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Summary

OBJECTIVE—Focal cortical dysplasia (FCD) is a major pathology in patients undergoing 

surgical resection to treat pharmacoresistant epilepsy. MRI post-processing methods may provide 

essential help for detection of FCD. In this study, we utilized surface-based MRI morphometry and 

machine learning for automated lesion detection in a mixed cohort of patients with FCD type II 

from three different epilepsy centers.

METHODS—Sixty-one patients with pharmacoresistant epilepsy and histologically proven FCD 

type II were included in the study. The patients had been evaluated at three different epilepsy 

centers using 3 different MRI scanners. T1-volumetric sequence was used for post-processing. A 

normal database was constructed with 120 healthy controls. We also included 35 healthy test 
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controls and 15 disease test controls with histologically confirmed hippocampal sclerosis to assess 

specificity. Features were calculated and incorporated into a nonlinear neural network classifier 

which was trained to identify lesional cluster. We optimized the threshold of the output probability 

map from the classifier by performing ROC analyses. Success of detection was defined by overlap 

between the final cluster and the manual labeling. Performance was evaluated using k-fold cross-

validation.

RESULTS—The threshold of 0.9 showed optimal sensitivity of 73.7% and specificity of 90.0%. 

The area under the curve for the ROC analysis was 0.75 which suggests a discriminative classifier. 

Sensitivity and specificity were not significantly different for patients from different centers, 

suggesting robustness of performance. Correct detection rate was significantly lower in patients 

with initially normal MRI than patients with unequivocally positive MRI. Subgroup analysis 

showed the size of training group and normal control database impacted classifier performance.

SIGNIFICANCE—Automated surface-based MRI morphometry equipped with machine learning 

showed robust performance across cohorts from different centers and scanners. The proposed 

method may be a valuable tool to improve FCD detection in presurgical evaluation for patients 

with pharmacoresistant epilepsy.
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Introduction

Focal cortical dysplasia (FCD) type II is a major cause of pharmacoresistant epilepsy in 

patients undergoing surgical resection.1 Typical MRI features of FCD type II include cortical 

thickening, blurring of gray-white matter junction, hyperintense signal on T2 or FLAIR 

sequences and the “transmantle sign”.2,3 Despite improvements in MRI resolution, some 

FCD type II lesions are too subtle to be detected by conventional visual analysis of MRI 

scans,4 especially when noninvasive data do not point to a specific brain region. Discovering 

a previously missed lesion can have practical clinical impact by refocusing the surgical 

hypothesis, and lead to improved postoperative seizure outcomes. Post-operative seizure 

outcomes of patients with positive MRI are significantly better than those with negative 

MRI.1

MRI post-processing methods have been used to improve detection of FCD lesions.5–8 Our 

previous studies used morphometric analysis program (MAP), a voxel-based morphometry 

post-processing method, which showed favorable results in detecting FCD.9 Although very 

practical and robust to implement, VBM methods have some inherent limitations. They do 

not contain spatial relationships across the cortical surface, and any errors in registration can 

result in missing subtle lesions.10 Additionally, reaffirmation by an experienced MAP reader 

or a neuroradiologist is still necessary to conclude the MAP results as per the previous 

studies;8,9,11 therefore, the yield and diagnostic confidence can depend on the reader’s 

experience. To overcome these inherent weaknesses and further increase yield, a multivariate 

surface-based morphometry (SBM) approach may be beneficial. Recently, a few studies 

have reported multivariate SBM approaches combined with machine learning, with high 
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accuracy for automated FCD detection in adult and pediatric patients (some had negative 

MRI by visual analyses)12–14. However, the previous studies were all based on single 

centers, using a small cohort of patients with histologically confirmed or radiologically 

defined FCD,12–14 and only one study assessed the false positive rate in healthy controls.12

To test the potential clinical value of any MRI post-processing method, it is necessary to 

evaluate its robustness in a large data set from different epilepsy centers using different MRI 

scanners. Herein, to test the diagnostic value of SBM and machine learning in patients with 

histologically proven FCD type II, we chose a mixed cohort from different epilepsy centers 

using different 3T MRI scanners. Additionally, receiver operator curve (ROC) analysis was 

performed to obtain the optimal threshold for the classifier output probability maps for 

automated lesion detection.

Materials and methods

Patient and Normal Control selection

Patients with pharmacoresistant epilepsy and histologically proven FCD type II from three 

different epilepsy centers were included in the study [Second Affiliated Hospital of Zhejiang 

University (SAHZU), China; Beijing Tiantan Hospital of Capital Medical University (BTH), 

China; Cleveland Clinic Foundation (CCF), USA]. Exclusion criteria were patients under 

five years old and low image quality due to motion, noise, or other image artifacts. These 

patients were evaluated using three different 3T MRI scanners (GE discovery MR750, 

Siemens Verio, Siemens Trio, respectively). The normal database used for inter-subject 

normalization was constructed using scans from 120 normal controls obtained from four 

different scanners. To assess specificity, we additionally included two test groups: (1) 

healthy test group: 35 healthy subjects free of neurological disease; (2) disease test group: 

15 patients with histopathologically confirmed hippocampal sclerosis, no temporal lobe 

FCD, and who became seizure-free at one year following temporal lobectomy. For subgroup 

analysis, patient’s MRI scans were classified as “MRI negative” (unremarkable 

abnormalities) or “MRI positive” by official radiology report. This study was approved by 

the institutional review board ethical guidelines of three hospitals (SAHZU, BTH and CCF).

MRI acquisition

MRI scans from SAHZU were performed on a 3.0-T scanner (MR750, GE Healthcare, 

USA) including 3D T1 sagittal brain volume imaging (BRAVO) sequence (TR/TE= 8.2/3.2 

ms, TI= 450 ms, flip angle=12 degrees, slice thickness= 1 mm, no gap, matrix=256 × 256, 

voxel size= 0.47×0.47×1mm3). Patients from BTH were scanned on a 3.0T Siemens Verio 

scanner (Siemens Medical system, South Iselin, NJ) including 3D T1 sagittal Magnetization 

Prepared Rapid Gradient Echo sequence (MPRAGE) (TR/TE=1900ms/2.53ms, TI=900 ms, 

flip angle=12 degrees, slice thickness = 1 mm, no gap, matrix=256×256, voxel size= 

0.98×0.98×1mm3). MRI scans from CCF were performed on a 3.0-T Siemens Trio scanner 

(Siemens Medical system, Erlangen, Germany) including 3D T1 coronal MPRAGE 

(TR/TE= 1,860ms/3.4ms, TI=1,100 ms, flip angle= 10 degrees, slice thickness= 0.94 mm, 

no gap, matrix=256×256, isotropic voxels=0.94 mm). Normal controls and healthy test 

group were included from SAHZU, CCF and the Pediatric Imaging, Neurocognition and 
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Genetic Study (PING) in which MRI was performed on nine 3T scanners from three 

manufacturers (Siemens, GE, Philips Medical, Andover, MA, USA), including the ones 

matching the patient scanners above. Detailed parameters available on the PING website 

(http://ping.chd.ucsd.edu/).

Cortical reconstruction

We used standard processes in FreeSurfer software v5.3 (http://surfer.nmr.mgh.harvard.edu/) 

for cortical reconstruction.15–17 In brief, the processing involves (1) segmentation of white 

matter, (2) tessellation of the gray/white matter boundary, (3) inflation of the folded surface 

tessellation, and (4) automatic correction of topological defects. These steps have been 

described in detail elsewhere.14 Reconstruction results of each subject were inspected 

visually and any inaccuracies due to imaging artifacts were manually corrected.

Lesion labels

The lesion masks were created manually in Freesurfer, on the T1-weighted volumetric 

sequence, informed by post-operative MRI, FLAIR and T2-weighted images (so that it is 

possible to create lesion masks for the cases initially thought to be MRI-negative by report). 

The lesion masks were then registered onto the cortical surface reconstructions. Each vertex 

in the training dataset was given one of two response values: lesional (one) if within the 

lesion mask, or normal (zero) if outside of the lesion mask.

Measures of morphological and intensity features

Six cortical features were acquired at each vertex of the 3D cortical reconstruction: cortical 

thickness, gray-white matter intensity contrast, curvature, sulcal depth, “doughnut” maps 

and local cortical deformation (LCD).14 Cortical thickness was calculated as follows. First, 

for each point on the white matter surface, the shortest distance to the pial surface was 

measured. Second, the shortest distance from each point on the pial surface to the white 

matter surface was computed. Cortical thickness at each vertex was computed as the average 

of the two values.15 Gray-white matter intensity contrast was estimated by calculating the 

ratio of the gray matter signal intensity to the white matter signal intensity.18 The gray and 

white matter signal intensities were sampled at a distance of 30% of the cortical thickness 

above the gray-white boundary and 1 mm below the gray-white boundary, respectively. 

Compared to healthy cortex, lesions with blurring of the grey-white matter boundary were 

expected to have low gray-white matter intensity contrast values. Mean curvature was 

measured as 1/r, where r is the radius of an inscribed circle and is equal to the average of the 

principal curvatures k1 and k2.19 Sulcal depth was calculated by the dot product of the 

movement vector of the cortical surface during inflation. Shallow gyral areas of the brain 

move inwards during inflation and have a negative value, whereas deep sulcal areas move 

outwards and have a positive value.14 “Doughnut” maps were assessed by measuring 

cortical thickness and gray-white matter intensity within a 6 mm radius circle and within the 

doughnut, where the circle was centered on a vertex on the inflated surface and the doughnut 

was a surrounding region around the circle.14 LCD was computed by the sum of intrinsic 

curvature within a 25 mm radius ring (gray circle).14 For every individual, cortical thickness, 

gray-white matter intensity contrast and “doughnut” maps were smoothed using a 10 mm 

FWHM Gaussian kernel and then these features underwent two normalization procedures: 1) 
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within-subject z-scoring, 2) between-subject z-scoring by the population of 120 controls. All 

feature maps were registered to an average space (fsaverage_sym) that had an identical 

number of vertices for each hemisphere. For cortical thickness, gray-white matter intensity 

contrast and LCD, interhemispheric asymmetry was calculated. The right hemisphere vertex 

values for each feature were subtracted from the left hemisphere values to create a left 

hemisphere asymmetry map and visa versa for the right hemisphere. For those asymmetry 

maps of each hemisphere, positive values indicated greater ipsilateral feature values while 

negative indicated greater contralateral feature values. More details can be found 

elsewhere14 and all code is freely available at https://github.com/kwagstyl/FCDdetection.

Evaluation of effectiveness of individual morphological feature

The effectiveness of all the features was evaluated individually for each patient, and then for 

the entire cohort, by comparing kernel density plots of feature values within the lesion mask 

and the contralateral, homotopic healthy cortex.

Machine learning classification and validation

Automated lesion detection was performed using an artificial neural network classifier 

implemented in MATLAB R2015b (The MathWorks, Natick, MA, U.S.A.). The classifier 

was trained using all the aforementioned morphological and intensity features, as well as 

their corresponding interhemispheric asymmetry. Separate neural networks were also trained 

using individual features to evaluate the discriminatory value of each feature.

A k-fold cross-validation strategy (k=5) was used to validate the performance of the 

classifier. The top five percent vertices were identified and grouped into neighbor-connected 

clusters. The final cluster is considered as the highest mean probability value. In addition, a 

threshold was set (and tested in the next section with ROC analysis) so that the vertices with 

values above threshold were identified as lesional, and vertices with values below threshold 

were considered as normal. Successful detection was defined by overlap between the final 

cluster (classifier output) and the manual label.

ROC analysis

We varied the threshold values of the classifier output probability map to evaluate the 

sensitivity and specificity of the classifier. Any degree of overlap between the final cluster 

and manual lesion label was defined as correctly detected. The percentage of overlap is 

calculated by (number of overlapping vertices between the final cluster and the manual 

lesion label/total number of vertices in the final cluster) × 100%. Sensitivity was calculated 

as the proportion of patients in whom the final cluster overlapped with the manual lesion 

label. Specificity was defined as the proportion of the subjects/patients in the healthy/disease 

test group who had no supra-threshold clusters. Youden index was calculated to get the 

optimal threshold (Youden index= sensitivity + specificity − 1). The area under the ROC was 

calculated to further quantify the performance of the classifier.

Factors impacting classifier performance

Three factors were additionally tested to evaluate their effects on classifier performance: 

number of training cases, size of normal control database and scanner type.
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Firstly, to assess the effect of the number of training cases, patients form SAHZU, BTH and 

CCF were defined as separate training groups (11 patients, 16 patients and 34 patients 

respectively). Keeping all the other factors the same, the classifier was trained on the 3 

patient groups separately, and then performance was evaluated.

Secondly, to evaluate the influence of the size of normal database used for inter-subject 

normalization of features, 120 normal controls were divided into three groups (SAHZU, 22 

controls; CCF 24 controls; and PING 74 controls). Keeping all the other factors the same, 

the classifier was normalized by the 3 controls groups separately, and then performance was 

evaluated.

Thirdly, to test the role of scanner type, patients form SAHZU and CCF were normalized by 

SAHZU and CCF normal controls, respectively. Keeping all the other factors the same, 

performance was evaluated. We could not include patients from BTH in this analysis, 

because no normal scans were acquired from the scanner used in BTH.

Statistical analysis

Descriptive statistics were used for each variable. If continuous variables (age, age at seizure 

onset, disease duration, sensitivity, specificity) were normally distributed, 2-sample t tests or 

one-way analysis of variance (ANOVA) was used. If not, Mann-Whitney U-test was used. 

Fisher’s exact test was used for categorical variables (sex, children or adults). Statistical 

significance was set at the 5% level.

Results

Patient Demographics and clinical information

A total of 61 pharmacoresistant epilepsy patients with histologically proven FCD type II 

from three epilepsy centers (11 patients from SAHZU; 16 patients from BTH; 34 patients 

from CCF) were included (32 males, 33 children, mean age ± SD = 20.43 ± 13.36). A total 

of 17 patients (27.9%) were MRI-negative by initial radiology report; in all of the 17 

patients, subtle FCD lesions were identified at the patient management conference, which 

was aided by multimodal localization from semiology, EEG, PET, SPECT and magnetic 

source imaging. Seizure-freedom was achieved in 72.1% one year after surgery. Detailed 

profile of patients, control subjects, and test subjects can be found in Table 1.

ROC analyses

The value with which the output probability map from the neural network was thresholded 

had a marked effect on classifier sensitivity and specificity (Table 2). ROC analysis showed 

optimal overall performance at threshold of 0.9, where sensitivity of the whole group was 

73.7% and specificity was 90.0% (91.4% specificity in healthy test group and 86.7% 

specificity in disease test group). No statistically significance was seen in the specificity of 

the healthy test group and disease test group across the analysis of factors impacting 

classifier performance. Hence, we combined the healthy test group and disease test group 

into one group in the following analysis. The area under the curve for the ROC analysis was 

0.75, which suggested a good discriminative classifier (Figure 1). Figure 2 shows examples 
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of successful detection. For the 45 patients with correctly identified lesions at the optimal 

threshold of 0.9, the mean percentage of overlap was 88.8% (SD=22.9%, range=1.6%–

100%).

We further analyzed the 16 patients in whom the classifier did not correctly identify the 

lesions. In 8 patients the classifier did not output a probability map at the threshold of 0.9, 

i.e., the results were negative. For the other 8 patients, the lesion in one patient was detected 

as the 5th cluster, and in seven patients their lesions were not detected in any of the top 5 

clusters.

Subgroup analyses

Sensitivity at the optimal threshold (0.9) showed similar results among three different 

centers (P=0.990), at 72.7% for SAHZU, 75% for BTH, 73.5% for CCF, respectively. In the 

pediatric group (<=18 years old), the sensitivity was 69.7% (23 of 33), which was lower than 

the sensitivity of the adult group (78.5%, 22/28), but did not reach statistical significance 

(p=0.562). Additionally, for the 44 MRI-positive patients, the detected clusters co-localized 

with the manual lesion in 36, yielding a sensitivity of 81.8%; for the 17 MRI-negative 

patients, a significantly lower proportion of the lesions were correctly detected (9/17, 52.9%, 

P=0.048).

Effectiveness of morphological features

As shown in Figure 3, correct classification was largely based on gray-white matter intensity 

contrast, LCD and cortical thickness, which showed the most group-level difference as 

compared to the normal control group. Figure 4 shows an example of successful detection 

with illustration of all the features used for classification by the neural network classifier. In 

this particular case, thickness and gray-white matter intensity contrast features were the most 

helpful for the lesion detection.

Impact of the number of training cases

When patients from SAHZU, BTH and CCF were used separately as training group, 

sensitivity was 54.5%, 75.0% and 61.7%, respectively; specificity was 76.0%, 60.0%, 

86.0%, respectively. Optimal thresholds were all at 0.98 for all three groups.

Impact of the size of normal databases

When patient feature maps were normalized by smaller number of controls, i.e., SAHZU, 

CCF and PING separately, sensitivity was 50.8%, 50.8% and 68.9%, respectively; specificity 

was 94.0%, 94.0%, 92.0%, respectively. Optimal thresholds were 0.97, 0.97 and 0.90 for the 

three groups.

Evaluation of the role of scanner-specific normal database

When the training group (patients from SAHZU and CCF) was normalized by its 

corresponding SAHZU and CCF normal controls, sensitivity was 57.8% and specificity was 

78.0% based on the best threshold (0.9).

Jin et al. Page 7

Epilepsia. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Discussion

Detection of FCD lesions is crucial for epilepsy presurgical evaluation, as postoperative 

seizure outcomes in patients with a visible MRI lesion concordant with the clinical 

semiology and scalp EEG findings can be much improved compared to those without visible 

lesions.1 However, in clinical practice, one may miss some FCD type II lesions when 

localizing clinical semiology and scalp EEG findings are lacking. Automated MRI post-

processing techniques to identify putative lesion locations can be essential in these 

situations. Our retrospective study reveals the usefulness of a surface based post-processing 

and machine learning method in automatically detecting FCD type II lesions (73.7% 

sensitivity), while maintaining a low probability of false positives (90.0% specificity). The 

robustness of this methodology was seen by similar performances based on MRI data sets 

from three different centers using three different 3T MRI scanners.

Contribution to literature

Recently, Hong et al. used a surface-based method coupled with multivariate approach 

which showed a high sensitivity (14 of 19, 74%) in automatic classifying FCD type II 

lesions in patients with MRI-negative epilepsy.12 No lesional vertices were identified in 

healthy and disease controls (patients with temporal lobe epilepsy), demonstrating excellent 

specificity.12 In the study by Ahmed et al. who reported another surface-based method,13 14 

out of 24 MRI-negative patients with histologically proven FCD were correctly and 

automatically identified. In both studies, only a small group of adult patients were studied 

and pediatric patients were not included. Moreover, no differentiation between the FCD 

subtypes was provided in the latter study. Adler et al. delineated the SBM and neural 

network methods used in this current study14, and reported successful detection rate of 73% 

in 22 pediatric patients with radiological diagnosis of FCD; however, specificity could not 

be tested. In the present study, we evaluated the diagnostic value of an adapted version of the 

methods by Adler et al.14 in a large group of patients with histologically proven FCD type II 

including both children and adults. By systematically investigating the effects of classifier 

thresholds on sensitivity and specificity, ROC analysis was performed to identify an optimal 

classifier threshold (0.9). Based on this threshold, our methods showed high sensitivity of 

73.7% in patients with FCD type II, while maintaining a high specificity (90.0%); both 

results were similar to previous studies.12–14 Moreover, our study tested the robustness of 

the methods on scans from different epilepsy centers and different MRI scanners. Subgroup 

analysis showed similar high sensitivity among three different epilepsy centers, and there 

was no statistically significant difference between children and adults. Overall, our findings 

provide evidence that the fully automated SBM and machine learning approach could offer a 

substantial gain of FCD detection in the presurgical evaluation for pharmacoresistant 

patients. The demonstrated robustness is key to the clinical application of our methods.

Size of the Training Group and Normal Control Database

Our results showed the sensitivity and specificity was largely influenced by the size of 

patients as training group and normal control database. The lower number of patients 

included in the training group, the lower sensitivity and specificity tended to be. This is 

intuitive because the classifier performance should improve as it learns idiosyncratic features 
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in each training case, especially when the lesions are located in different brain lobes. 

Similarly, the lower number of normal controls included, the lower sensitivity and specificity 

tended to be. A larger normal control database would bring more normally distributed vertex 

feature values with lower standard deviations, which would likely help improve the accuracy 

of identifying abnormal vertices. This data highlights the importance of setting up a 

reasonably sized normal database and training database before clinical application of the 

methods.

Role of scanner-specific normal database

When we used scanner-specific normal database for the patients, the sensitivity was lower 

than using the average normal database. When using scanner specific normal database, one 

would typically expect increased sensitivity and specificity. We speculate that our findings 

are due to the reduced number of training cases and reduced size of normal database when 

the scanners needed to be matched, which masked the benefits brought by having the same 

scanner. This finding suggests that one should not be discouraged by not having a scanner-

specific normal database before starting to use the proposed methods. A large combined 

training group and normal database, made publicly available, may be used instead.11

Effectiveness of Feature maps

In line with the previous study by Adler et al.,14 gray-white matter intensity contrast, LCD 

and cortical thickness were more sensitive to detect FCD than other features. These results 

can be explained by the fact that blurring of the gray-white matter junction, gyration shape 

and cortical thickness are typical MRI characteristic of FCD type II.2,3 Notably, multifocal 

appearance of individual features does not preclude the machine learning algorithm to 

successfully detect the lesion, as exemplified in Figure 4.

“MRI-negative” Cases

Additionally, about 30% of patients in our study were MRI-negative by initial visual 

inspection, but the lesions were picked up at the multimodal patient management conference 

by experienced team of experts; this team setup is not always available elsewhere. Our 

current data showed good sensitivity (52.9%) in this group of patients where the MRI was 

negative by initial visual inspection, suggesting that the use of type II lesions that are MRI-

positive (obvious lesions) to train the classifier did benefit detection of the lesions that are 

initially not visually detected (subtle lesions), although with a lower sensitivity. It remains to 

be tested whether the more challenging type I lesions can be effectively detected with the 

current methods and training set. Given that the type I and type II FCD share some common 

radiological characteristics but not all30, significant method development is likely needed. 

This is further complicated by the fact that lesion labels, used as the “gold standard” for 

lesional vertices, are difficult to create with type I FCD. Even on pathological examination, 

previous studies showed low inter-rater agreement on the existence and subtype 

classification of type I FCD29.
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False Positive Findings

In the present study, one challenge was the presence of positive clusters in normal test 

controls and extralesional clusters in patients (false positives). For the three healthy test 

controls in whom abnormal clusters were detected, two were located in the same region 

(right inferior temporal), the other was located in left mesial frontal lobe. For the two disease 

test controls who had false positive clusters, both clusters were located in the temporal lobe 

ipsilateral to the hippocampal sclerosis. In the 8 patients with FCD type II where clusters 

outside of the manual lesion masks were detected, five were located in the contralateral 

hemisphere, 3 were detected in the ipsilateral hemisphere but distant from the known 

lesions. The following factors could cause the existence of false positives: (1) errors could be 

made due to registration inaccuracy, motion artifact or bias field artifact; (2) frequent 

seizures could result in subtle abnormalities (e.g., atrophy) that may be difficult to 

distinguish from developmental aberrations;20 (3) structurally abnormal but dormant lesions 

were not uncommonly seen in epileptic brains.21–25 Thus, the findings of the post-

processing methods should always be interpreted in conjunction with electroclinical 

characteristics. Future studies incorporating intracranial EEG could be used to determine 

whether there are abnormal electrophysiological characteristics associated with these “false-

positive” regions.

Limitations and Future Directions

This study demonstrates the ability of automated tools to aid in the detection of focal cortical 

dysplasias. One limitation with the current study is that it is not ideally suited to assess the 

extent to which the lesions are correctly delineated. Accurate delineation of lesions would be 

invaluable to presurgical planning. In some patients, the histopathological changes may 

extend beyond visible MRI changes used to outline the lesions, in others the surgical 

resection which guided manual lesion delineation might exceed the lesion extent. Thus, we 

acknowledge that there is subjectivity and the potential for error in the manual lesion 

delineations. Due to the absence of a ground truth for each lesion label, it is impossible to 

assess the extent to which discrepancies between manual and automated segmentations are 

due to errors in the former or the latter. Careful validation with a cohort where 

comprehensive post-surgical histopathological analysis and coregistration with pre-operative 

MRI would be required to assess the extent to which the automated method is correctly 

identifying the lesion borders.

We did not use FLAIR data as a multivariate input, because of the unavailability of FLAIR 

data in our control subjects. Patients whose lesions only exhibit subtle signal change on 

FLAIR images may therefore have false negative results. Further sensitivity and specificity 

can be achieved by incorporating 3D FLAIR scans or normalized 2D FLAIR scans, as 

FLAIR intensity was reported to be the most discriminatory feature for detecting lesional 

vertices.14,26

It would be important for future studies to compare the effectiveness of various 

postprocessing methods reported in the literature through a multi-center data-sharing 

platform where FCD cases and control cases can be shared and tested. This will allow 

comparison of yields, sensitivity and specificity of the various postprocessing methods, as 
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well as lesion characteristics. To this end, quantitative MRI maps that are more specific to 

tissue microstructure and can provide neuroimaging markers of tissue properties such as 

myelin, water and iron content would be useful.27,28 Future work incorporating features 

from quantitative MRI maps under the framework of machine learning is likely to improve 

automated lesion detection particularly in the case of subtle, MRI negative lesions.30

Conclusion

We demonstrated the usefulness of a surface-based MRI morphometry with machine 

learning using the largest-to-data cohort of pharmacoresistant patients with FCD type II, 

which show robust performance across cohorts from different centers and scanners. This 

freely available method can be a valuable tool to improve noninvasive presurgical evaluation 

for patients with pharmacoresistant epilepsy.
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Figure 1. 
Receiver Operator Characteristics (ROC) curve showing effects of classifier output threshold 

on sensitivity and specificity.
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Figure 2. 
Examples of 4 patients with a correctly detected lesion. First column: presurgical 3D T1-

weighted images which were used as input to the processing. Second column: T2-weighted 

fluid-attenuated inversion recovery images on the same or closest slice. Third column: 

manual labels shown on inflated cortical surface. Fourth column: classifier cluster output 

shown on inflated cortical surface.
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Figure 3. 
Quantitative evaluation of features in lesions as compared to healthy, homotopic cortex 

group. Kernel density plots showing the distribution of mean feature values in lesional and 

homotopic cortices across the cohort of FCD patients. Green = lesion profile. Pink = Contra-

lesion profile (homotopic cortex). Homotopic cortex profile was calculated from 120 normal 

controls.
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Figure 4. 
Example patient showing measures generated by the surface-based morphometry approach 

in the parietal lobe. Note the multifocal appearance of each individual feature map. 

Information from each individual feature map was integrated by machine learning to 

generate a final cluster showing excellent concordance with expert labeling. Gray-white 

matter intensity measures blurring at the gray-white boundary; local cortical deformation 

(LCD) measures folding complexity; doughnut thickness measures local thickness 

variability; doughnut intensity measures local intensity variability at the gray-white 

boundary; interhemispheric gray-white matter intensity asymmetry measures the difference 

of bihemispheric blurring at the gray-white boundary; interhemispheric LCD asymmetry 

measures the difference of bihemispheric folding complexity; interhemispheric doughnut 

thickness measures the difference of bihemispheric local thickness variability; 

interhemispheric doughnut intensity measures the difference of bihemispheric local intensity 

variability at the gray-white boundary.
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