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Abstract

Background—Associations of insulin resistance and hyperglycemia with a panel of liver 

enzymes have not been well-studied in a young, heterogeneous Hispanic/Latino population. We 

aimed to assess the associations of insulin resistance and glycemia with nonalcoholic fatty liver 

disease (NAFLD), as measured by liver enzymes and the pediatric NAFLD fibrosis index (PNFI), 

and whether these associations are modified by body mass index and mediated by inflammation or 

endothelial dysfunction.
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Methods—We conducted a cross-sectional study of 1,317 boys and girls aged 8–16 years from 

the Hispanic Community Children’s Health Study/Study of Latino Youth. We used Poisson 

regression to assess the associations of fasting glucose, HbA1c, and HOMA-IR with elevated ALT 

(>25 U/L in boys, >22 U/L in girls), AST (≥37 U/L), GGT (≥17 U/L), and PNFI (≥9; a function of 

age, waist circumference, and triglyceride level).

Results—HOMA-IR was associated with elevated ALT, AST, GGT, and PNFI (prevalence ratios 

[95% CIs] for each 1-unit increase in the natural log of HOMA-IR: 1.99 [1.40, 2.81], 2.15 [1.12, 

4.12], 1.70 [1.26, 2.30], and 1.98 [1.43, 2.74], respectively). Associations were observed in 

overweight/obese children, but not in normal weight children (p-interaction=0.04 for AST and p-

interaction=0.07 for GGT). After further adjustment for adiponectin, high-sensitivity C-reactive 

protein, e-selectin, and PAI-1, associations of HOMA-IR with liver enzymes and PNFI were 

attenuated, but remained statistically significant for AST and PNFI.

Conclusion—Insulin resistance was associated with NAFLD in overweight/obese Hispanic/

Latino youth, and this association may be partially mediated by inflammation and endothelial 

dysfunction.
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Introduction

Nonalcoholic fatty liver disease (NAFLD) is the most common cause of pediatric liver 

disease in the United States.1,2 It is characterized by fat accumulation in the liver that can 

progress to liver inflammation (nonalcoholic steatohepatitis [NASH]) and then fibrosis.1 

Biopsy is the gold standard for identifying and staging NAFLD, but is an invasive procedure 

and an impractical population-level screening test. It is therefore only selectively used in 

adults and is even more limited in use among children. Whereas ultrasound and other 

scanning methods (e.g., transient elastography) are often used in evaluating NAFLD, liver 

enzymes (alanine aminotransferase [ALT], aspartate aminotransferase [AST], and gamma-

glutamyl transpeptidase [GGT]) are also used clinically and in research studies as 

noninvasive surrogate markers of liver injury and likelihood of NAFLD and fibrosis, along 

with various noninvasive indices of liver fibrosis such as the pediatric NAFLD fibrosis index 

(PNFI), which is calculated using clinical markers (age, waist circumference, and 

triglyceride levels).3,4

In adults, higher levels of liver enzymes have been associated cross-sectionally and 

prospectively with metabolic syndrome, insulin resistance, hyperglycemia, and diabetes.5–12 

Similar associations have been observed in young children and adolescents.13–19 As 

suggested by these studies, NAFLD could interfere with the insulin signaling pathway and 

lead to insulin resistance.20 However, the relationship between hyperglycemia/insulin 

resistance and NAFLD may be bidirectional or even circular.21 It is possible that 

hyperglycemia and insulin resistance could lead to liver injury through various pathways, 

including increased inflammation and endothelial dysfunction.22,23 Whereas both insulin 

Parrinello et al. Page 2

J Clin Gastroenterol. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



resistance and NAFLD are clearly influenced by obesity, the mechanisms linking insulin 

resistance to NAFLD, and vice versa, have not been fully elucidated.

Insulin resistance and NAFLD both have particularly high prevalence among Hispanics/

Latinos and among obese males in general.24,25 Whereas these studies have predominantly 

included Hispanic/Latino youth and adults of Mexican heritage, data on Hispanics/Latinos 

of other backgrounds are lacking. In fact, recent data in adults have shown that the 

prevalence of diabetes and NAFLD varies by Hispanic/Latino background.26,27 Associations 

of insulin resistance and in particular, hyperglycemia, with a panel of liver enzymes have not 

been well-studied in a young, heterogeneous Hispanic/Latino population. Given the high 

prevalence and increasingly early onset of obesity and glucose dysregulation in Hispanic/

Latino youth,28 this is an especially important population in which to investigate these 

relationships. Therefore, we aimed to assess the associations of insulin resistance and 

glycemia with liver enzymes and PNFI in Hispanic/Latino children and adolescents; and 

whether these associations are modified by age, sex, or body mass index (BMI), and/or 

mediated by biomarkers of inflammation and endothelial dysfunction. These objectives were 

addressed using the diverse Hispanic Community Children’s Health Study/Study of Latino 

Youth (SOL Youth) population aged 8–16 years from various Hispanic/Latino backgrounds.

Materials and Methods

Study population

There were 1,466 boys and girls, aged 8–16 years, recruited into SOL Youth (described 

previously29) from four US cities.30 Our analytic sample included 1,317 participants. See 

exclusions in the Online Supplement. The study was approved by institutional review boards 

at each site. Written informed consent was obtained from parents/legal guardians. Assent 

was obtained from children.

Laboratory measurements

Morning blood specimens were collected from fasting participants. Measurements included 

ALT, AST, GGT, fasting glucose, HbA1c, insulin, adiponectin, plasminogen activator 

inhibitor (PAI)-1, e-selectin, high-sensitivity C-reactive protein (hs-CRP), HDL-c, 

triglycerides, cholesterol, LDL-c (calculated using the Fridewald equation). We calculated 

HOMA-IR as [glucose (in mg/dL)*[insulin (in pmol/L)]/6]/405.31 See Online Supplement 

for more details.

Self-reported covariates

The following were reported by the child/adolescent and/or the parent: age, sex, Hispanic/

Latino background, household income, parental education attainment, alcohol use in the past 

30 days, having experienced menarche (girls), and stage of facial hair growth (boys).32 We 

created a dichotomous variable for pubertal (having reached menarche for girls and having 

at least started growing facial hair for boys) or pre-pubertal status.

Parrinello et al. Page 3

J Clin Gastroenterol. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Measured covariates

Centers for Disease Control age- and sex-specific BMI percentiles,33 and NHLBI age-, sex-, 

and height-specific diastolic and systolic blood pressure percentiles were calculated.34 

Elevated waist circumference was defined as having an age- and sex-specific waist 

circumference ≥90th percentile.35 We report the number of minutes of moderate/vigorous 

activity (≥441 counts/15 seconds) per day from accelerometers.36 See Online Supplement 

for additional details.

Variable definitions

We defined elevated biomarker levels as follows: ALT >25 U/L in boys and >22 U/L in girls;
37 AST ≥37 U/L; GGT ≥17 U/L; PNFI ≥9 (since suggestive of hepatic fibrosis)4; HOMA-IR 

≥2.6 (insulin resistance);38 and hyperglycemia as either fasting glucose ≥100 mg/dL or 

HbA1c ≥5.7%.39 We calculated the PNFI as (1/(1+(exp(−lp))))*10, where lp= 

(−6.539*(ln(age))) + (0.207*waist) + (1.957*(ln(tg))) − 10.074.4 BMI was categorized as 

underweight/normal weight (<85th percentile), overweight (85th to <95th percentile), or 

obese (≥95th percentile).

Statistical analyses

We log-transformed variables that were not normally distributed. We used Wald tests to 

compare characteristics by level (normal versus elevated) of ALT, AST, GGT, and PNFI. We 

compared the percentage of participants who had elevated levels of ALT, AST, GGT, PNFI, 

fasting glucose, HbA1c, or HOMA-IR across categories of age, sex, BMI, Mexican 

background, and Hispanic/Latino background using a Wald test of joint significance from 

logistic regression. Supplemental analyses were stratified by sex, pubertal status, and BMI 

category.

We used Poisson regression with robust variance to assess the association of HOMA-IR, 

fasting glucose, and HbA1c (as continuous variables) with elevated ALT, AST, GGT, and 

PNFI. We sequentially adjusted for covariates listed previously. Models for PNFI were not 

adjusted for age, waist circumference, or triglyceride level since PNFI is a function of those 

variables. A sensitivity analysis used linear regression with ALT, AST, GGT, and PNFI as 

continuous variables.

We tested for the interaction of age, sex, Mexican background and BMI (normal weight vs 

overweight/obese) with HOMA-IR, glucose, and HbA1c using Wald tests. We observed 

evidence of statistically significant interactions of BMI with HOMA-IR and therefore 

present the associations of HOMA-IR with ALT, AST, GGT, and PNFI stratified by BMI 

category. These stratified analyses were not adjusted for BMI percentile or elevated waist 

circumference, since only one participant in the normal weight category had elevated waist 

circumference.

Subsequent analyses examined potential mediators of the association between liver function 

measures and study endpoints by sequentially adjusting for adiponectin, ln of hs-CRP, e-

selectin, and ln of PAI-1. See additional details in the Online Supplement. A sensitivity 

analysis excluded 59 participants who reported alcohol use in the past 30 days.
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We used MI ESTIMATE commands in Stata version 14.0 (StataCorp, College Station, 

Texas, USA) to simultaneously account for the complex survey sampling design and 

multiple imputation. See Online Supplement.

Results

Among 1,317 participants, mean age was 12.2 years, 51% were male, and 46% were 

overweight or obese. Participants who were male, overweight/obese, or had elevated waist 

circumference were more likely to have elevated levels of liver enzymes and PNFI (Table 1). 

Those with elevated liver enzymes and elevated PNFI were more likely to have lipid 

abnormalities (higher levels of total cholesterol, LDL-c, and triglycerides, and lower levels 

of HDL-c), higher levels of inflammation (as measured by higher hs-CRP), lower levels of 

adiponectin, greater endothelial dysfunction (higher levels of PAI-1 and e-selectin), and 

more insulin resistance (as measured by higher HOMA-IR) (Table 1).

Boys were more likely than girls to have elevated liver enzymes and hyperglycemia (as 

measured by fasting glucose and HbA1c), but less likely to have insulin resistance (47% of 

boys versus 59% of girls) (Table 2). Obese children were more likely to have elevated liver 

enzymes and PNFI, hyperglycemia, and insulin resistance (Table 2). These results for 

obesity were similar regardless of pubertal status (eTable 1). Participants of Mexican 

heritage were more likely to have elevated ALT than those of non-Mexican heritage (Table 

2).

Higher levels of HbA1c were associated with elevated ALT and PNFI in minimally adjusted 

models, but associations were not statistically significant in fully adjusted models (Figure). 

We did not observe any associations of fasting glucose with elevated liver enzymes and 

PNFI. Associations of HOMA-IR with elevated liver enzymes and PNFI were statistically 

significant and remained so after full adjustment (Model 3) (prevalence ratios [95% CIs] 

were 1.99 [1.40, 2.81], 2.15 [1.12, 4.12], 1.70 [1.26, 2.30], and 1.98 [1.43, 2.74] for ALT, 

AST, GGT, and PNFI, respectively) (Figure). Sensitivity analyses using liver enzymes and 

PNFI as continuous variables in linear regression models yielded similar results (eTable 2).

We observed statistically significant interactions between BMI (overweight/obese versus 

under/normal weight) and HOMA-IR in association with elevated liver enzymes (P=0.04 for 

elevated AST and P=0.07 for elevated GGT). In multivariable models that were stratified by 

BMI category, we found no statistically significant association of HOMA-IR with elevated 

liver enzymes in under/normal weight children. However, we observed consistent 

statistically significant associations in those who were overweight or obese (prevalence 

ratios [95% CIs] were 2.40 [1.61, 3.58], 4.50 [2.14, 9.48], 1.75 [1.34, 2.29], and 3.12 [2.39, 

4.05] for elevated ALT, AST, GGT, and PNFI, respectively) (Table 3). Results were 

attenuated after adjustment for adiponectin, but remained statistically significant. Additional 

sequential adjustment for ln of hs-CRP, e-selectin, and ln of PAI-1 continued to weaken the 

observed association between HOMA-IR and liver enzymes/PNFI in overweight or obese 

children. After full adjustment, associations for elevated ALT and GGT were no longer 

statistically significant (PRs [95% CIs] were 1.20 [0.74, 1.96] and 1.26 [0.91, 1.73], 

respectively) (Table 3). In a sensitivity analysis that restricted to participants who did not 
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report alcohol consumption in the previous 30 days, results were similar, although 

magnitudes of association were slightly attenuated (eTable 3).

Discussion

Among 8- to 16-year-old children of Hispanic/Latino background, insulin resistance was 

associated with elevated liver enzymes and PNFI. These associations were only seen in 

children who were overweight or obese and only remained statistically significant for AST 

and PNFI after mutual adjustment for several biomarkers of glucose homeostasis, 

inflammation, and endothelial dysfunction. Our findings suggest that liver disease may begin 

to develop early in the life course among obese children, and may be related to the 

development of insulin resistance and diabetes risk. This suggests an important focus for 

prevention and awareness in young Hispanics/Latinos, a population that has a high 

prevalence of overweight/obesity.

ALT and AST are intracellular enzymes located in the hepatocytes, although AST is less 

specific to hepatocytes and is abundant in muscle tissue, red blood cells, and other tissues. 

When detected in circulation, they indicate enzyme leakage due to liver injury. Elevated 

levels of GGT are associated with biliary disease and, in one pediatric study, directly 

correlate with the degree of hepatic fibrosis.40,41 The PNFI is a noninvasive index of fibrosis 

that has been assessed in children.4 However, it should be noted that children with elevated 

PNFI may not actually have NAFLD, and that associations of obesity-related insulin 

resistance with NAFLD could potentially be attributed to associations with central adiposity, 

which is part of the definition of PNFI. ALT levels have been shown to be highest in 

Hispanic/Latino adolescents compared to those of other races/ethnicities,24,25 and higher in 

males than females,24 suggesting more liver damage among Hispanics/Latinos and among 

males. We observed here that boys were more likely to have elevated liver enzymes than 

girls.

The mechanism by which insulin resistance may be associated with elevated liver enzymes 

has not been fully delineated. The liver plays a major role in glucose metabolism. 

Conversely, it has been hypothesized that insulin resistance may increase both lipogenesis 

and the amount of free fatty acids in the liver, resulting in increased hepatic fat 

accumulation. This, in turn, may lead to liver injury.1,23,40,42 Hyperglycemia, inflammation, 

and decreased endothelial function may contribute to hepatocyte injury independently. 

Alternatively, hyperglycemia may induce inflammation and endothelial dysfunction,43 

which may in turn lead to decreased liver function.23,44 We demonstrated that sequential 

adjustment for biomarkers of inflammation and endothelial dysfunction attenuated the 

association of HOMA-IR with elevated liver enzymes, which suggests that they may be in 

the pathway between insulin resistance and liver injury. Furthermore, the relationship 

between insulin resistance and elevated liver enzymes may not be linear, and may propagate 

a cycle of worsening liver disease and insulin resistance.20

We did not observe an association of glycemia with liver enzyme elevation in our analysis. 

Our study population consisted of children and adolescents, and the levels of glycemia may 

not have been great enough to see an association even if it were to exist. Furthermore, 
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HOMA-IR is a better early detector of glucose homeostasis abnormalities than either fasting 

glucose or HbA1c, since it precedes hyperglycemia,45,46 which may explain the consistency 

of associations we saw for HOMA-IR with liver enzymes and PNFI. Indeed, insulin 

resistance tends to be exacerbated during adolescence. During puberty, levels of growth 

hormone, IGF-1, and other related hormones are high, and a limitation of this study is the 

lack of measurements that may have captured the influence of these variables on the 

relationship between insulin resistance and NAFLD. Further studies may be able to help 

identify the specific period of adolescence that may be associated with the greatest risk for 

developing NAFLD and its metabolic sequelae.

There were several strengths and limitations of this analysis to consider. This was a cross-

sectional study, so we were unable to address temporality of these relationships and could 

not distinguish between mediators and confounders. We were unable to include 2-hour 

glucose results as one of the measures of glycemia. Nor were we able to use a euglycemic 

hyperinsulinemic clamp technique to directly estimate insulin resistance. However, this 

technique is challenging to use in large epidemiologic studies and is less relevant in clinical 

practice. The use of HOMA-IR as a surrogate measure is justified by its linear relationship 

with estimates of insulin resistance as measured by the glucose clamp.47 Lastly, liver 

enzymes and PNFI are not diagnostic of NAFLD. Nonetheless, they are commonly used 

noninvasive surrogate markers of NAFLD. An important strength of this study was that the 

sample was population-based and drawn from a heterogeneous mix of children and 

adolescents from various Hispanic/Latino backgrounds. SOL Youth is unique in that it is one 

of the largest studies of cardiometabolic health in Hispanic/Latino children. In the pediatric 

population, it is relatively uncommon for external insults such as alcohol consumption or 

viral liver infection to affect liver enzyme levels, and we had available an array of clinical 

and behavioral variables to control for confounding. Furthermore, we showed similar results 

among those children and adolescents who had not recently consumed alcohol.

In conclusion, we found that Hispanic/Latino children and adolescents had a high prevalence 

of elevated liver enzymes in general, and that the prevalence was particularly high in those 

who were male, overweight/obese, or exhibited central adiposity. Insulin resistance was 

associated with surrogate markers of NAFLD in overweight or obese Hispanic/Latino 

children and adolescents, and this association was partially mediated by inflammation and 

endothelial dysfunction. Furthermore, associations were consistent across Hispanic/Latino 

background. This suggests a potential target for prevention of liver disease in Hispanic/

Latino youth, which is particularly important given the high prevalence of liver damage in 

Hispanic/Latino adults. Identifying overweight or obese Hispanic/Latino children and 

adolescents with insulin resistance could help detect those who are at highest risk for 

developing NAFLD. Further longitudinal study of these associations could better elucidate 

the temporal relationship between obesity, insulin resistance, and liver enzyme elevation, 

including the complex interplay of inflammation on glucose homeostasis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure. Associations of insulin resistance and hyperglycemia with elevated liver enzymes and 
PNFI
Elevated liver enzymes were defined as ALT >25 U/L for boys and >22 U/L for girls, AST 

≥37 U/L, GGT ≥17 U/L. Elevated PNFI was defined as ≥9. Prevalence ratios were obtained 

using Poisson regression models with robust variance. We specified the models as follows: 

Model 1: Unadjusted; Model 2 (Sociodemographics): Model 1 + age, sex, Mexican 

background, field center, household income, and parental education; Model 3 (traditional 

risk factors): Model 2 + moderate/vigorous activity, elevated waist circumference, BMI 

percentile, systolic blood pressure percentile, LDL-c, HDL-c, ln of triglycerides, and 

pubertal status. Models for PNFI were not adjusted for age, waist circumference, or 

triglycerides, since PNFI is calculated using these variables.
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Table 3

Associations of insulin resistance with elevated liver enzymes and PNFI, adjusted for inflammation and 

endothelial dysfunction biomarkers and stratified by BMI

High ALT High AST High GGT High PNFI*

Prevalence
Ratio

(95%CI)

Prevalence
Ratio

(95%CI)

Prevalence
Ratio

(95%CI)

Prevalence
Ratio

(95%CI)

Ln of HOMA-IR

  Under/normal weight (N=674)

    Base model† 1.57 (0.87, 2.84) 0.82 (0.28, 2.41) 1.53 (0.92, 2.56) --

    Additionally adjusted for adiponectin 1.58 (0.88, 2.84) 0.84 (0.28, 2.53) 1.51 (0.91, 2.52) --

    Additionally adjusted for ln hs-CRP 1.60 (0.88, 2.91) 0.86 (0.27, 2.75) 1.55 (0.91, 2.63) --

    Additionally adjusted for e-selectin 1.43 (0.76, 2.68) 0.84 (0.26, 2.70) 1.52 (0.89, 2.61) --

    Additionally adjusted for ln PAI-1 1.51 (0.79, 2.88) 0.85 (0.24, 2.95) 1.55 (0.91, 2.64) --

  Overweight or obese (N=643)

    Base model† 2.40 (1.61, 3.58) 4.50 (2.14, 9.48) 1.75 (1.34, 2.29) 3.12 (2.39, 4.05)

    Additionally adjusted for adiponectin 2.06 (1.33, 3.17) 3.92 (1.78, 8.62) 1.59 (1.19, 2.12) 3.01 (2.31, 3.92)

    Additionally adjusted for ln hs-CRP 1.88 (1.24, 2.84) 3.08 (1.51, 6.29) 1.50 (1.12, 2.00) 2.83 (2.18, 3.68)

    Additionally adjusted for e-selectin 1.53 (1.01, 2.33) 2.13 (1.11, 4.08) 1.42 (1.05, 1.91) 2.77 (2.13, 3.61)

    Additionally adjusted for ln PAI-1 1.20 (0.74, 1.96) 2.02 (1.09, 3.77) 1.26 (0.91, 1.73) 2.62 (1.93, 3.56)

*
The model for PNFI does not include adjustment for age, waist circumference, or triglyceride levels.

†
The base model includes adjustment for age, sex, household income, parental education, Mexican background, field center, physical activity, SBP 

percentile, LDL-c, HDL-c, ln of triglycerides, and pubertal status
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