI measured at Day O correlated with
C4bc measured at Day O (r = 0.703, P = 0.035, data not
shown). No correlations were found between WMSI and
C3bc. In the non-shock group, the only significant correlation
was found between C4bc measured at Day 1 and WMSI at
Day 0 (data not shown).

Complement activation following infection

There was no significant difference in complement activation,
measured as sC5b-9, between patients with infection (n = 14)
and patients without infection (n = 38) in the non-shock group
during the acute phase of the disease (Days 0-5) (P = 0.44).

ESC Heart Failure 2018; 5: 292-301
DOI: 10.1002/ehf2.12266



Complement activation in severe heart failure

297

Figure 2 Lectin pathway proteins levels during the first 5 days of the disease and at Day 42. Figures at the upper panel (A-D) show plasma levels for
the (A) mannose-binding lectin (MBL), (B) Ficolin-1 (FCN1), (C) Ficolin-2 (FCN2), and (D) Ficolin-3 (FCN3) for patients from inclusion (Day 0) to Day 5
(the acute phase of the disease). Figures in the lower panel (E-H) show plasma levels for the (E) MBL, (F) FCN1, (G) FCN2, and (H) FCN3 at Day 42. The
figures are shown with the same patient populations and details as described in the Figure 1 legend. *P < 0.05.

A MBL B FCN1
3000 800+
600
2000
E g
}n }D 40071 A
o o
1000
I 200
0- 0-

- T T T T

012 3 435 012 3 435

C FCN2 D FCN3
151 501
40
10 A
E I E 3
E ]
X 504
51
*
104
0- oA

—_

01 2 3 45 012 3 4 5

Days Days Days Days
- Control -0 Non-shock -0 Shock
E F G H
*
8000 800 00 ° 30 1 80
o
6000 o 6001 ©,,00 _ 60
E o E 00 EN, ° E 0,0 o
= 4000 ° %0 5400 00 E 000000 = 40 O 25
c Oo 00 c 10 o =
2000 2007 [Pooss 20 °
° 000 0©
0 T T 0 T T 0 T T
Non-shock Shock Non-shock  Shock Non-shock  Shock Non-shock  Shock
Day 42 Day 42 Day 42 Day 42

There was no difference between the non-shock and the shock
group with respect to levels of C-reactive protein, WBC count,
or IL-6 (Table 1). We found no association between peak values
of sC5b-9 and markers of infection (C-reactive protein, WBC
count, or IL-6, all measured as peak values) (Table S1).

Discussion

In the present study, we found increased complement activa-
tion in patients who developed acute HF following PCl-
treated STEMI compared with healthy controls. Notably, the
degree of complement activation discriminated those pa-
tients developing cardiogenic shock from those in the non-
shock group. The increased activation persisted even 6 weeks
after STEMI in the shock group. In these patients, there was
also a strong correlation between complement activation
and regional contractility measured as WMSI both at inclu-
sion and at 6 weeks. Although complement activation has
been shown to be involved in the progress of HF, this is, to
the best of our knowledge, the first study to document that
the degree of complement activation is directly related to
the disease severity and impaired myocardial function in pa-
tients developing acute HF following STEMI.

The patient population in this study was characterized by
large Mlis determined by high levels of troponins and clinical
and echocardiographic findings.*® In the present study, we
show that the complement activation products C4bc, C3bc,
C3bBbP, and sC5b-9, representing complement activation from
initiation to terminal activation, were increased at the time
when the patients were diagnosed with HF (14-33 h following
PCl treatment), compared with healthy individuals. Further-
more, there was stronger and more persistent complement ac-
tivation in the most severely affected patients. This persistent
activation indicates that complement might play an important
role in the pathophysiological process of HF. In fact, the peak
level of sC5b-9 during the acute phase correlated significantly
with WMSI after 6 weeks, suggesting that complement-
mediated mechanisms could promote myocardial damage with
subsequent development of severe HF following STEMIL.

Because of its amplification loop, the alternative pathway can
contribute substantially to complement activation from the
level of C3 and further downstream the activation cascade.?®?’
The lack of difference between the two patient groups with re-
spect to the activation product C3bBbP is therefore somewhat
surprising. The amplification loop is, however, under strict con-
trol by regulatory proteins like factor H, and complement activa-
tion triggered presuming via the lectin pathway with a tight
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Figure 3 Serum levels of the endothelial cell activation markers siICAM-1 and sVCAM-1 during the first 5 days of the disease and at Day 42. Figures in
the upper panel show serum levels of the (A) soluble intercellular adhesion molecule 1 (sICAM-1) and the (B) soluble vascular adhesion molecule 1
(sVCAM-1) for patients from inclusion (Day 0) to Day 5 (the acute phase of the disease). Figures in the lower panel show serum levels of (C)
sICAM-1 and (D) sVCAM-1 at the control measurement at Day 42. The figures are shown with the same patient populations and details as described

in the Figure 1 legend. ‘P < 0.05.
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Table 2 Correlation between left ventricular regional contractility
measured as wall motion score index and complement activation
measured by sC5b-9 in patients with cardiogenic shock (n = 9) fol-
lowing percutaneous coronary intervention-treated ST-elevation
myocardial infarction

sC5b-9 sC5b-9 sC5b-9
Day 0 Day 2 Day 42

WMSI Day 0 r 0.678 0.206 0.522
P 0.045 0.696 0.288

WMSI Day 1 r 0.311 0.812 0.488
P 0.415 0.050 0.329

WMSI Day 42 r 0.551 0.975 0.841
P 0.257 0.005 0.036

WMSI, wall motion score index. Statistical significance is shown
in bold.

regulatory control of the alternative pathway in both groups in
the early phase of disease may be a reasonable explanation
for this finding. The regulatory balance may then have changed
after the initial phase, explaining the significant difference in
C3bBbP in the two groups at Day 42.

Several clinical and experimental studies have previously
demonstrated increased complement activation in cardiovascu-
lar disease and HF.***>?8732 particularly, the lectin pathway has
been linked to complement-mediated myocardial injury and
HF,*83373% and lectin pathway recognition molecules were
therefore thoroughly investigated in the present study. MBL
and the ficolins are circulating recognition molecules binding
to molecular structures on damaged host cells further activating
the mannose-binding serine proteases, MASP1 and MASP2.3
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MBL is also an acute phase reactant,®” and altered levels of
FCN1-3 are reported in various pathological conditions, either
due to consumption or changed expression.>® The lower level
of FCN2 in the patient population at inclusion compared with
healthy controls is in line with a previous observation seen in
STEMI patients® and is suggested to reflect consumption in
the early phase of the disease. From the inclusion level, FCN2 in-
creased significantly during the first 5 days of the disease and
was at Day 42 significantly higher in the shock group. The other
recognition molecules, MBL, FCN1, and FCN3, did not differ sig-
nificantly from the healthy controls at inclusion. FCN1 was
higher than the controls, although not significant, and showed
no change during the course. The reason for the different pat-
terns for FCN1 and FCN2 is uncertain but might be related to
their different profiles for release and consumption, which
makes it difficult to compare these two. FCN1 is synthesized
by peripheral leukocytes. Upon cell activation, secretion of
FCN1 increases, but the majority is tethered to the cell mem-
brane of the activated cell.> This can explain the small, however
non-significant, early increase of FCN1 in patients. FCN2 is syn-
thesized in the liver as a soluble protein.*® Increased secretion
of FCN2 is, in relation to FCN1, delayed, which enables a con-
sumption profile early after MI. Further on, FCN1 and FCN2
are highly homologous, but FCN2 has four carbohydrate-binding
domains, whereas FCN1 has only one.** FCN2 might therefore
bind its ligand more tightly as compared with FCN1, but without
knowing the exact target, this remains speculative.

C4bc reflects both classical and lectin pathway activation.
Although classical pathway activation cannot be excluded,
our findings of increased C4dbc is in accordance with lectin
pathway activation during the acute phase,®**? although
the role of the lectin pathway in post-MI HF is still elusive.

Microbial infections are well-known activators of the
complement system.”® We therefore compared complement
activation in patients with or without signs of infection. The
non-shock group contained a sufficient amount of patients
treated for infections, documented or suspected, to enable
statistical analysis regarding infectious complications and com-
plement activation. Notably, there was no difference in comple-
ment activation in patients with or without infection in this
group. Antibiotics were given mainly because of suspected aspi-
ration, and septic patients were excluded from the trial. Fur-
thermore, there were no correlations between peak levels of
sC5b-9, C-reactive protein, IL-6, or WBC count. Thus, there is
no evidence that the increased complement activation is
caused by infections but rather by the cardiogenic shock per se.

The patients in the shock group were characterized by signif-
icantly increased levels of the soluble adhesion molecules
sVCAM-1 and sICAM-1 as compared with the non-shock group
reflecting enhanced endothelial cell activation in those with
the most severe HF. Activated endothelial cells have been shown
to secrete complement components and to express adhesion
molecules ICAM-1 and VCAM-1 in response to sC5b-9 and are
also targets for complement activation products.** Herein, we

also found a significant correlation between sC5b-9 and the ad-
hesion molecules in the whole HF group, further suggesting
crosstalk between endothelial cells and terminal complement ac-
tivation in patients with acute, severe HF following MI. With a
positive correlation of sustained complement activation and
development of cardiogenic shock, the critical question arises
whether complement activation solely is the result of hypoperfu-
sion caused by cardiogenic shock, or whether it also contributes
to exacerbation of shock and, in extension, if these patients
would benefit from complement inhibition. Increased systemic
complement activation has previously been shown in patients
with chronic HF consistent with tissue hypoperfusion, acidosis,
and endothelial cell damage.** Neoantigens exposed in
ischaemic tissue are linked to recognition by natural IgM and
subsequent lectin pathway activation,*® which would support
sustained complement activation. If complement significantly
aggravates the shock syndrome, there would be fear for a vicious
circle. By being part of the innate immune system, complement
is instantly activated upon ‘danger’ and has the potential for ini-
tiating a broad range of inflammatory responses. Specific com-
plement inhibition may therefore be suitable in patients where
attenuation of inflammation is desired, including patients with
post-MI HF and particularly those with cardiogenic shock. Vari-
ous clinical trials targeting different parts of the inflammatory
response have failed to reach significance with regard to their
primary endpoints.*® However, in the COMplement inhibition
in Myocardial infarction treated with Angioplasty trial,*” where
complement inhibition with the C5-inhibitor pexelizumab was
given as a bolus dose and with continuous infusion for 20 h
following M, a significant reduction in 90 day mortality was
seen. The incidence of cardiogenic shock was reduced with
45%, however, non-significantly. The Assessment of Pexelizumab
in Acute Myocardial Infarction trial did not show any effect of
pexelizumab,*® but there is a remaining question whether C5
was appropriately inhibited.* In order to rule out if complement
inhibition would be beneficial in patients with acute severe HF
and cardiogenic shock due to MlI, more clinical trials are needed.
The current study is of explorative character, however, on a
well-defined cohort with close follow-up and careful plasma prep-
aration, which is critical for accurate complement analysis. The
low numbers of patients in the group of cardiogenic shock as well
as the lack of blood samples before PCI are limitations of the
present study. The major differences found between the groups,
with statistical significance for all complement activation products
and endothelial cell markers, however, increase the impact of the
data because the risk of type | error can be regarded as small.
The patients included in this study represent a group of pa-
tients often excluded from clinical trials due to the severity of
the disease. However, our results, consistently demonstrating
an increased and persistent complement activation correlating
to disease severity and endothelial cell activation, indicating
that patients with advanced HF complicating large MI, may par-
ticularly benefit from therapy targeting complement activation.
Our findings add new understanding to the inflammatory
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profile in patients with acute severe HF, which can pave the
way for new prognostic markers and targets for therapy.
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