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Abstract: Chronic inflammation plays a decisive role at different stages of cancer development. Inflammasomes 
are oligomeric protein complexes activated in response to pathogen-associated molecular patterns (PAMPs) and 
damage-associated molecular patterns (DAMPs). PAMPs and DAMPs are released from infected cells, tumors and 
damaged tissues. Inflammasomes activate and release inflammatory cytokines such as IL-1β and IL-18. The various 
inflammasomes and inflammatory cytokines and chemokines play contrasting roles in cancer development and 
progression. In this review, we describe the roles of different inflammasomes in lung, breast, gastric, liver, colon, 
and prostate cancers and in glioblastomas.
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Introduction

Inflammasomes are oligomeric protein com-
plexes that are activated upon recognition of 
diverse pathogen-associated molecular pat-
terns (PAMPs) and damage-associated mole- 
cular patterns (DAMPs). They serve as plat-
forms for caspase-1 activation and maturation 
of inflammatory cytokines, IL-1β and IL-18. 
Caspase1-associated cell death or pyroptosis 
is involved in inflammation and tissue repair [1, 
2]. Cleavage of gasdermin D (GSDMD) during 
pyroptosis [3] promotes the release of IL-1β 
and IL-18 [4] through the membrane pores [5].

Inflammasomes are classified as canonical and 
non-canonical types. The canonical inflamm- 
somes include the NLR present in the com- 
plex such as the NLRP3-, NLRC4-, NLRP1-, or 
NLRP6-inflammasome and absent in melano-
ma 2 (AIM2), one of the PYHIN family members 
[1]. The non-canonical includes, and a complex 
that consists of CARD9, Malt1, Bcl-10, cas-
pase-8 and ASC [6]. As shown in Figure 1A, 
canonical inflammasomes are activated in two 
steps [7], namely (1) NF-κB mediated transcrip-
tion of pro-IL-1β and pro-IL-18 upon activation 
of toll-like receptors (TLRs), NOD1 or NOD2 by 
DAMPS, PAMPS or tumor necrosis factor-α 
(TNF-α) [8] and (2) inflammasomes also recog-

nize DAMPs and PAMPs assembled with ASC 
and recruit procaspase-1 through its N-terminal 
caspase recruitment (CARD) domain followed 
by its autocatalytic cleavage. The assembly of 
different inflammasomes involves distinct pro-
teins. NLRP1 inflammasome is independent of 
ASC [1]. NLRC4 inflammasomes are assembled 
when NAIP proteins sense bacterial proteins 
and recruit NLRC4 [1]. LPS-stimulated CD14 
monocytes exhibit a distinct one-step pathway 
of inflammasome activation by regulating cas-
pases-4 and -5, a process that requires Syk 
activity and Ca2+ flux [9]. AIM2 inflammasome is 
activated by binding to double-stranded DNA 
(dsDNA) resulting in structural changes [1]. 
However the mechanisms of activation of differ-
ent inflammasomes by various signals are not 
fully understood.

As shown in Figure 1B, noncanonical inflamma-
somes are activated by caspases-8 and -11 [7]. 
Caspase-11 cleaves gasdermin D and induces 
pyroptosis and activates IL-1β via NLRP3-de- 
pendent caspase-1 activation [10]. Caspase-8 
is an IL-1β-converting enzyme during NLRP3 
inflammasome activation in caspase1-deficient 
bone marrow-derived dendritic cells (BMDC) 
[11], dendritic cells (DCs) [12] and macrophages 
[13]. 
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Inflammation plays an important role in many 
cancers. However, the role of inflammasomes 
in cancers is controversial. This is probably due 
to heterogeneity of cancer cells and the differ-
ent cell types associated with cancer such as 
cancer-associated fibroblasts, tumor-infiltrating 
immune cells, endothelial cells, adipocytes and 
pericytes as well as various chemokines and 
cytokines [14, 15]. Moreover, hypoxic microen-
vironment in cancer affects the function of 
inflammasomes in cancer. In this review, we 
describe the role of different inflammasomes in 
various malignancies.

Inflammasomes in lung cancer

Lung cancer is the predominant cause of can-
cer death worldwide with a 5 year survival rate 
of 16.6% after diagnosis [16]. In non-small-cell 
lung cancer (NSCLC) patients, serum levels of 

IL-18 [17] and IL-1β [18] were higher than 
healthy controls. Moreover, caspase-1, IL-1β, 
and IL-18 are overexpressed in lung cancer tis-
sues and AIM2 inflammasome is upregulated in 
NSCLC, whereas high levels of NLRP3 inflam-
masome are reported in small-cell lung cancer 
(SCLC) [19]. Therefore, inflammasomes are 
associated with the biological features of lung 
cancer. Besides, different inflammasomes are 
expressed in distinct cell lines and tumor tis-
sues suggesting that their transcription was 
cell and tissue specific. Therefore, inflamma-
somes in different subtypes of lung cancer are 
associated with their histological classification, 
grading, tumor invasion and chemoresistance 
[19]. 

Further, inflammasomes play critical roles in 
lung cancer. IL-1β represses microRNA-101 
(miR-101) expression through the COX2-HIF1α 

Figure 1. Activation of canonical and non-canonical inflammasomes. A: Canonical inflammasomes are activated in 
two steps. First, TLR or NOD1/2 sense PAMPs and DAMPS, which activate NF-κB and induce the expression of pro-
IL1β and pro-IL18. Second step involves sensing of PAMPs and DAMPs by NLRs or AIM2 through mechanisms that 
are not fully understood. NLRP3 and NLRC4 interact with pro-caspase-1 through ASC, whereas NLRP1 interacts with 
caspase-1 directly. Activated NLRs promote conversion of pro-caspase-1 into caspase-1, which further catalyzes the 
proteolytic cleavage of pro-IL1β and pro-IL18 resulting in active IL-1β and IL-18. Caspase-1 also induces pyroptotic 
cell death. B: Non-canonical inflammasomes Malt1 activate caspase-8 and caspase-11, which induce pyroptosis, 
apoptosis and activation of IL-1β.
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pathway, thereby promoting the proliferation 
and migration of NSCLC cells [20]. This implies 
that inflammasomes regulate hypoxia in lung 
cancer. The NLRP3 inflammasome enhances 
human lung adenocarcinoma A549 cell prolif-
eration via IL-1β/ERK/CREB and IL-18/AKT/
CREK signaling pathways [21]. Moreover, acti-
vated NLRP3 inflammasome promotes the 
metastasis by decreasing E-cadherin and 
increasing Snail via IL1β [21]. In human NSCLC 
patients, decreased E-cadherin expression is 
associated with lymph node metastasis [22] 
and reduced overall survival. [23]. On the other 
hand, Snail overexpression is associated with 
poor prognosis and NSCLC progression [24].

Immune response is critical in lung cancer pro-
gression. Plasmacytoid dendritic cells (pDCs) 
activate AIM2 that induces calcium efflux and 
mitochondrial reactive oxygen species (ROS), 
which results in activation of calpain and IL-1β 
that facilitate lung cancer cell proliferation [25]. 
However, a work report that pDCs play a dual 
role in lung tumor regression in mice model 
which was dependent on the different dose of 
LPS [26]. These diverse outcomes may be due 
to differences in the lung tumor phenotypes 
and models used for the study. Hence, inflam-
masomes are potential biomarkers as they 
modulate the biological behavior of different 
subtypes of lung cancer. 

IL-1β gene polymorphism is associated with 
lung cancer risk. The IL-1β-31T/T genotype 
gene is associated with increased NSCLC risk 
[27], but, IL-1β-511C/C genotype is not associ-
ated with NSCLC [28]. However, both IL-1β-
31T/T and IL-1β-511C/C genotypes are associ-
ated with greater risk of NSCLC in smokers and 
alcohol drinkers [28]. IL-1β-31 gene polymor-
phism was not associated with lung cancer risk 
in female non-smokers [29]. 

Various factors such as cigarette smoking, 
inhaled particulates, gender, race and ethnici-
ty, age, obesity, infections, and other lung dis-
eases or airway obstruction contribute to lung 
cancer [30]. Multiple genetic variations are 
associated with lung cancer suggesting com-
prehensive analyses [31]. Cigarette smoke (CS) 
exposure results in activation of IL-1β, a critical 
inflammatory cytokine. Inflammasome activa-
tion by CS promotes lung cancer by releasing 
CXCL-8 and IL-1β from HBE-14o cells [32]. 
Immune response to CS involves IL-1 recep- 

tor (IL-1R) signaling [33], caspase-1 and P2- 
X7 receptor upregulation and activation [34] 
and NLRP3/caspase-1 cleavage of IL-1β [35]. 
Another component of cigarette smoke, α, 
β-unsaturated aldehyde acrolein represses 
NF-κB activation, which decreases IL-1β [36]. 
Besides, inflammasomes also participate in 
smoke-associated lung carcinogenesis by in- 
fluencing function of natural killer cells [37]. 
XWLC-05 lung cancer cell line treated with sili-
ca particles secretes IL-1β upregulates enhanc-
er of zeste homolog 2 (EZH2) by downregulating 
miR-101 and promotes tumor growth and pro-
gression [38]. 

The interaction between the tumor microenvi-
ronment and various cytokines and cell types is 
vital for lung cancer growth and progression. In 
C57BL/6 mice model with murine Lewis lung 
carcinoma cell xenograft, secretion of IL-1β 
from the tumor cells induced abundant vascu-
lature and cytokines such as vascular endo- 
thelial growth factor (VEGF), macrophage-in- 
flammatory protein-2 (CXCL2) and hepatocyte 
growth factor (HGF). This contributes to angio-
genesis [39] and chemotactic migration of 
macrophages [40]. While cultured mouse Lewis 
lung carcinoma cells do not secrete HGF, co-
culturing with stromal fibroblasts and tumor 
infiltrating cells produces HGF [41]. This sug-
gests that the tumor microenvironment as well 
as stromal fibroblasts and tumor infiltrating 
cells is crucial in cancer progression. 

In the lung metastasis model, IL-1β promotes 
the metastasis of breast cancer to lungs by 
increasing the infiltration of myeloid cells such 
as myeloid-derived suppressor cells (MDSCs) 
and tumor-associated macrophages (TAMs) 
into the tumor microenvironment [42]. NLRP3 
promotes the lung metastasis of melanoma 
cells by suppressing NK cells [43]. Moreover, in 
the mouse lung metastasis model, the inhibi-
tion of NLRP3 suppresses the metastasis  
of HCC [44]. NLRP3 also promotes the lung 
metastasis of breast cancer by increasing lym-
phangiogenesis [45]. All of these studies pro-
vide evidence that inflammasomes promote 
lung metastasis by releasing inflammatory cy- 
tokines and suppress immune function. As 
shown in Figure 2, the role of inflammasomes 
in lung cancer is controversial and the out-
comes depend on the type of stimulating fac-
tors and inflammasome components involved.
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Inflammasomes in breast cancer

Breast cancer is the leading cancer diagnosed 
in women aged 20-45. The breast cancer risk 
factors include breast density age, family his-
tory and expression of estrogen receptor (ER), 
progesterone receptor (PR) and HER2 [46]. 
Moreover, inflammasomes play contrasting ro- 
les in breast cancer (Figure 3).

The AIM2 inflammasome plays a positive role  
in breast cancer. In breast cancer cell lines 
MCF-7 cells, IFNγ induces AIM2 expression that 
promotes apoptosis through the mitochondrial 
pathway and the expression of pro-apoptotic 
proteins, Bad and Bax [47]. AIM2 suppresses 
human breast cancer cell proliferation and 
mammary tumor growth in a mouse model by 
repressing NFkB promoter activity [48]. The 
NLRP3 inflammasome promotes anti-tumor 
function by stimulating the dendritic cells to 
release IL-1β [49]. Different inflammasomes 
play contrasting roles in breast cancer growth 
and progression. IL-1β is the main effector of 
inflammasomes and plays a negative role in 
breast cancer. Increased serum levels of IL-1β 
are associated with a high rate of recurrence  
in breast cancer patients and are critical for 
tumor growth, angiogenesis, invasiveness, re- 
lapse and progression [50-53]. Breast cancer 
proliferation, migration and invasion are en- 
hanced by the IL-1β /IL-1RI/β-catenin signaling 
pathway that increase expression of c-MYC, 

CCDN1, SNAIL1 and MMP2 [54]. IL-1β enhanc-
es invasiveness of breast ductal cancer cells  
by activating ERK1/2 [55]. In the tumor micro-
environment, a positive feedback exists where 
in reduction of IL-1β by metastatic breast can-
cer cells stimulates MSCs to produce chemo-
kine IL-1β that promote aggressiveness of the 
breast cancer cells [56]. 

Adipocytes secrete leptin that promotes breast 
cancer cell migration and invasion by enhanc-
ing the expression and secretion of IL-18 
through tumor-associated macrophages (TA- 
Ms), which are linked to tumor progression and 
metastasis [57, 58]. Moreover, IL-18 gene poly-
morphisms are associated with increased risk 
of breast cancer [59, 60]. However, multiple 
studies show that IL-18 plays a positive role in 
breast cancer therapy. IL-18 overexpressing 
human mesenchymal stem cells derived from 
the human umbilical cord (hUMSCs) suppress 
the proliferation, migration and invasion of 
breast cancer cells [61, 62]. This contradictory 
role of IL-18 suggests that the context and cell 
types that generate IL-18 critically modulate 
cancer progression. Nearly 15% of all breast 
carcinomas are triple-negative breast cancer 
(TNBC) subtype. TNBC is associated with poor-
er prognosis than other breast cancers be- 
cause of its aggressive and metastatic behav-
ior [63]. ZER is a sequiterpene isolated from 
Southeast Asian ginger that suppresses IL1β-
induced migration and invasion of TNBC cells 

Figure 2. Inflammasomes in lung cancer. Cigarette smoking and inhaled particulate matter stimulates the airway or 
lung epithelium, which activates inflammasomes that induce the production of IL-1β and IL-18. Both IL-1β and IL-18 
promote EMT and secretion of pro-inflammatory cytokines: VEGF, CXCL2 and HGF, which affect the tumor microen-
vironment and promote lung cancer progression. NLRP3 inflammasome promotes lung cancer by inhibiting natural 
killer cells (NKs). AIM2 from plasmacytoid dendritic cells (pDCs) suppresses lung cancer progression by activating 
NKs.
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by inhibiting IL-8 and MMP-3 expression [52]. 
Therefore, ZER is a promising candidate for 
treatment of triple-negative breast cancer pa- 
tients.

However, the role of inflammasomes in breast 
cancer is not clear-cut. Therefore, further inves-
tigations are necessary to determine the rela-
tionship of inflammasomes like NLRP1 and 
NLRP6 with breast cancer.

Inflammasomes in gastric cancer

Gastric cancer (GC) is ranked second among all 
cancer deaths worldwide [64]. Chronic inflam-
mation is one of the main causes of GC. The 
etiological connection between gastric tumori-
genesis and the chronic inflammation is dem-
onstrated by its association with Helicobacter 
pylori (H. pylori) infection and chronic gastritis. 
H. pylori infection induces IL-1β and IL-18 
expression through TLR-2/NLRP3/caspase-1 
axis, which leads to persistent infection and 
immune tolerance that ultimately progresses  
to gastric cancer. [65, 66]. This process is also 
dependent on K+ efflux and Ca2+ signaling [67]. 
IL-18 secretion in response to H. pylori infection 
re-programs the dendritic cells (DCs) into a tol-
erance-promoting phenotype [68]. THP-1 cells 
infected by H. pylori also produce IL-1β [69]. H. 
pylori-induced expression of IL-1β promotes 
gastric carcinogenesis by upregulating COX-2 

hinis (M. hyorhinis) plays an important role in 
many kinds of cancers including gastric cancer. 
M. hyorhinis-induced NLRP3 inflammasome 
reduces the release of IL-1β, which promotes 
gastric cancer metastasis [73].

IL-1β promotes inflammation-induced GC. In 
the gastric cancer patients, IL-1β levels are sig-
nificantly higher in the serum and tumor tissues 
[74, 75]. Moreover, IL-1β levels increase with 
gastric tumor progression [76]. Hence, IL-1β 
can be used as a prognostic biomarker. Fur- 
thermore, IL-1β gene polymorphisms show syn-
ergy with H. pylori infection in gastric cancer 
development [77-79]. IL-1β inhibits gastric acid 
secretion, induces epigenetic changes, pro-
motes angiogenesis, mobilizes bone marrow 
cells and adhesive factors to migrate into the 
site of tumor and induces releases of other 
inflammatory factors [76]. IL-1β induces meth-
ylation of the E-cadherin, which increases the 
risk of gastric cancer [80]. These results dem-
onstrate that IL-1β promotes proliferation, inva-
sion and metastasis of gastric cancer cells and 
also affects the tumor microenvironment.

Many studies have investigated the role of indi-
vidual inflammasome components in GI can-
cers. Low caspase-1 expression correlates with 
stage, lymph node metastasis and survival  
of gastric cancer patients [81]. In heliobacter 
infections, caspase-1 regulates the balance 

Figure 3. Inflammasomes in breast cancer. IL-1β promotes the proliferation, 
migration, invasion of breast cancer through the secretion of chemokines: 
VEGF and HGF. Mesenchymal stem cells (MSCs) that are stimulated by IL-
1β also produce chemokines: IL-1β. Adipokines promote breast cancer cell 
migration and invasion by stimulating the expression and secretion of IL-18 
in tumor-associated macrophages (TAMs). However, IL-18 overexpressing 
MSCs generated from human umbilical cord (hUMSCs) suppress the pro-
liferation, migration and invasion of breast cancer cells. AIM2 and ASC also 
inhibit breast cancer development through promoting apoptosis.

expression and repressing 
acid secretion [70]. Therefore, 
H. pylori promote gastric in- 
flammation by inducing the 
secretion of IL-1β and IL-18, 
which regulate gastric immu-
nity. Hence, elimination of H. 
pylori infection is critical to 
prevent gastric cancer. MUC1 
is a mucin protein, which is a 
critical component of the epi-
thelial barrier and protects 
against H. pylori-induced pa- 
thogenesis by inhibiting NLR- 
P3 activation [71]. Withaferin 
A is a withanolide obtained 
from Withania somnifera, wh- 
ich inhibits IL-1β production  
by H. pylori in dendritic cells  
by inhibiting NLRP3 inflamma-
somes [72]. 

There is also increasing evi-
dence that Mycoplasma hyor-
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between Th1 and Th17 cells [82]. ASC/TMS1 
mRNA and protein levels are decreased in GC 
tissues, whereas methylated ASC/TMS1 pro-
moter is an independent prognostic indicator  
of GC [83].

However, the function of IL-18 and other inflam-
masomes in GC are not clear and require fur-
ther investigation. 

Inflammasomes in liver cancer

In 2008, liver cancer was the fourth most diag-
nosed cancer in males and seventh in females; 
it ranked second among males and fifth am- 
ong females for cancer-related deaths [84]. In 
2012, liver cancer was ranked second in can-
cer-related deaths worldwide [85]. These data 
reflect the poor prognosis of liver cancer. As 
shown in Figure 4, the inflammasomes play 
conflicting roles in liver cancer.

Sex hormones play a protective role in hepato-
cellular carcinoma (HCC). The 17β-estradiol 
(E2) decreased HCC progression by increasing 
NLRP3 inflammasome via E2/ERβ/MAPK sig-
naling pathway [86]. Moreover, NLRP3 inflam-
masome components are significantly down-
regulated in human HCC than inflamed and 
normal hepatic tissues [87]. These studies indi-
cate that the NLRP3 inflammasome plays a 
positive role in HCC. However, many other stud-
ies suggest a contrary role of NLRP3 inflamma-
some in HCC. In hypoxia, HMGB1 enhances 
caspase-1, IL-1β and IL-18 levels through NL- 
RP3 and promotes HCC invasion, whereas sta-
ble knockdown of HMGB1 suppresses HCC 

that regulates innate immunity [90]. IL-1β 
increases major histocompatibility complex 
class I-related chain A (MICA) levels, which 
antagonizes NKG2D-mediated immune-surveil-
lance [91].

The major risk factor for HCC is cirrhosis, which 
is caused by viral infections alcohol and meta-
bolic factors [92, 93]. Inflammasomes are dif-
ferentially regulated by various hepatitis B virus 
(HBV) antigens. In chronic hepatitis B (CHB) 
patients, high AIM2 expression is observed in 
the high HBV replication group than the low 
HBV replication group; moreover, high AIM2  
levels are positively associated with IL-1β and 
IL-18 expression in CHB patients [94]. This 
observation suggests that AIM2 activation may 
eliminate hepatitis B virus. However, another 
study demonstrated that AIM2 prevents the 
recognition of dsDNA expressed by the HBV 
and therefore assists immune evasion [90]. 
NLRP3, which is activated by hepatitis C virus 
(HCV) accumulates in lipid droplets and co- 
ordinates with sterol regulatory element-bind-
ing proteins (SREBPs) to promote liver disease 
pathogenesis associated with chronic HCV 
[95]. In alcoholic liver disease (ALD), NLRP3 
plays a protective role, whereas NLRC4 pro-
motes ALD [96]. Ethanol induces the activa- 
tion of HSCs and promotes production of pro-
inflammatory cytokines such as IL-1β, which 
contribute to liver fibrosis [97]. IL-1β recruits 
and activates hepatic iNKT cells that promote 
liver inflammation and neutrophil infiltration, 
and induce alcohol-related liver injury [98]. 
Inflammasomes are also upregulated in the 

Figure 4. Inflammasomes in liver cancer. HMGB1, alcohol and HCV promote 
HCC proliferation and metastasis by activating the NLRP3 inflammasome. 
However, NLRP3 produced NKs can suppress HCC and 17β-estradiol (E2) 
also can inhibit the HCC. IL-18 stimulates NKs to secrete IFN-γ in response 
to HCV. Kupffer Cells stimulated by HBV also contribute to HCC. 

metastasis [88]. These data 
suggest that more compre-
hensive investigations are ne- 
cessary to decipher the role of 
the NLRP3 inflammasome in 
HCC.

The interplay between NK ce- 
lls and inflammasomes is cri- 
tical in HCC progression. IL-18 
induction due to NLRP3 infla- 
mmasome activation results 
in NK cell-mediated suppres-
sion of colorectal cancer me- 
tastasis to the liver [89]. AI- 
M2 activation induces IL-18 
expression in human Kupffer 
cells, which upon coculturing 
with NK cells produce IFNγ 
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non-alcoholic steatohepatitis (NASH) [99]. DA- 
MPs trigger endoplasmic reticulum (ER) stress, 
which activates inflammasomes leading to in- 
flammation steatosis [100]. Thus, inflamma-
somes play an important role in the progres-
sion of hepatitis. However, the role of other 
inflammasomes like NLRP1 and NLRC4 re- 
quires in-depth investigation. 

IL-1β and IL-18 are also important in hepatitis 
and HCC progression. IL-1β is involved in the 
pathology of viral fulminant hepatitis [101]  
and alcoholic steatohepatitis [102]. Hepatic 
macrophages induced by HCV produce IL-1β 
through the NLRP3 inflammasome, which con-
tributes to the liver disease [103]. However, 
there are contrasting reports regarding IL-1β 
inhibiting HBV infection in liver cells. Watashi  
et al. reported that priming with IL-1β reduced 
host cell susceptibility to HBV infection via acti-
vation-induced cytidine deaminase (AID) [104] 
and oxidative stress [105]. HCV-infected mono-
cytes induce IL-18 via inflammasomes that  
activate NK cells, which produce IFN-γ [106]. 
However, patients with chronic HCV infection 
show reduced monocytes function and low 
IFN-γ levels [106]. This may be due to changes 
in membrane protein composition on mono-
cytes derived from chronic HCV patients that 
show depleted levels of IFN-γ due to decreased 
numbers of CD14+ monocytes [106]. These 
data show that inflammasomes derived from 
monocytes, NKs and macrophages perform dif-
ferent functions in hepatitis. Moreover, further 
investigations are necessary to decipher the 
roles of NLRP1, NLRP4 and NLRP6 in liver 
cancer.

Inflammasomes in colorectal cancer

Colorectal cancer (CRC) is one of the major 
causes of morbidity and mortality in developed 
countries. Recent data show that the incidence 
rates of CRC have rapidly increased in China. 
CRC is frequently associated with inflammatory 
bowel disease (IBD). Many studies have report-
ed the role of individual inflammasome compo-
nents in CRC. However, their specific roles may 
be context dependent. AIM2 reduces Akt acti-
vation and tumor burden in murine colorectal 
cancer models [107]. Reduced AIM2 expres-
sion is associated with advanced cancer stag-
es [108] and poor outcomes for CRC patients 
[109]. However, AIM2 restoration promotes 
invasiveness in AIM2-deficient colon cancer 

cells [110]. AIM2-containing microsatellites in 
the coding region are associated with colorec-
tal cancer progression [111]. 

NLRP3 induces epithelial-mesenchymal transi-
tion (EMT) in colon cancer cells, which contrib-
utes to metastasis [112]. Dietary choleste- 
rol promotes AOM-induced colorectal cancer 
through the activation of NLRP3 by AMPKα/
mitochondrial ROS signaling pathway [113]. 
NLRP3 inflammasome-mediated maturation of 
IL-1β and IL-18 is necessary for DSS-induced 
colitis [114]. NLRP3 depletion suppresses coli-
tis [115]. However, some studies show that 
NLRP3 inflammasome protects against DSS-
induced colitis [116] and colitis-associated 
tumorigenesis in hematopoietic cells [117]. 
NLRP3 inflammasome promotes IL-18 expres-
sion, which suppresses metastatic colorectal 
cancer growth in the liver by promoting tumori-
cidal activity of NK cells [89]. This implicates 
NLRP3 in promoting liver metastasis. 

The role of NLRC4 is also controversial. Allen et 
al. reported that NLRP3-/- rather than NlRP4-/- 
mice exhibit increased colitis and tumorige- 
nesis [117]. However, Hu et al. reported that 
Casp1-/- and Nlrc4-/- mice showed greater tu- 
mor load than Nlrp3-/- and wild-type mice and 
NLRC4 expression induces apoptosis and 
decreases the proliferation of epithelial cells 
[118]. Meanwhile, NLRP6 activity is neces- 
sary to regulate self-renewal of the intestinal 
epithelium and maintain intestinal homeosta-
sis [119]. NLRP6 is critical in hematopoietic 
cells for protection against inflammation-relat-
ed colon tumorigenesis [120]. NLRP6 sup-
presses tumorigenesis by promoting secre- 
tion of IL-18 from epithelial cells [121]. NLRP1 
functions similar to NLRP6 in the colon epithe-
lial cell compartment to repress tumorigene- 
sis [122]. Moreover, NLRP1 attenuates CRC 
through IL-8 and IL-1β, similar to NLRP3 [122]. 
NLRP12 represses the noncanonical NF-κB 
pathway through NIK and TRAF3, resulting in 
suppression of colon inflammation and tumori-
genesis [123].

IL-1β promotes CRC cell growth through IL- 
1β/NF-Kb/miR-181a/PTEN signaling pathway 
[124]. Complement system is involved in co- 
lorectal cancer through the IL-β/IL-17A axis 
through promoting the inflammation and com-
plement-activation product C5a represented a 
potent inducer for IL-1β in neutrophil [125]. 
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IL-1β promotes tumor growth and invasion by 
inducing epithelial to mesenchymal transition 
(EMT) and stem cell phenotype via Zeb1 [126]. 
In fibroblasts, IL-1β stimulates the production 
of COX-2, which is a major inflammatory me- 
diator that promotes the proliferation and  
invasiveness of colon cancer cells [127]. IL-1β 
produced by neutrophils promotes colitis-asso-
ciated tumorigenesis through IL-6 [128]. Thus, 
IL-1β plays a major role in CRC, CRC-associated 
microenvironment and CRC stem cells. There- 
fore, IL-1β inhibition is a potential therapeutic 
strategy to treat CRC. Inositol hexaphosphate 
inhibits the IL-1β-stimulated colon cancer by 
degrading MMPs [129]. 

However, IL-18 plays a tumor-suppressive role 
in CRC. Eosinophil promote the death of colon 
cancer cell colo-205 through IL-18 [130]. In 
Nlrp3 inflammasome-deficient mice, enhanced 
tumorigenesis is associated with deregulated 
IL-18 production and increased macrophage 
infiltration and IL-18-/- mice contained signifi-
cantly more tumors than those of treated wild-
type mice. IL-18 suppresses CRC through re- 
lease IFN-γ and the IFN-γ promote the pro- 
duction of tumor suppressor STAT1 [131]. 
Moreover, IL-18 suppresses metastasis of CRC 
to lung cancer by activating T cells [132] and 
increasing the number of NK cells [89]. Thus, 
IL-18 can be used as an effective therapy for 
CRC. 

Extrusion maintains homeostatic epithelial cell 
numbers and protects against infections. IL-18 
secreted by the intestinal epithelial cells upon 
inflammasome activation recruit immune cells 
that prevent dissemination of bacteria travers-
ing the epithelium [133, 134]. However extru-
sion upregulates survival signaling in metas- 
tatic tumor cells and helps them to escape 
from the epithelium [135]. Moreover, persistent 
IL-18 may play a positive role in colitis [136] 
and colorectal cancer [137]. These studies de- 
monstrate that extrusion plays a role in epithe-
lium-derived tumor metastasis. However, it is 
not clear if cancer cells originating from the 
parenchyma cells induce metastasis through 
extrusion like hepatocellular carcinoma.

The gut microbiota also regulates susceptibility 
to multiple human diseases. Changes in intesti-
nal microbial composition are associated with 
multiple human diseases like IBD and colon 
cancer [138]. Low fiber diet exacerbates colitis 

development, whereas very high intake of 
dietary fiber or short-chain fatty acids (SCFA) 
acetate protects against colitis by stimulating 
K+ efflux and hyperpolarization of colonic epi-
thelial cells leading to NLRP3 inflammasome 
activation [139]. NLRP3 and AIM2 sense the 
microbial DNA and regulate the gut microbiota, 
especially in the context of colitis and colorec-
tal cancer [140]. Aim2–/– mice are highly sus-
ceptible to colon tumor development and  
DSS-induced colitis due to perturbations in gut 
microbiota [141, 142]. The activation of the 
NLRP6-ASC inflammasome does not change 
the gut microbiota composition [143]. Thus dif-
ferent inflammasomes play a complex role in 
CRC, depending on their source, context of can-
cer development, downstream signaling and 
gastrointestinal microflora.  

Inflammasomes in prostate cancer

Prostate cancer is a male-specific cancer that 
especially affects older men. The initiation of 
prostate cancer has been linked with multiple 
factors such as age, race, diet, heredity, and 
environment [144]. In recent years, there has 
been a surge in understanding the role of 
inflammation in prostate cancer.

Hypoxia is a common feature of prostate can-
cer. Hypoxia contributes to prostate cancer by 
priming cells for the activation of NLRP3 and 
AIM2 inflammasomes [145]. Several stimuli 
such as uric acid crystals, urine reflux, bacteria, 
or fungi cause injury or infection within the 
prostate activates inflammasome-mediated 
proinflammatory cytokines and drive tumor 
development. For example, Propionibacterium 
acnes strongly activate inflammasomes in the 
neutrophils residing in the prostate gland, re- 
sulting in prostatitis and prostate cancer [146]. 
AIM2 inflammasome plays a role in the devel-
opment of human prostate hyperplasia and 
prostate cancer [147]. 

IL-1β and IL-18 serum levels correlate with the 
risk of carcinoma and the prognosis of estab-
lished prostate cancer. High serum IL-18 levels 
have been observed in locally advanced pros-
tate cancer patients [148]. Besides, IL-1β and 
IL-18 exert immunosuppressive effects and 
support tumor promoting microenvironment 
[148]. IL-1β drives prostate cancer progression 
[149] and also promotes skeletal colonization 
and progression of metastatic prostate cancer 
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cells [150]. Moreover, IL-1β polymorphisms 
such as IL-1β-511 (rs16944) and IL-1β-31 
(rs1143627) are associated with prostate can-
cer risk [151, 152]. 

Anakinra, a IL-1 receptor antagonist inhibits 
both IL-1α and IL-1β and is the most widely 
used therapeutic agent for prostate cancer 
[153]. Glucosamine attenuates prostate can-
cer cell proliferation and migration by targeting 
IL-1β [154]. Inflammasome-associated studies 
in prostate cancer require further detailed 
investigation. 

Inflammasomes in glioblastoma

Glioblastoma is one of the most aggressive  
and fatal primary brain tumors in adults. 
Malignant gliomas are highly invasive with a 
dismal prognosis despite progress in early diag-
nosis and aggressive therapeutic interventions 
[155].

In patients with glioblastoma, the expression  
of NLRP3 inflammasome predicts poor survi- 
val in patients that have undergone radiothera-
py [156]. NLRP3 inhibition reduces tumor 
growth and prolongs the survival of glioblasto-
ma model mice following IR treatment [156]. 
Caspase-1 is increased in both glioblastoma 
tissues and glioma cell lines, U87 and T98G, 
whereas miR-214 inhibits glioblastoma cell pro-
liferation and migration by suppressing cas-
pase-1 [157].

However, the role of IL-1β in regulating glioblas-
toma progression is still controversial. IL-1β 
promotes proliferation, migration, and invasion 
of human glioma cells [158] and increases the 
cancer stem cell phenotype in murine and hu- 
man proneural glioma stem cells [159]. IL-1β 
activates the p38 MAPK pathway and enhanc-
es IL-6 that promotes glioblastoma progression 
[160]. IL-1β also stimulates the secretion of 
exosomes containing the small heat shock pro-
tein, CRYAB that promotes glioblastoma pro-
gression [161]. However, IL-1β inhibits the tran- 
sactivation activity of hypoxia-inducible factor  
1 (HIF-1), thereby downregulating adrenomedul-
lin (AM) expression and inducing glioma cell 
apoptosis [162]. Therefore, cancer microenvi-
ronment such as degree of hypoxia can influ-
ence cancer outcomes. IL-1β promotes the 
brain metastasis of breast cancer stem-like 
cells (CSCs) by activating astrocytes, which are 
critical for CSC survival [163]. 

IL-18 plays a controversial role in malignant gli-
oma. IL-18 induces IL-2, which demonstrates 
significant antitumor activity in glioma models 
[164]. IL18-expressing BMSCs effectively in- 
hibit intracranial glioma in rats through bone 
marrow-derived mesenchymal stem cells [165]. 
In the tumor microenvironment, IL-18 secreted 
by the microglia promotes migration of glioma 
cells [166]. However, IL-18 also promotes Fas-
mediated apoptosis in Fas-transduced C6  
glioma cells [167]. Moreover, IL-18 stimulates 
macrophages, T lymphocytes and NK cells to 
produce IFN γ that displays antitumor effects 
[168]. Moreover, intraperitoneal rIL-18 substan-
tially delays the growth of subcutaneously inoc-
ulated gliomas in collaboration with natural 
killer cells [169].

Hence, different inflammasomes play distinct 
roles in glioma based on their origin. Moreover, 
the roles of NLRP1, NLRP6 and AIM2 in glio-
blastoma are still unknown.

Crosstalk between exosomes and inflamma-
somes in cancers

Exosomes are nano-sized membrane vesicles 
that are secreted by both normal and cancer 
cells, which mediate various biological process-
es such as immune response and tumorigene-
sis. Inflammasome-derived exosomes directly 
activate NF-κB signaling pathway in macro-
phages [170] which promotes gastric cancer 
progression [171]. 

AIM2 is activated by dsDNA from dead and  
cancer cells, which are sensed by AIM2 [1]. 
Exosomes containing dsDNA from intact lung 
cancer cells activate AIM2 in adjacent cells, 
leading to the production of inflammatory cyto-
kines [172]. The pro-inflammatory cytokines 
and chemokines recruit stromal cells and in- 
duce angiogenesis leading to tumor progres-
sion [173]. Although chemotherapies are criti-
cal for cancer treatment, severe gastroin- 
testinal tract toxicity restricts their application. 
The cytotoxicity is due to exosomes containing 
“self-DNA” that activates the AIM2 inflamma-
some, resulting in secretion of IL-1β and IL-18 
that induces intestinal mucositis and late-onset 
diarrhea [174]. 

Tumor-derived exosomes serve as vehicles of 
intercellular communication and are emerging 
as mediators of tumorigenesis and immune 
escape. Exosomes from the serum of patients 
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with nasopharyngeal carcinoma (NPC) or the 
supernatant of TW03 cells increase the produc-
tion of proinflammatory cytokines such as IL-1β, 
IL-6, and IL-10, which correlates with advanced 
lymph node stage and poor prognosis in NPC 
patients [175].

Liver fibrosis is the main cause of hepatocellu-
lar carcinoma. Exosomes derived from CCl4-
treated hepatocytes induce the expression of 
IL-1β and IL-23 in HSCs [176] and contribute to 
liver fibrosis. In non-alcoholic steatohepatitis 
(NASH), lipids induce release of hepatocyte 
exosomes, which activates the macrophages 
that release IL-1β and IL-6 [177].

These studies indicate that exosomes serve as 
vehicles to activate inflammasomes and pro-
mote the production of inflammatory factors, 
which are critical for tumor progression. How- 
ever, the connection of exosomes and NLRP1, 
NLRP3, NLRP6 inflammasomes is unknown. 
Moreover, it is unclear if exosomes containing 
inflammasomes form a metastasis niche. More 
investigations are necessary to unravel these 
unanswered questions. 

Perspectives

In recent years, the complex roles of activated 
inflammasomes have gained attention in can-
cer development and therapy. Many factors 
trigger activation of inflammasomes. Moreover, 
different inflammasomes play diverse roles 
within the same tissue. Therefore, given their 
complex roles, it is important to explore their 
function in context of tissue or cell specificity 
and cancer stages. Compounds that target 
inflammasomes such as IL-1β neutralizing anti-
bodies and IL-18 binding protein have been 
developed. However, their clinical application in 
cancer therapy needs to be determined. In the 
future, the mechanism of the activation of the 
various inflammasomes and their effect on the 
immune system needs to be addressed in 
greater detail. The various signaling mecha-
nisms that regulate the activation of different 
inflammasomes also need to be defined in 
greater detail. While pyroptosis is vital in anti-
cancer treatment, oxidative stress, mitochon-
drial dysfunction and release of inflammatory 
factors are also involved in carcinogenesis. 
Therefore, their role in tumor cell apoptosis, 
necrosis and ferroptosis needs to be explored.
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