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Abstract

Purpose—We aimed to determine whether conventional standardized EEG features could be 

consolidated into a more limited number of factors and whether the derived factor scores changed 

during the acute period after pediatric cardiac arrest.

Methods—Children resuscitated after cardiac arrest underwent conventional continuous EEG 

monitoring. The EEG was scored in 12-hour epochs for up to 72-hours after return of circulation 

by an electroencephalographer using standardized critical care EEG terminology. We performed a 

polychoric factor analysis to determine whether numerous observed EEG features could be 

represented by a smaller number of derived factors. Linear mixed-effects regression models and 

heat maps evaluated whether the factor scores remained stable across epochs.

Results—We performed EEG monitoring in 89 consecutive children which yielded 453 EEG 

segments. We identified two factors which were not correlated. The Background Features Factor 

loaded with the features continuity, voltage, and frequency. The Intermittent Features Factor 

loaded with the features of seizures, periodic patterns, and inter-ictal discharges. Factor scores 

were calculated for each EEG segment. Linear mixed-effect regression results indicated that the 

factor scores did not change over time for the Background Features Factor (coefficient 0.18, 

95%CI 0.04–0.07, p=0.52) or the Intermittent Features Factor (coefficient −0.003, 95%CI 

−0.02-0.01, p=0.70). However, heat maps showed that some individual subjects did experience 

factor score changes over time, particularly if they had medium initial factor scores.

Conclusions—Subsequent studies assessing whether EEG is informative for neurobehavioral 

outcomes after pediatric cardiac arrest could combine numerous EEG features into two factors, 

each reflecting multiple Background and Intermittent features. Further, the factor scores would be 

expected to remain stable during the acute period for most subjects.
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Introduction

Among children resuscitated from cardiac arrest, clinical and resuscitation characteristics do 

not directly asses brain function, likely explaining why these variables are only moderately 

predictive of long-term outcomes.1–5 In contrast, an electroencephalogram (EEG) directly 

assesses brain activity and is often acquired early after cardiac arrest to identify EEG-only 

seizures.6,7 Furthermore, several EEG features predict short-term gross neurologic 

outcomes,6,8–13 and knowledge of EEG data improves prognostication accuracy by 

neurologists and intensivists.14 However, numerous EEG features defined by the American 

Clinical Neurophysiology Society’s Standardized Critical Care EEG Terminology15 can be 

assessed, and it is unclear which features should be selected as exposure variables for 

prospective studies assessing EEG features as biomarkers of hypoxic-ischemic brain injury 

severity.

Factor analysis is a statistical method for data reduction that seeks to discover whether 

observed variables, some of which are correlated, can be explained by a lower number of 

unobserved latent variables called “factors”. If the observed variables have similar response 

patterns because they are associated with an unobserved underlying construct, then the 

derived factors could be included as the EEG exposure variables in subsequent studies 

assessing EEG as a biomarker of brain injury severity. As a result, this method could reduce 

a dataset containing a large number of potentially collinear EEG features to a smaller set of 

derived factors.

In this study, we aimed to determine whether: (1) standardized critical care EEG features15 

could be consolidated into a more limited number of derived factors, and (2) the derived 

factor scores changed across 12-hour epochs during the acute period after pediatric cardiac 

arrest for each subject.

Methods

We included consecutively recorded EEGs from children resuscitated after cardiac arrest at 

the Children’s Hospital of Philadelphia who were enrolled in an Institutional Review Board 

approved prospective observational study of pediatric cardiac arrest. Continuous 

conventional full-array EEG monitoring was initiated as soon as possible after resuscitation 

based on an institutional pathway16 derived from recent guidelines and consensus 

statements.7,17,18 EEG monitoring was performed with Grass-Telefactor video EEG 

equipment and the international 10-20 montage with modification for neonates as needed.

A pediatric electroencephalographer blind to all clinical information evaluated the first 10-

minute long EEG segment from each of up to seven epochs. The EEG was assessed at the 

earliest time available after resuscitation and at up to six subsequent time points relative to 

the time of return of circulation (12, 24, 36, 48, 60, and 72 hours). All clinical annotations in 
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the EEG tracing were removed prior to review. Video was not available, but the 

electroencephalographer could adjust the montage, filters, and voltage settings. The 

electroencephalographer performed scoring using the American Clinical Neurophysiology 

Society’s Standardized Critical Care EEG Terminology.15 Scoring included the categorical 

EEG features continuity (continuous, nearly continuous with attenuation, nearly continuous 

with suppression, discontinuous with attenuation, discontinuous with suppression, burst 

suppression, burst attenuation, and suppression), voltage (normal, low, suppressed), 

frequency (contains alpha, contains theta, contains delta, attenuated), seizures (present, 

absent), periodic patterns (present, absent), and inter-ictal epileptic discharges (present, 

absent). Scoring was performed using an electronic case report form in the web-based 

electronic data application Research Electronic Data Capture (REDCap)19 which ensured 

there were no missing data.

We performed statistical analyses using Stata version 12 (College Station, Texas). We used 

standard descriptive statistics to summarize the data as medians with interquartile ranges 

(IQR) or counts (with percentages) as appropriate. We performed a polychoric factor 

analysis20,21 since the observed EEG variables were all categorical. We derived the factors 

from the EEG segments and performed an oblique rotation to allow the factors to be 

correlated. To assess whether the factors changed over time for the overall cohort, we 

performed linear mixed-effects regression for each of the factors. This method takes into 

account the within-subject correlation due to repeated measures by including subject-

specific random effects. We created heat maps to visualize the factor scores over time for 

each individual subject.

We performed two sensitivity analyses. First, to determine whether different factors would 

have been created if we included only individual timepoints rather than all timepoints for 

each patient, we repeated the factor analysis described above for the initial, 12-hour, 24-

hour, and 36-hour timepoints. At each of these timepoints each subject contributed only one 

set of observed EEG values. Second, to determine whether different factors would have been 

created if we had used the scoring from different pediatric electroencephalographers, we 

repeated the factor analysis for the 12-hour timepoint with the EEG features assessed by 

three additional pediatric electroencephalographers.

Results

The study included 89 subjects who experienced cardiac arrests between August 2012 and 

April 2016. Table 1 provides the demographic and clinical data from this cohort. The median 

patient age was 2.1 years (IQR 0.27, 9.1 years). The median duration of cardiopulmonary 

resuscitation was 10 minutes (IQR 4, 20 minutes), and 58 (65%) subjects had in-hospital 

cardiac arrests. The initial EEG was recorded a median of 7.0 hours (IQR 4.4, 11.4 hours) 

after return of circulation.

The 89 subjects each had multiple EEG assessments at successive timepoints, yielding a 

total of 453 EEG segments. We identified correlations among the observed EEG features of 

continuity, voltage, and frequency (0.64-0.76), thereby suggesting a first construct we called 

the Background Features Factor. Similarly, we identified correlations among the observed 
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EEG features of seizures, periodic patterns, and inter-ictal epileptiform discharges 

(0.21-0.29), thereby suggesting a second construct we called the Intermittent Features 

Factor.

Since the observed EEG features were categorical, we performed a polychoric factor 

analysis to determine whether the observed EEG features could be represented by single 

constructs (i.e. factors). Two factors had eigenvalues of > 1 (Background Features Factor = 

2.6 and Intermittent Features Factor = 1.6), and these two factors were retained given 

Kaiser’s criterion. The Background Features Factor explained 63% of the variance of the 

data, and the Intermittent Features Factor explained 39% of the variance of the data. The 

resulting factors were not correlated (correlation coefficient = −0.02). A third factor had an 

eigenvalue of 0.23 and only explained 5% of the variance of the data, so it was not studied 

further. We identified observed EEG features with loading factors of >0.4 for each factor. 

The Background Features Factor loaded with the EEG features continuity (0.84), voltage 

(0.94), and frequency (0.88) (Figure 1). The Intermittent Features Factor loaded with the 

EEG features seizures (0.68), periodic patterns (0.79), and inter-ictal epileptiform discharges 

(0.70) (Figure 1). Each of the variables had a uniqueness of <0.6 indicating that each 

variable was reasonably explained by the factors.

The first sensitivity analysis in which EEG segments were evaluated by individual 

timepoints found that the same two factors emerged with similar eigenvalues, loading 

factors, and uniqueness assessments as the primary analysis that included all timepoints. For 

example, for the initial EEG timepoint which included EEG assessments from 88 subjects, 

the eigenvalues were 2.7 for the Background Features Factor and 2.1 for the Intermittent 

Features Factor. The Background Features Factor loaded with continuity (0.90), voltage 

(0.89), and frequency (0.86) while the Intermittent Features Factor loaded with seizures 

(0.87), periodic patterns (0.87), and inter-ictal epileptiform discharges (0.69). Each of the 

variables had a uniqueness of <0.6. Similarly, the second sensitivity analysis of four 

electroencephalographers for 72 records at the 12-hour timepoint resulted in the same two 

factors with similar eigenvalues, loading factors, and uniqueness assessments as the primary 

the primary analysis that included all timepoints.

Using the primary factor analysis from all 453 EEG assessments, we derived the two factor 

scores for each EEG segment. Each of the factor scores could be calculated as the sum over 

each EEG feature score multiplying by the corresponding scoring coefficient. The scoring 

coefficients provided in Table 2 indicate how each factor score was calculated for a given 

subject. The EEG features are the F functions. The loading factors derived from the analysis 

are the L constants. Using the F and L values, one can calculate factor score S for an epoch 

of EEG in which the size of each loading factor for each EEG feature measures how much 

that specific feature is related to S. Within this framework, the equation to calculate each of 

the factor scores for a segment of EEG is represented by the equation S = 

FcontinuityLcontinuity + FvoltageLvoltage + FfrequencyLfrequency + FseizuresLseizures + 

FperiodicLperiodic + FiedLied.

The linear mixed-effect regression results indicated that the EEG did not change over time 

for the Background Features Factor (coefficient 0.18, 95% CI 0.04 – 0.07, p=0.52) or the 
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Intermittent Features Factor (coefficient −0.003, 95% CI −0.02-0.01, p=0.70). Figure 2 

provides heat maps for each factor to assess for changes in factor scores for individual 

subjects over time. The plots indicated that while the linear mixed-effects regression 

identified no statistically significant change over time for the cohort, some subjects did 

change factor scores over time, particularly if they had medium initial factor values for the 

Background Features Factor (score of 1.5 to 3) or the Intermittent Features Factor (score of 

0.3 to 0.5).

Discussion

These data indicate that standardized assessments of observed EEG features from children 

resuscitated from cardiac arrest can be reduced to two derived factors reflecting Background 

Features (continuity, voltage, frequency) and Intermittent Features (seizures, periodic 

patterns, and inter-ictal epileptiform discharges). There were no statistically significant 

changes in either factor score over time for the full cohort. However, subject level data 

indicated that some subjects did have factor score changes over time, particularly for middle 

values for both factors. The stability of the factor scores over time for most subjects 

indicates that future studies assessing EEG as a biomarker of brain injury might rely on EEG 

assessed over a broad time window since few subjects would experience changes in their 

factor scores over time. However, for neuroprognostication in individual patients, repeated 

EEG assessments over time may be required, particularly for patients with middle scores of 

the Background Features Factor since these can improve or worsen, potentially leading to 

overly favorable or unfavorable predictions based on an initial EEG assessment.

We have previously shown that that assessments of the Overall Background Category by 

four pediatric electroencephalographers had nearly-perfect interrater agreement,22 a finding 

consistent with prior literature indicating that there is higher reproducibility for broader 

interpretive categories than more narrow EEG features in both children and adults.23–33 The 

Overall Background Category is a categorical variable that scores the EEG background as 

normal, slow-disorganized, discontinuous or burst-suppression, or attenuated-featureless. It 

has been used in proposed pediatric EEG prognostication systems.6,8–13 However, this 

variable requires an electroencephalographer to combine visual assessments of continuity, 

voltage, and frequency to score the EEG. In contrast, combining these correlated observed 

EEG features (continuity, voltage, and frequency) into a standardized factor has several 

advantages for future studies. Future studies assessing EEG as a biomarker of early brain 

injury severity would not need to arbitrarily select between the numerous correlated EEG 

features as primary exposure variables. Instead, these studies could assess the Background 

Features Factor as the primary exposure variable. This single EEG variable would contain 

information about three EEG characteristics (continuity, voltage, frequency) in an objective 

and reproducible manner. This approach would require fewer comparisons than if each EEG 

feature were assessed independently, thereby reducing the multiplicity problem that would 

occur if each EEG feature were assessed separately. Thus, an appropriately powered study 

could be performed with fewer subjects, which is important given pediatric cardiac arrest is 

relatively uncommon. Additionally, in the future, the EEG features used to derive the 

Background Features Factor might be assessed quantitatively. This would allow for objective 

assessment of brain function in critical care settings as real-time measures of brain function 
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without the need for continual electroencephalographer availability. Potentially, 

quantitatively derived Background Features Factor scores could be displayed at bedside, so 

intensivists could objectively stratify patients based on brain injury severity for 

neuroprotective interventions and track brain function over time.

This study has several strengths. First, the EEG tracings were obtained from a large cohort 

of consecutive children resuscitated after cardiac arrest, and therefore the EEG assessments 

represent the full spectrum and true prevalence of the various EEG features. Second, the 

reviewer could modify any settings which mimics real-world EEG reading. Third, the 

sensitivity analyses indicated that variations in the EEG data used to derive the factors did 

not substantially impact the factors we identified. This study also has limitations. First, the 

EEG epochs used for the main analyses were only assessed by one pediatric 

electroencephalographer. We performed a sensitivity analysis in which we compared four 

electroencephalographer scores which were available for the 12-hour timepoint and found 

the same factors were identified. However, this sensitivity analysis was done on a limited 

number of observed EEG features and might be assessed in a larger dataset in the future. 

Second, the Background Features Factor had higher factor loading scores and greater 

stability over time than the Intermittent Features Factor. This is logical since the background 

features would be expected to be more stable than intermittent features. Future studies might 

combine the background features (continuity, voltage, frequency) into one derived factor 

while retaining epileptiform discharges, periodic patterns, and seizures as individual EEG 

features. Finally, it remains to be determined whether the derived factors are associated with 

neurobehavioral outcomes.

Overall, these data indicate that subsequent studies assessing EEG after pediatric cardiac 

arrest for early brain injury stratification or neuroprognostication could combine numerous 

EEG features into a more limited number of derived factors, thereby reducing the dataset for 

analysis while also including information contained in numerous EEG features. Further, the 

factor scores would be expected to remain stable across 12-hour epochs during the acute 

period for large cohorts, potentially allowing inclusion of EEG obtained over a wide time 

window. However, for individual subjects, and particularly those with middle scores for the 

Background Features Factor, the scores could change over time, thereby indicating that 

repeated EEG assessments might lead to higher accuracy for brain injury severity 

stratification and neuroprognostication.
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Figure 1. 
Factor loadings plot indicates that the Background Features Factor contains tightly clustered 

observed EEG features of continuity, voltage, and frequency while the Intermittent Features 

Factor contains the slightly less clustered observed EEG features of seizures, periodic 

patterns, and inter-ictal epileptiform discharges.
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Figure 2. 
Heatmap of the factor score for each subject over time for the (a) Background Features 

Factor and (b) Intermittent Features Factor.
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Table 1

Subject characteristics (N=89)

Clinical Variable N (%) or Median [IQR]

Age at Arrest (years) 2.1 [0.27, 9.1]

Sex: Male 56 (62%)

Race

  White 46 (52%)

  Black 19 (21%)

  Other 24 (27%)

Hispanic 14 (16%)

Pre-arrest Pediatric Cerebral Performance Category Score
 1 = Normal
 2 = Mild Disability
 3 = Moderate Disability
 4 = Severe Disability
 5 = Coma or Vegetative State

58 (65%)
12 (13%)
8 (9%)
9 (10%)
2 (2%)

Cardiac Arrest Location
 In-Hospital
 Out-of-Hospital

58 (65%)
31 (35%)

Cardiopulmonary Resuscitation duration (minutes) (n=70) 10 [4, 20]

Induced Hypothermia 10 (11%)

Benzodiazepine Infusion 69 (79%)

Time from Cardiac Arrest to Electroencephalogram Initiation (hours) 7 [4.4, 11.4]

Pre-arrest Pediatric Cerebral Performance Category Score
 1 = Normal
 2 = Mild Disability
 3 = Moderate Disability
 4 = Severe Disability
 5 = Coma or Vegetative State

16 (18%)
16 (18%)
11 (12%)
16 (18%)
30 (34%)
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Table 2

EEG Feature Score and Loading Factors.

EEG Feature EEG Feature Score Background Features 
Factor Loading Factor

Intermittent Features 
Factor Loading Factor

Continuity 1 Continuous
2 Nearly Continuous with Attenuation
3 Nearly Continuous with Suppression
4 Discontinuous with Attenuation
5 Discontinuous with Suppression
6 Burst-Suppression
7 Burst-Attenuation
8 Suppression

0.1998 0.0613

Voltage 0 Normal
1 Low
2 Suppressed

0.5961 −0.0037

Frequency 0 Contains Alpha
1 Contains Theta
2 Contains Delta
3 Attenuated

0.2344 −0.0125

Seizures 0 Absent
1 Present

0.0244 0.2076

Periodic Patterns 0 Absent
1 Present

−0.0401 0.4790

Inter-ictal Epileptiform Discharges 0 Absent
1 Present

−0.0033 0.4059
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