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Abstract

In data-driven phenotyping, a core computational task is to identify medical concepts and their 

variations from sources of electronic health records (EHR) to stratify phenotypic cohorts. A 

conventional analytic framework for phenotyping largely uses a manual knowledge engineering 

approach or a supervised learning approach where clinical cases are represented by variables 

encompassing diagnoses, medicinal treatments and laboratory tests, among others. In such a 

framework, tasks associated with feature engineering and data annotation remain a tedious and 

expensive exercise, resulting in poor scalability. In addition, certain clinical conditions, such as 

those that are rare and acute in nature, may never accumulate sufficient data over time, which 

poses a challenge to establishing accurate and informative statistical models. In this paper, we use 

infectious diseases as the domain of study to demonstrate a hierarchical learning method based on 

ensemble learning that attempts to address these issues through feature abstraction. We use a 

sparse annotation set to train and evaluate many phenotypes at once, which we call bulk learning. 

In this batch-phenotyping framework, disease cohort definitions can be learned from within the 

abstract feature space established by using multiple diseases as a substrate and diagnostic codes as 

surrogates. In particular, using surrogate labels for model training renders possible its subsequent 

evaluation using only a sparse annotated sample. Moreover, statistical models can be trained and 

evaluated, using the same sparse annotation, from within the abstract feature space of low 

dimensionality that encapsulates the shared clinical traits of these target diseases, collectively 

referred to as the bulk learning set.
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1. Introduction

Predictive analytics using EHR data has gone through tremendous advancement over the 

past few years owing to the emergence of large-scale data integration such as the clinical 

data warehouse (CDR). In particular, population-scale clinical data that incorporate patient 

diagnoses, tests, and medical history, among many others, are essential to computational 
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phenotyping for which the primary objective is to define disease-specific cohorts and 

unravel potential disease subtypes [1–3].

In the general landscape of computational phenotyping research, many endeavors have been 

made to progressively replace the predominant use of rule-based phenotyping algorithms, 

comprising the majority in eMERGE network [4], by the predictive analytical approach 

based on machine learning and natural language processing (NLP) [5–8]. While this data-

driven analytic methodology alleviates the tedious process of manually selecting features 

and their logical combinations that match phenotype definitions in an ad hoc fashion, 

predictive analytics is not without its own outstanding challenges. In particular, during the 

creation of training data, both feature engineering and data labeling involve significant 

human interventions as a prerequisite for applying machine learning algorithms, which on 

many levels is the reason that labeled data are still relatively limited as a resource for large-

scale or high-throughput phenotyping effort. Wilcox et al. showed that experts were better 

off putting their time into rule authoring than training set annotation [9]. As a vantage point 

for predictive modeling, nonetheless, EHR is data-rich in clinical details including disease 

diagnoses and treatments as well as a gradual integration of genomic data for precision 

medicine.

In this study, we focus on developing a clean, flexible algorithmic approach towards batch-

phenotyping multiple diseases with minimal intervention of clinical experts. Specifically, we 

focus on the computational phenotyping of infectious diseases as the domain of study given 

that this disease class has the following characteristics. Firstly, the etiology of infectious 

diseases is complex due to a wide spectrum of pathogenic microbes, some of which can even 

cause several diseases; additionally, pathological factors such as sites of infections, and 

immune system responses further add to the etiological complexity, making the task of data 

annotation inherently challenging. Secondly, a significant portion of the infectious diseases 

has ambiguous classifications (e.g. unspecified bacterial infections, 041.9) in the ICD-9-CM 

system. Moreover, while common infectious diseases have sufficient data points for 

establishing predictive models, relatively rare infections may always be short of data. For 

instance, infectious diseases with demographically rare occurrences such as anthrax and the 

emerging infections would inherently accumulate smaller data sets than those of the 

pandemic conditions such as influenza and chronic, prolonged conditions such as hepatitis-

B.

With the help of diagnostic codes, we postulate that predictive models for rare infectious 

disease cases can be built on top of those more frequently observed assuming that there exist 

overlapping clinical elements that can reasonably distinguish infectious conditions from one 

another. More concretely, we adopt an algorithmic design based on the ensemble learning in 

the form of stacked generalization [10–13], which when combined with ontological feature 

selection, gives rise to levels of feature abstraction that helps to delineate phenotypic 

boundaries over multiple infectious diseases in parallel.

To reinforce the aspect of the simultaneous model learning over multiple clinical conditions, 

we refer to this batch-phenotyping method as bulk learning. In particular, feature 

abstractions in the learning hierarchy allow for statistical models to be established in an 
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(abstract) feature space of low dimensionality, which lends itself to a more efficient and 

scalable training and evaluation with lessened requirement of labeled data in addition to 

interpretable modeling results. In the experiment, we use a small annotation set comprising 

randomly sampled clinical cases of infectious diseases of interest to empirically demonstrate 

its capacity towards evaluating the predictive performance of the bulk learning system.

2. Materials and Methods

2.1 Overview

Phenotyping on a per-disease basis can be slow and is subject to the availability of the 

patient data for training accurate models. Bulk learning, as the name suggests, is a 

simultaneous learning and phenotyping procedure for multiple clinical conditions. The 

central idea is to use diagnostic codes, such as ICD-9-CM, readily available in the codified 

EHR data, as surrogate labels and train an intermediate model based on feature abstractions 

that capture clinical concepts shared among the set of clinical conditions. Disease labeling 

can then be achieved through the learned feature abstraction that enables a reduction of 

manually labeled data required for stratifying cohorts associated with each condition in the 

set. In this study, we use the clinical data repository (CDR) from the collaborative effort 

between Columbia University Medical Center and NewYork-Presbyterian Hospital and 

examine 100 clinically different infectious diseases in the CDR from the cohort identified 

from year 1985 to year 2014.

As we shall see shortly, each infectious disease in the bulk learning set is to be modeled by 

multiple classifiers, each of which corresponds to a clinical concept defined via a medical 

ontology. The training procedure consists of three stages, which manifest themselves 

through a hierarchical learning architecture. In the first stage, base classifiers are trained to 

predict labels of the set of the infectious diseases where the labels are identified via using 

ICD-9 codes as surrogates. In particular, the labels are “noisy” since the diagnostic coding 

system was created mainly for administrative and billing purposes and hence not always 

accurate [14,15]. Fig. 1 illustrates a high-level view of a three-tier model stacking. In the 

second stage, predictions from these base classifiers are aggregated through a meta-

classifier, which gives rise to a feature abstraction that tells us the degree to which each base 

model contributes to the prediction for a given disease. In particular, the outputs from the 

lower tier such as probability scores in turn serve as abstract features in the upper tier. 

Subsequently in the third stage, we select a small subset of disease cases from which to 

create an annotation set with the erroneous diagnostic coding rectified by manual curation.

As we shall see later, there are design choices associated with the abstract feature 

representations, which can influence model performance. The main objective of bulk 

learning is therefore to separate the disease cohorts with minimal data annotation effort by 

establishing statistical models from within the abstract feature space of low sample 

complexity that serves as a compact representation for the raw feature space spanned by 

patient attributes extracted from the EHR data.
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2.2 Training Data Formulation and Data Characteristics

2.2.1 Bulk Learning Set—The set of candidate infectious diseases to be included in the 

bulk learning system can be identified via mentions of diagnostic codes, such as ICD-9, in 

the EHR data. In the CDR, each clinical visit is associated with a diagnostic entry, which 

typically has mentions of ICD-9 codes in three different categories: admission, primary and 

secondary diagnosis and more often than not, codes in these slots are not consistent. In this 

study, we only examine the primary and secondary diagnoses with better coding accuracy. 

There are approximately 1500 diagnostic codes found in CDR that fall in the category of 

infectious diseases, out of which we selected 100 codes to form the bulk learning set. Table 

1 illustrates the bulk learning set under the classification of the ICD-9 coding in the section 

of infectious and parasitic diseases with an exception of 481, which falls in the category of 

pneumonia and influenza. To simplify the assumption for the purpose of illustrating bulk 

learning, different ICD-9 codes are considered as representing different diseases. The 

strategy of selecting diseases for bulk learning can influence the experimental results, for 

which further details can be found in the online supplement (Section A).

2.2.2 Representing Clinical Cases—The process of formulating and collecting training 

data depends on how clinical cases are represented. In light of common practices in 

supervised learning, all training instances typically share the same feature set (e.g. clinical 

variables relevant for predicting disease cohorts). However problems arise when the feature 

set becomes large, which inevitably leads to a demanding effort in creating labeled data. A 

common way to address this issue is to employ dimensionality reduction techniques either 

via feature transformation (e.g. [16]) or feature subset selection (e.g. [17,18]). The design 

choice between these two lines of approach depends on the clinical utility that one seeks. In 

computational phenotyping, it is beneficial to obtain easily interpretable results as 

byproducts in addition to accurate predictive modeling. In particular, from the perspective of 

phenotypic concept discovery, a feature transformation using commonly used optimization 

objectives, such as the linear combination of features that accounts for the most data 

variance in PCA, may not immediately result in transformed features with clear clinical 

meanings. Feature subset selection on the other hand helps to identify informative variables 

in the statistical sense that contribute the most to the prediction. However, arbitrarily 

discarding less predictive variables is not satisfactory since clinical variables are often 

correlated and need to coexist to have clinical meanings1. Popular statistical methods that 

identify correlated variables include ElasticNet [19], group lasso [20], etc. Yet, such data-

driven group feature selection is highly contingent upon clinical data characteristics, which 

may not generalize well across multiple institutions; in particular, without sufficient data in 

clinical cases, the group correlations with a given target disease may not be significant 

enough to be identified.

For the purpose of disease phenotyping, we choose to represent cases in a hierarchical and 

modular form through the medical ontology, which has a clearly defined concept hierarchy 

and thereby facilitates the process of feature engineering. As we shall see in Section 2.3, 

1For instance, the diagnosis of pneumococcal pneumonia may involve examining sputum gram stains and culture that correspond to 
multiple clinical variables representing related laboratory tests, orders and test results found in the database table.
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grouping clinical variables via the medical ontology helps to break down the potentially 

large raw feature set, identified from the CDR, into several conceptual groups so that 

statistical models can be trained based on only the smaller group features at the base level. 

Through the ontology-based feature decomposition, clinical cases can assume a 

representation that is clearly defined, multifaceted and easily extensible. For instance, the 

same clinical case can be interpreted from the angle of the medicinal treatment and the 

laboratory test, among many others.

2.2.3 Data Preparation—To formulate a training set that takes the form of the patient 

representation given earlier, we first single out, from the CDR, the patient records tied to 

each target ICD-9 code documented in primary and secondary diagnosis followed by cross-

referencing these records with the tables hosting the data for the clinical concepts of interest. 

In particular, we look for the clinical records that fall within the range of 60 days prior to the 

mention of a target ICD-9 code and 30 days following the mention. We note that tolerable 

errors in time shall be considered as adjustable parameters, when appropriate, that depend on 

the clinical practices.

As we shall see in Section 2.3, training data for bulk learning are concept-specific (i.e. each 

base model has its own training sets) and hence their feature representations depend on the 

concept hierarchy of the chosen medical ontology. Training data are collected via matching 

variables between those delineated by the concept hierarchy and patient attributes embedded 

within the aforementioned records, grouped by ICD-9 codes as surrogate labels, assuming 

that patient attributes had been codified to be consistent with the ontology.

2.2.4 Control Groups—In bulk learning, each predictive unit is formulated as a binary 

classification problem such as each disease-specific binary classifier at the base level and 

hence is associated with both positive and negative examples. While positive examples are 

created via referencing the diagnostic code, negative examples on the other hand are created 

via mixing different control data sets, which can be derived from different infectious disease 

cohorts or even from clinical cases without any infections involved. As the control data can 

greatly impact the chance of finding clinically meaningful predictors for a target disease, we 

ensure that the set of features in use by at least some training instances are reasonably 

similar to each other in both class labels.

For ease of exposition, we start with a few definitions. First, we define shared variables as 

the predictor variables that not only occur in the training instances of both class labels but 

also assume non-trivial values, where the non-triviality depends on the domain of the 

variable and its meanings. The assumption made in this study is simply that a value of 0 

signifies a non-event (and hence trivial) whereas any non-zero values signify a triggered 

event (e.g. ruling out an organism as the cause of infection) or an observed measurement 

(e.g. intravenous chemistry). When a variable assumes a non-trivial value, it is referred to as 

an active variable. Thus, the set of shared variables can be determined by those that are 

active in at least m training instances of both class labels (where m=1 in this study). 

Furthermore, since a training set can consist of an arbitrary number of instances, it is useful 

to rank active variables in terms of the frequency of active occurrences; i.e. the number of 

times that a variable assumes an active state in the training data.

Chiu and Hripcsak Page 5

J Biomed Inform. Author manuscript; available in PMC 2018 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In order to match the positive and negative cases in a manner that maximizes the number of 

their shared variables, we use Jaccard coefficient to quantify the similarity of active variables 

between any pairs of training sets with one representing the target disease and the other 

representing the control. For computational efficiency, each training set is represented by a 

set of frequently active variables, top 80% in their active occurrences, which expresses a 

global characteristic of the underlying sample and simplifies similarity computations. In this 

manner, we choose, for each target disease, the top three most similar training sets, as the 

control data, from any of the non-target diseases in the bulk learning set.

2.3 Phenotypic Groups and Feature Abstraction

Infectious diseases exhibit a wide range of data distributions in EHR – some diagnostic 

codes have a few tens of thousands of patient records, especially those with ambiguous 

classification, while others may only have a few to no data points. A key step towards 

transcending the modeling dependency on varying sample sizes within the bulk learning set 

is to identify common, high-level clinical concepts that can reasonably stratify disease-

specific cohorts and better yet, generalize across diseases, particular those with insufficient 

data. In this study, a clinical concept is defined as a group of closely related variables 

attributable to a phenotype from the perspective of clinical records; in particular, a 

phenotype, typically referring to a disease or its subtypes [21–23], is regarded as a collection 

of laboratory measurements, medicinal treatments, etc., that defines a concept-driven disease 

cohort2.

2.3.1 Ontological Feature Representation for Clinical Cases—Ontology-driven 

feature engineering can be motivated from the clinical commonality observed within the 

diagnoses and treatments of diseases historically known as being different. In the study of 

neuropsychiatric disorders from EHR [22], for instance, phenotypic overlaps were identified 

among the three different psychiatric disorders – schizophrenia, bipolar disorder and autism 

– through an NLP-based pipeline of algorithms coupled with related medical ontologies. For 

instance, anxiety disorders, asthma, and constipation are commonly observed among the 

three mental disorders. Similarly, they are also found to share similar psychoactive drug 

prescriptions such as clonazepam and olanzapine.

The overlapping conditions and medicinal prescriptions above are analogous to the shared 

variables in the context of bulk learning (for which an example visualization can be found in 

the online supplement, Section E). Within EHR data, infectious disease phenotypes can be 

traced from the medicinal orders and laboratory tests, as shared variables, among clinical 

cases of different diagnoses. From the pathological perspective, common etiologic agents 

can potentially infect multiple anatomic locations, leading to disparate infectious diseases. 

Staphylococcus aureus, for instance, is known to cause a large portion of staph infections 

[24], which include skin infections, pneumonia, bacteremia (blood poisoning), etc. On the 

other hand, the same antibiotic prescription can be useful for the treatment of a number of 

2For example, patients with infectious conditions often follow through specific microorganism laboratory tests, which determine the 
types of microbes and susceptibility profiles of organisms involved, potentially leading to different disease cohorts. Clinical variables 
related to microorganism laboratory tests, including laboratory orders and results, rule-out messages, etc., thus can be grouped 
together to represent a phenotypic model.
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bacterial infections. Ceftriaxone for instance is commonly used to treat bacterial infections 

such as meningitis, infection of the membranes surrounding the brain and spinal cord, as 

well as the infections at different sites of the body including bloodstream, lungs, and unitary 

tract, among many others.

2.3.2 Ontological Feature Grouping—To group the clinical variables in accordance 

with a target clinical concept such as blood tests, we use Medical Entities Dictionary (MED) 

[25,26] with built-in ontological concept hierarchy structured in directed acyclic graph 

(DAG). Each concept node in the DAG has an assigned code as an identifier, or MED code, 

with attributes such as the name, coding alternatives from various systems (e.g. UMLS [27]) 

and textual information. The process of feature grouping via MED proceeds as follows. 

First, we define a set of concept seeds by making reference to the concept hierarchy defined 

in MED. A concept seed is essentially any concept node in the semantic network, the 

descendants of which constitute a reference set for grouping related clinical variables. The 

concept of microbiology procedures (with MED code 2235), for instance, is a candidate seed 

semantically linked to all types of procedure-related child nodes along the paths that 

eventually trickle down to specific microorganism smears, cultures along with their 

corresponding laboratory tests and results. In particular, traversing all paths branching out 

from a given seed node and collecting all the node identifiers (in MED codes), result in a set 

of codes which are then used to match with the (codified) patient attributes in the CDR.

For the purpose of feature decomposition – which breaks down the initial feature set 

obtained from the CDR into groups of conceptually related subsets – it is useful, generally 

speaking, to include one or more concept seeds as a unit for the feature grouping. Examples 

of concept seeding and its related procedures are further detailed in the supplement. Table 2a 

and 2b illustrate, for each of the four clinical concepts, the top 10 features ranked by their 

frequencies of active occurrences. Table 3, on the other hand, specifies the concept seeds 

used to delineate the scope of the feature set associated with the four phenotypic groups.

2.3.3 Feature Selection—The phenotypic groups are used to define the candidate feature 

sets of the base models (or level-0 models) in the stacking architecture. However, it may not 

be always desirable to keep the entire feature set for training purposes. In this study, we use 

ℓ1-regularized logistic regression to determine the best subset of features within each 

phenotypic group using area under the curve (AUC) as an evaluation metric. For better 

stability and reliability, however, a resampling process is embedded into the ℓ1-regularization 

in this study, which is also known as Bolasso [28]. More details in feature selection can be 

found in the supplementary document (Section I).

2.4 Core Learning Methods

Having described the notion of phenotypic groups and its implications in feature selection, 

we now proceed to the core learning methods. In particular, we shall focus on the aspect of 

feature abstractions, via stacked generalization, to reduce the dimensionality of the feature 

space. Additionally, as part of the experimental settings in Section 3, we will introduce the 

notion of virtual annotations extrapolated from the existing labeled data as a way to 
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strengthen the predictive signal in the abstract feature space. Virtual annotations are in 

addition to and distinct from the sparse expert annotations of bulk learning.

2.4.1 Ensemble Learning—Ensemble learning methods [29,30] consolidate predictions 

from multiple baseline models by weighing them appropriately to obtain a composite model 

that, under appropriate conditions, outperforms constituent ones. A wide variety of methods 

have been proposed to create ensembles in which their diversity in predictions is found to be 

a crucial condition for the predictive performance [31]. The core of ensemble learning 

algorithms is thus to find a balance between the extreme ends of complete consensus (no 

diversity) and disagreement (high diversity) in predictions. In this study, we use ensemble 

learning as an instrument to formulate abstract feature representations for clinical cases.

The concept of abstract features is emerging in the study of computational phenotyping such 

as the use of autoencoders in analyzing the longitudinal data of gout and acute leukemia, 

wherein temporal patterns are identified from within the time series of uric acid 

measurements that can be used to stratify the respective patient cohorts [32]. Unsupervised 

feature learning methods like autoencoders help to eliminate the need for labor-intensive 

efforts associated with the feature engineering by domain experts. By contrast, feature 

engineering in this study has been delegated to the layer of medical ontology, from which we 

have developed four phenotypic groups for expressing infectious diseases. With the ontology 

as the backend, the high-level, concept-driven feature representations can be established via 

consolidating the phenotypic models at the base level. Stacked generalization, in particular, 

is a method of ensemble learning that combines multiple classifiers in a tiered architecture 

for bettering predicative accuracy and is structurally extensible as discussed in the literature 

of cascading generalization [33,34].

A simple and effective architecture can be realized by stacking a meta-classifier, one for 

each disease, on the output of phenotypic models and subsequently, the model outputs serve 

as the abstract feature set that substitutes the raw features at the base level for further 

predictive analytics. Cascading multiple layers of meta-classifiers is also a common practice, 

in which case, each meta-classifier acts as a combiner such that outputs from one level 

become the input features for the next level [35,36]. Recall from Fig. 1 where the example 

stacking hierarchy has two levels of feature abstractions: At the base level are the 4 different 

phenotypic models per disease in the bulk learning set, leading to 400 base models in total. 

The output of phenotypic models form an abstract feature set at level 1 with a reduced 

feature dimensionality. Similarly, the output of the level-1 classifier forms yet another 

feature abstraction at level 2.

Specifically, we use ℓ2-regularized logistic regression as the underlying algorithm for each 

phenotypic model, which produces probabilistic outputs representing the degree to which 

each phenotypic model contributes to the prediction of a target disease. Using class 

probabilities instead of class labels as attributes at the meta-level (i.e. level 1 and above) 

indeed has been empirically shown as a necessary condition for the stacked generalization to 

work well [11]. For simplicity, we apply the same classification algorithm at the meta-level 

as well. Nonetheless, the stacking architecture is agnostic to any specific types of 

probabilistic classifiers and hence it is possible to apply a different algorithm for each 
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predictive unit, giving rise to heterogeneous ensembles. For better model interpretability and 

predictive performance, however, not all classification algorithms share the same utility in 

functioning as meta-classifiers. Logistic regression, as it directly optimizes logarithm loss 

function, has an added advantage of producing well-calibrated probabilities [37], which can 

be interpreted as confidence levels whereas other probabilistic classifiers (e.g. SVM with 

Platt scaling) may not share this property.

2.4.2 Data Fusion of Phenotypic Models—In order to combine the phenotypic models 

via a meta-classifier, consistent outputs from these models need to be established for all 

clinical cases. However, not every patient has relevant data for all models as some patients 

may be missing laboratory tests while others may be missing medicinal prescriptions for 

various reasons. We address the incomplete-data problem by introducing indicator features 

that take 0 when supporting data are available and 1 otherwise. In particular, if training data 

exist for a clinical case in a base model, its corresponding indicator feature is set to 0 while 

the base-level probabilistic output carries over to level 1 as an input feature; if, on the other 

hand, data do not exist, then its level-1 probability attribute is set to 0 while the indicator set 

to 1, signaling missing data. In other words, the level-1 feature set consists of model-specific 

probabilistic values (p) and binary indicators (t). Since we focus on 4 phenotypic models in 

this paper, p and t jointly constitute an 8-D vector. Components of this 8-D vector, {(pi, ti)|i 
= 1~4}, are referred to as abstract features because they are essentially functions of raw 

features at the base level, where pi is the functional output of a chosen classifier and ti is an 

indicator function that maps to 1 when no input (or equivalently, an empty set of training 

instances) is fed to the classifier and 0 otherwise.

When a majority of the base models have supporting data for a given case, the 

aforementioned level-1 feature representation has an intuitive interpretation under 

appropriate conditions: If the base models unanimously predict high probabilities, then the 

likelihood is higher for this case to be positive (for the target infectious disease); conversely, 

if predicted probabilities are consistently low, then the case is more likely to be negative. 

The result for missing-data scenarios may not be as straightforward to interpret. In logistic 

regression, the linear combination of features equates to the logarithm of odds ratio; 

therefore, the regression coefficient of a feature (pi or ti) corresponds to the (expected) 

change in log odds whose exponentiated form corresponds to the odds ratio. Since only ti 
contributes to the odds ratio, given that pi=0 when the training data of i-th base model are 

missing, a positive coefficient for ti indicates an increase in probability whereas a negative 

coefficient suggests otherwise. The polarity of the indicator’s coefficient, however, depends 

on the relative frequency of missing data occurring in one class label over the other. A 

negative coefficient for the microbiology indicator in a positive example, for instance, is a 

signal suggesting that the lack of microbiology tests decreases the probability of having that 

particular infection.

Formulating a consistent level-1 feature representation applicable to all clinical cases is not 

straightforward due to variations in the training data dimensionality. In particular, each base 

model has a different feature set and is tied to different clinical cases. In order to obtain a 

uniform feature representation comprising joint vectors of p and t, we define a single level-1 

training instance based on the combination of a unique patient and a class label – positive or 
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negative for a given disease. In other words, for each subset of base-level training instances 

indexed by the medical record number (MRN) and the class label, we ensure that there is a 

corresponding level-1 training instance, where the aspect of many-to-one mappings will be 

discussed shortly. In principle, for each disease in the bulk learning set, we perform the 

following steps to obtain the level-1 feature representation: (1) Train base models using 

cross validation to obtain a probabilistic prediction (p) and data indicator (t) for each clinical 

case. (2) Query each base model for the (positive) class conditional probability, i.e. pi(y(j) = 

1|x(j)), where y denotes the class label, x represents the base-level feature vector, and i, j 
index into a specific base model and a training instance, respectively.

In step (1) above, a k-fold cross validation (or k-fold CV) is used during the training so that 

only one fold worth of level-0 training data is transformed into the level-1 representation in 

each iteration where the training split consists of (k−1)-fold of data while probabilistic 

predictions on the remaining instances, as test split, become the level-1 data. In step (2), if a 

clinical case does not exist either as a positive or negative example in the training data for a 

given base model, 0 is assigned to its probability attribute (pi) and 1 to its indicator attribute 

(ti).

As alluded earlier, more than one training instance can be indexed into the same MRN and 

class label when a patient has multiple clinical visits for the same disease at different times. 

To address this, we retain only the most representative training instance: For positive 

examples, we select the instance that results in the highest probabilistic prediction whereas 

for negative examples, we select the one that results in the lowest probabilistic prediction. 

Indeed, the process of data fusion from the base level to level 1 is not unique, for which 

example strategies are outlined in the supplement (Section J).

Additionally, the degree of feature abstraction depends on the available labeled data: the 

more labeled data are made available, the less abstraction is needed for model learning. We 

shall leave further aspects on regulating the feature dimensionality (via stages of model 

stacking) to the online supplement, Section K. In essence, if labeled data were scarce due to 

cost, then a higher-level abstraction would be more desirable. For instance, the level-1 

feature representation given earlier can be further reduced to a level-2 representation by 

treating the level-1 output (probabilistic prediction of the binarized ICD-9 labels) as an 

abstract feature, denoted by p2 with the subscript referring to the level.

2.4.3 Final Stage of Learning with the Gold Standard—In previous sections, we 

described the phenotypic models at the base level and example feature abstractions via 

model stacking. Up to this point, we have been using the noisy ICD-9 codes for model 

training; ultimately, they are not the gold standard themselves but only serve as a medium 

for deriving the abstract feature representation. The next and final stage of bulk learning is to 

use the abstract features derived earlier to predict an annotated sample in which errors in 

diagnostic coding have been corrected.

With the level-1 feature abstraction, ideally one would compute independent level-1 models, 

one for each disease. Yet difficulty arises when members in the bulk learning set, such as 

rare diseases, have very few training data for predictive analytics even by the standard of a 
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reduced feature dimension. To cope with the lack of data points, the level-1 training data 

across different diseases are aggregated, out of which we then compute a single model. This 

gives rise to a global model, marginalizing all the diseases, as opposed to the “local” level-1 

model being disease-specific. The global model becomes useful in the model evaluation 

using an annotation set of small volume, for which there are only 1 to 2 annotated instances 

per disease in this study (see Section 3.3). The global-model hypothesis is made assuming 

that the bulk learning set can be characterized by the signals, generated by phenotypic 

models, in the form of probability attributes and indicators. In Section 3, we shall test this 

hypothesis by evaluating how well abstract features reconstruct the ICD-9 labeling through 

model predictions, from both the local- and global-model perspectives. If clinical patterns at 

the base level could be compressed into abstract feature representations at meta-levels, the 

same phenotypic signature would be transferrable to the annotated sample as long as meta-

classifiers approximate the ICD-9 labeling reasonably well and the ICD-9 itself is not far off 

from the true label.

The local and global models constitute two dimensions of model stacking: the former 

combines phenotypic models to form per-disease level-1 models and the latter essentially 

consolidates the level-1 models across diseases to arrive at a single model. This is further 

discussed through a 2-D ensemble learning perspective of bulk learning in Section M of the 

supplementary document.

2.4.4 Virtual Annotation—Attempting to approximate a noisy target function with only a 

small set of labeled data is a typical scenario prone to overfitting. In bulk learning, the 

ultimate target function is the decision boundary that separates the positive from the negative 

cases in the annotation set (since individualities of diseases no longer exist from the 

perspective of a global model) and that we attempt to approximate using abstract features. 

One way to elicit stronger predictive signals is to augment the existing training data via a 

cluster assumption, as one of the many methodologies in semi-supervised learning [38,39]. 

The key idea is to identify the unlabeled instances sufficiently similar to the annotation set.

Although a full treatment of semi-supervised learning approach is out of the scope of this 

paper, nonetheless as part of the experimental setting in the coming section, we would 

explore a relatively straightforward method to augment the existing annotation set based on 

a similarity measure, tailored for the feature representation of this study. We refer to this 

extrapolated training data as virtual annotations in contrast to the original annotated sample. 

In particular, we define the similarity measure of two training instances by accounting for 

the following two distance metrics: i) Hamming distance based on the active state of the 

variable, and ii) cosine distance, as often seen in the vector-space model in document 

clustering [40]. Specifically, a variable from two training instances is of the same state if and 

only if it is either active or inactive in both instances simultaneously. The Hamming distance 

therefore can be defined as the number of feature vector components that are of different 

states; for instance, if the active variables in any two instances are predominantly the same, 

then their Hamming distance is shorter. The interpretation of the cosine distance is as usual: 

if two normalized feature vectors share similar orientations, such as the case where all the 

involving laboratory values are approximately equal (assuming for simplicity that they also 

share identical active variables), then their cosine distance is shorter.
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Virtual annotations, by the similarity measure above, can be determined from within the 

unlabeled instances that are not only similar to the existing annotated sample in cosine 

distance but also share a similar set of active variables gauged by Hamming distance. In 

order to consolidate these two metrics, however, it is helpful to first rescale the Hamming 

distance to the range between 0 and 1 by taking its ratio with the feature dimension, which 

equates to computing the fraction of disparate active variables between two training 

instances. In so doing, we can now relate an unlabeled instance to a labeled one by ensuring 

that the maximum between these two metrics is no more than 10−9 (an adjustable parameter 

chosen to be almost 0); thus effectively, two instances are similar if and only if they share 

identical active variables and their cosine distance is almost 0. We shall refer back to the use 

of virtual annotated sample in Section 3.3.3.

2.5 Experimental Setup

The experimental setup for the bulk learning on a high level involves the following steps: (1) 

Determine the bulk learning set comprising of a set of ICD-9 codes associated with the 

target diseases (Section 2.2.1). (2) Formulate phenotypic models by first determining 

phenotypic groups and subsequently using the feature set derived from each group to 

represent clinical cases of the associated model (Section 2.3). (3) Determine the stacking 

architecture, which in this study consists of 4 phenotypic models at the base level and two 

meta-levels. (4) Compute each base model using (binarized) ICD-9 codes as labels. (5) 

Aggregate base models to form the corresponding level-1 model, local or global, by 

transforming the base-level data to the level-1 representation (Section 2.4.2). (6) Optionally, 

depending on the stacking architecture, compute higher-level models using lower-level 

outputs to obtain progressively more compact sets of abstract features. (7) Use the abstract 

features obtained in step (5) and (6) to compute and evaluate the final predictive models 

using the annotation set and assess model generalizability using cross validation.

As an additional setup, the virtual annotation set can be incorporated in the model training 

from step (4) through (7). To better understand the applicability of the bulk-learning 

framework in a more generic setting, we selected the 100 ICD-9 codes in a manner that 

encourages a higher diversity of infection categories as illustrated in Table 1.

3. Results

3.1 Base-level Data Profiles

Fig. 2a through 2d illustrate, in overlaid histograms, the base-level data profiles of the four 

phenotypic models in the order of microbiology, antibiotic, blood test and urine test, 

respectively, where the foreground histogram represents the number of unique patients 

whereas the background corresponds to the training set size. In the horizontal axis are the 

ICD-9 codes sorted according to the number of unique patients. All the training datasets are 

made balanced in class labels.

3.2 Performance Evaluation of the Learning Hierarchy

The following sections will start off by examining the utility of the feature abstraction in 

approximating the original ICD-9 labels and subsequently in predicting the annotated 
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sample. In particular, Section 3.2 focuses on the prediction of ICD-9 using only the abstract 

features. In Section 3.3, we then shift our focus towards predicting an independently 

annotated sample using statistical models that leverage the tradeoff between abstract features 

and ICD-9 labels, which now serve as a candidate add-on predictor.

3.2.1 Evaluation of the Base Models Predicting ICD-9—Base model training and 

evaluation constitute the most computationally expensive part of the bulk learning, which 

involves computing 400 models, 4 per disease (Section 2.4.1). Fig. 3a through 3d illustrate, 

in ascending order, the base-level performance in AUC for the bulk learning set represented 

in ICD-9 codes, each of which is regarded as a different disease for the purpose of this study.

Each base classifier has different predictive strength due to their varying degrees of clinical 

relevance to target infections. The microbiology model (Fig. 3a) in general has the highest 

predictive strength, as expected, with a grand mean of 0.77 (averaged over the scores of all 

diagnostic codes), which reflects the fact that microorganism tests in general serve as good 

heuristics for disease predictions. The antibiotic model (Fig. 3b) and the blood-test model 

(Fig. 3c) have comparable (grand) mean AUCs although the blood-test model exhibits 

smaller variances. The relatively unstable performance of the antibiotic model can be 

explained by the fact that not all the selected infectious diseases involve bacterial infections. 

For instance, enterobiasis (127.4) is a pinworm infection, which, if diagnosed correctly, is 

often treated by anthelmintics such as mebendazole. The urine-test model has the least 

predictive strength. Urinalysis is performed typically for cases involving urinary track 

infections, kidney diseases and sexually transmitted diseases. Venereal disease (099.9) is 

among the diseases where the urine-test model performs well while candidal esophagitis 

(112.84) is perhaps less likely to involve urine tests during its diagnosis.

3.2.2 Evaluation of the Level-1 Model Predicting ICD-9—Each member in the bulk 

learning set has its associated level-1 data obtained from consolidating the base-level 

predictive results. To examine how effective the level-1 feature representation can 

differentiate individual disease labels, we constructed 100 local level-1 models and a single 

global level-1 model: the latter is effectively a combined model of the former (Section 

2.4.3). Meanwhile, a separate test set was excluded from all stages of the model training, 

from the base level to meta-levels, in order to avoid overfitting (see the online supplement, 

Section M and N, for more details).

The performance comparison between the level-1 global model and the 100 local level-1 

models is given in Fig. 4 under the same task of predicting (binarized) ICD-9 labels of the 

bulk learning set. In particular, 4a illustrates, in ascending order, the sorted level-1 

performance in AUCs for the global model, where the horizontal axis lies the sorted ICD-9 

codes and the vertical axis corresponds to their mean AUCs; overlaid at each AUC score is 

the estimated confidence interval of AUC. The (global) level-1 meta-classifier outperformed 

the base classifiers on average with the grand mean of the level-1 AUC at 0.895 compared 

with the largest grand mean of the level-0 AUCs at 0.775 from the microbiology model. This 

result can be explained by the diversity of the class probability predictions at the base level. 

Fig. 4b, on the other hand, illustrates the performance for the local level-1 models. The local 

model exhibited a similar predictive performance with the grand mean AUC at 0.904.
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3.3 Performance Evaluation with the Gold Standard

With sufficient training data, the local model would perform better than the global model. 

However, using a global model has the advantage of being agnostic to the distribution of 

sample sizes so that computing statistical models remain feasible even when only few data 

points are available for individual diseases, a desired property for the upcoming model 

training and evaluation using the annotated sample. Therefore, we shall only consider the 

global model henceforth in this section.

In this stage, the abstract features at meta-levels derived earlier from the setup in Section 3.2, 

i.e. (p, t) at level 1 and p2 at level 2 respectively, can either be used directly as predictors or 

serve as part of a larger feature set encompassing other pieces of information. Note that p2 is 

simply a probabilistic output of the level-1 classifier predicting ICD-9 (Section 2.4.2).

For experimental purposes, one of the authors (GH) annotated 83 clinical cases indexed by 

the MRN and dates of the diagnoses. In particular, 54 cases were sampled from the 

population of positive training examples, corresponding to 54 distinct ICD-9 codes. 

Similarly, 29 cases were annotated that were sampled from the negative examples associated 

with 29 distinct ICD-9 codes. For convenience, these two annotation sets are respectively 

referred to as positive annotations and negative annotations. Note that the polarity, negative 

or positive, is defined with respect to ICD-9, which is important in further categorizing the 

annotation types for more detailed performance evaluation in the later sections. The 

annotated sample was selected at random except that the positive annotation set was made 

proportionally larger; the sample size was purposefully chosen to be small due to its cost but 

marginally large enough to train the level-1 model. The data annotation approximately took 

two weeks to complete even at this scale.

Among the 54 positive annotations, we found 15 instances were falsely classified by ICD-9 

whereas all the negative annotations were correctly labeled, giving rise to an overall 

accuracy at 81.93%. However, there is more subtlety to the calculation of the accuracy. Due 

to model stacking, the number of annotated clinical cases at the base level is almost never 

identical to the exact number of training instances derived from these cases. In particular, a 

patient can have data in more than one base model and within each, there can be more than 

one training instance due to the possibility of multiple clinical visits at different times. In 

fact, the 83 annotated cases correspond to 254 training instances at the base level as 

illustrated in 2nd and 3rd columns of Table 4. Nevertheless, the training data, after being 

transformed into the level-1 representation, will become consistent with the annotated cases 

in their sizes due to the policy of consolidating data from the base models (Section 2.4.2).

3.3.1 The ICD-9 System as a Classifier—The ICD-9, as surrogate labels in the model 

training, plays a major role in constructing the abstract feature representation and therefore 

can serve as a good reference for performance comparisons in the upcoming stage of bulk 

learning. In particular, the ICD-9 system can be regarded as a classifier by considering the 

diagnostic coding as a form of predictions on disease labels. In the annotated sample where 

true labels are known, one can categorize an annotation into one of the following four types:
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1. Type-TP annotation: Labeled consistently positive by both ICD-9 and the gold 

standard, this annotated subset herein is referred to as “true positive” annotation, 

or simply type-TP annotation, since ICD-9 correctly “predicts” positive. Out of 

the 54 positive annotations, 39 were correctively labeled by ICD-9.

2. Type-FP annotation: Labeled positive by ICD-9 but negative by the gold 

standard, this annotated subset is referred to as false positive, or type-FP 

annotation, because ICD-9 falsely predicts positive when the label should have 

been negative. Out of the 54 positive annotations, 15 were incorrectly labeled by 

ICD-9.

3. Type-TN annotations: These instances are labeled negative by both ICD-9 and 

the gold standard and hence they are true negative (TN). All the 29 negative 

annotations were correctly labeled.

4. Type-FN annotations: Labeled negative by ICD-9 but positive by the gold 

standard, i.e. false negative, this annotation type does not exist in our data.

Using the annotation type above, we can compute the sensitivity and specificity of “the 

ICD-9 classifier.” As mentioned earlier, the training set size is not always identical to the 

number of annotated cases; however, at level-1, they are consistent and therefore, 

performance calculation is relatively straightforward. In particular, the source of positive 

examples (by the gold standard) can come from either type-TP or type-FN annotations, 

giving a total of 39+0=39 instances. Since no false negatives exist (i.e. type-FN annotations), 

the sensitivity is simply 1. On the other hand, negative examples can be of either type FP or 

type TN, giving a total of 15+29=44 instances. Therefore, specificity is 0.66, which is 

obtained by taking the ratio of the size of type TN (29) to that of negative examples (44). An 

illustration of the annotated sample and its related definitions are given in Table 5, where 

plus and minus signs denote positive and negative labeling respectively.

3.3.2 The Level-1 and Level-2 Classifiers—Meta-classifiers, upon predicting the 

annotation set, are evaluated in two different settings: i) using only the abstract features and 

ii) using an augmented abstract feature set that includes additional predictors such as ICD-9. 

For the model training and evaluation, we applied repeated 10-fold CV for 30 cycles.

Table 6a shows the performance comparison between the level-1 and level-2 feature 

representations. The performance of the ICD-9 as a classifier is included as a reference, for 

which it is possible to simulate an ROC curve and compute its corresponding AUC score by 

assigning probabilities to its predictive labels under appropriate assumptions. Without a prior 

knowledge of exactly how clinical data were coded in ICD-9, one could assume, for 

instance, that the coders were confident in assigning appropriate diagnostic codes to clinical 

cases; that is, if the ICD-9 were a probabilistic classifier, it would generate a high probability 

towards 1 to conclude a positive label and by symmetry, a low probability towards 0 to 

conclude a negative label. This can be simulated by sampling from a negatively skewed 

distribution between the interval [0.5, 1] and a positively skewed distribution between [0, 

0.5). Analogous to the repeated CV, this probability assignment is performed for 30 cycles, 

resulting in a hypothetical AUC estimate (0.83) for this imaginary ICD-9 classifier.
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Note that the experimental results in Table 6a (and 6b) are specified in fractions followed by 

their decimal equivalents. In particular, the dominators in all of the metrics are a multiple of 

30 as a result of repeating the cross validation 30 times. The level-1 and level-2 features had 

comparable overall predictive strength with the level-2 model having a slight edge on the 

sensitivity but not on specificity. However this result is perhaps counterintuitive because the 

level-2 feature essentially represents a further-smoothed probability with an additional level 

of model averaging compared to the level 1 and therefore would be expected to be less 

accurate as a predictor. This is in part due to the small labeled training data (83 instances in 

total) that led to an easier fit with only one feature at level-2 compared to the level-1 with an 

8-D feature set. A remedy to small training set is to augment it with a predefined similarity 

assumption, as we shall see shortly in Section 3.3.3.

Adding ICD-9 as a feature greatly increases the performance metrics at both levels, as 

shown in the 3rd and 4th row of Table 6a, where the corresponding ICD-9-modulated meta-

models are conveniently referred to as L1+ICD9 and L2+ICD9 respectively. In particular, 

both the sensitivity and specificity shift towards those of the ICD-9 classifier, which 

indicates that ICD-9 is a stronger predictor compared to abstract features. To understand 

better the role of the ICD-9 in the prediction of the gold standard, it is helpful to examine the 

accuracy of predictions in different parts of the labeled data characterized by the four 

annotations types, which are specified in the header of Table 6b. Since there exist no known 

annotated data where the ICD-9 committed false negative (i.e. type-FN annotations), its 

corresponding column does not have experimental results; for the same reason, the accuracy 

for the type-TP annotation, is exactly identical to the sensitivity since the only source for 

positive examples are of type TP where the ICD-9 is consistent with the true labels. By 

contrast, the specificity measure can be derived from the classification accuracies in the 

region of the type-FP and the type-TN annotations, both nonzero, by simply summing up 

their numerators and denominators. This algebraic coincidence is due to the fact that sum of 

the denominators correspond to the total instances of negative examples (by the gold 

standard), out of which as many as the sum of numerators are correctly classified by the 

model, equating to the true negative rate. For instance, the specificity of the level-1 model is 

given by 706/1320 (Table 6a) while its classification accuracy is 200/450 in the type-FP 

region and 506/870 in the type-TN region, respectively (Table 7b). Since 450 instances were 

mislabeled by the ICD-9 as positive (when their true labels should have been negative) and 

870 instances are indeed negative, there are 450+870=1320 (true) negative instances in total, 

out of which 200+506=706 were correctly classified by the level-1 model.

3.3.3 Introducing Virtual Annotations—Previously, we have seen that the level-2 

model produced a counterintuitive empirical result of having comparable performance to the 

level-1 model, which could have been caused by insufficient labeled data. To potentially 

increase model performances, a viable solution is to augment the existing training set using 

virtual annotations. Specifically, for each labeled instance, its corresponding unlabeled data 

of high affinity are identified through the similarity measure defined in Section 2.4.4, and 

subsequently, they inherit the same (true) label, assuming that they would have obtained the 

same labeling due to clinical similarity.
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Moreover, to obtain a sample form a wider range of clinical cases, we targeted only those 

cases with different MRNs. Applying this search strategy allowed us to generate an extra of 

1097 labeled instances. In particular, the 4th column in Table 4 summarizes, by annotation 

types, the number of virtual annotations, which combined with the original annotation set, 

leads to an aggregate of 1351 of labeled instances as indicated in last column.

As before, we evaluated the performance of the level-1 and the level-2 models with the 

absence or presence of ICD-9 as an additional predictor but this time, with the additional 

labeled data, i.e. virtual annotations. In particular, the process of model training and 

evaluation remains identical as previous settings except that virtual annotations are excluded 

from the evaluation. Parallel to the settings in Table 6, Table 7a illustrates the conventional 

performance metrics while Table 7b further details the performance contribution by 

annotation types. Moreover, in lieu of the imaginary ICD-9 classifier, we introduce 

monolithic models as a baseline comparison such as the Big Logistic in Table 7, wherein 

clinical variables from all the base models, ranging from microbiology to urine test, are 

combined to form a unified yet relatively large feature set. In particular, ℓ2-regularized 

logistic classifier is again chosen as the classification algorithm to be consistent with the 

meta-models based on stacking, although other classifiers such as SVM using various 

kernels can equally apply. Similar to the level-1 model, we define a single model-

consolidated training instance based on the pairing of a unique patient and a class label 

except that in this case, the best match among all the possible combinations of training 

instances from across base models, taking into account multiple visits, is resolved by using 

the shortest time gap as a constraint; that is, the combined instance consists of model-

specific constituents with the closest timestamps (e.g. the dates associated with laboratory 

tests may not coincide exactly with those of medications).

With the virtual annotated sample in place, the first noticeable difference is the significant 

increase of sensitivity in both meta-models (e.g. the sensitivity increased from 0.50 to 0.88 

at level 1). However, the specificity dropped for both models, where the drop is more 

noticeable within the type-TN region. By introducing ICD-9 as a predictor, both sensitivity 

and specificity were increased significantly as shown in Table 7b. A closer look at the 

performance by annotation types, however, suggests that only the type-TN region of data 

contributed to the improvement in specificity, the type-FP component of which was in fact 

deteriorated. The L1+ICD9 model, for instance, improved its type-TN accuracy from 0.13 to 

0.87 whereas its type-FP accuracy dropped from 0.23 to 0.02. This performance profile is 

substantially closer to the ICD-9 classifier (shown in the last row of Table 6), suggesting the 

dominance of the ICD-9 as a predictor. The abstract features, however, play the role of 

modulating the ICD-9 signal (and vise versa), which allows for some correct labeling to 

occur in the type-FP region. In particular, the L2+ICD9 model has a better type-FP accuracy 

than its level-1 counterpart due to a higher level of model averaging. By contrast, the 

L1+ICD9 model has a better overall performance including sensitivity, AUC and the 

accuracy in most annotated sample except for those in the type-FP region.

The monolithic model does not generally have a performance-wise advantage due to its 

relatively smaller ratio between the training sample size3 and the feature dimension4, which 

inevitably leads to model overfitting and large variances in AUC scores within each cross 
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validation cycle (albeit not as prominent after averaging over 30 CV-cycles). The monolithic 

model, however, had a relatively better accuracy in the type FP region. Similar results were 

observed in the case of Big SVM5 (Table 7). Last but not least, Fig. 5a and Fig. 5b compare 

the ROC curves of the ICD-9-modulated models at level 1 and level 2 respectively.

4. Discussion

From the empirical results, we have demonstrated the possibility of using a small annotation 

set for achieving statistical model training and evaluation by constructing abstract feature 

representations on top of the phenotypic models of the bulk learning set. Feature abstraction 

allows for a reduction of feature space on which statistical models are built, leading to a 

reduced demand for labeled data.

The process of consolidating base models to formulate the level-1 abstraction, in particular, 

presents the first opportunity in the reduction of the required annotated data. A comparison 

between the level-0 and the level-1 performances in Fig. 3 and Fig. 4 suggests that an 

appropriate combination of the base ensembles leads to aggregate models, including the 

global and local level-1 models, that exhibit relatively superior classification performance on 

average.

In particular, each local level-1 model is effectively an ensemble of disease-specific base 

models. A further reduction of required labeled data can be achieved through the ensemble 

of the clinical cases across different diseases, leading to a global level-1 model. In this case, 

as long as the size of the combined labeled data is sufficient for the level-1 feature 

representation, learning a predictive model remains feasible and potentially without much 

loss of performance, as evidenced by contrasting Fig. 4a and 4b, although we believe this 

property would also depend on the disease composition of the bulk learning set. 

Nevertheless, the global model becomes a more feasible option when the majority of the 

diseases have very limited data points – the case for the annotated sample in practice. An 

intermediate alternative to the global model, if a larger annotated sample were available, 

would be to compute clustered disease models based on the aggregation of similar diseases 

(instead of the entire annotated sample) using diagnostic codes as heuristics.

The mechanism of the feature abstraction can influence the classification performance as we 

have seen in the experimental settings. With sufficient training data, the abstract feature 

representation at a lower level in general has better predictive strength since in essence, the 

higher the level goes, the more model averaging is involved.

3Combining all phenotypic models results in 1131 training instances. The slightly reduced training set size as compared to the total 
annotated sample (1351) is due to the consolidation of multiple clinical visits, in which only one visit satisfying the minimal-time-gap 
constraint was retained. Similar to the case of the level-1 training data, different policies for the data fusion may result in different 
training set sizes.
4By considering the notion of frequently active variables discussed in Section 2.2.4, a total of 2226 variables were identified from 
merging model-specific feature sets: 747 variables came from microbiology, 567 from antibiotic, 710 from blood test, and finally, 202 
from urine tests.
5We list only one of the best results as a reference from among the choices of linear, polynomial and RBF kernels with their 
hyperparameters optimized via additional loops of model selections.
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Including ICD-9 as an extra predictor increased the model performance further due to the 

fact that the ICD-9 itself is a good approximation to the gold standard with disagreements 

only in the type-FP region, which constitutes a relatively small portion of the annotated 

sample. Using abstract features as a channel to modulate the ICD-9 signal, however, opens 

the possibility for the models at meta-levels to shift towards closing the gap between the 

ICD-9 and the gold standard albeit not prominent in the current experimental settings, for 

which the main challenge lies in the capacity to predict type FP (where ICD-9 committed 

errors).

We have seen various performance tradeoffs in attempting to boost the predictive accuracy in 

the type-FP region by mixing the ICD-9 and abstract features, and incorporating virtual 

annotations generated from the original annotation set. The interested reader is encouraged 

to refer to the supplementary document (Section R and S) for additional experimental 

settings and analyses. We believe that a further fine turning in the semi-supervised learning 

approach by balancing the positive and negative annotated sample (e.g. generating a larger 

type-FP sample) would further increase the overall predictive performance. Alternatively, 

one could incorporate higher-order abstract features to induce a complex, non-linear 

decision boundary, provided that the sample size of the labeled data is sufficiently large (e.g. 

using virtual annotations). Applying the same bulk learning method using multiple surrogate 

labels in parallel is also a promising solution (see Section L in the supplement).

As noted in Section 3, monolithic models that combine feature sets from across phenotypic 

models do not generally have a performance advantage mainly due to a sizably smaller ratio 

between the sample size (n) and the feature dimension (p), especially when considering the 

annotated sample as a limited resource. A monolithic feature set tends to exhibit 

unnecessary redundancies, being less compact due to missing values associated with an 

entire phenotypic model (e.g. lack of specific lab tests as discussed in Section 2.4.2). While 

we have not comprehensively demonstrated superiority of the stacked model over 

alternatives for overall predictive performance, however, we wish to motivate an alternative 

patient representation, as discussed in Section 2.2.2, that leverages medical ontology by 

using it as a conduit for grouping conceptually related variables such that smaller models 

can be established leading to a higher modularity.

Ontology-based feature engineering integrates seamlessly with the model stacking 

methodology. Nonetheless, this vantage point is only achieved when the assumption holds 

that the healthcare institution maintains a consistent medical coding between the medical 

ontology and the data warehouse. OHDSI [51], for instance, is a collaborative effort that 

contributes to unified concept mappings across different coding standards. On the other 

hand, although we have used infectious diseases as an example domain for which 

ontological feature selection works well, other disease classes such as cardiac and 

neurological diseases where dedicated tests and treatments are available that can be 

modularized into conceptual categories could also benefit from this method. Patients with 

autoimmune diseases tend to have high susceptibility to infections, which potentially 

correspond to a common treatment pathway where the four example phenotypic models 

given in Section 2.3 could become relevant.
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So far, we have only focused on a three-tier stacking architecture for illustrative purposes; 

however, there is no restriction in the allowable levels of abstraction by decomposing a 

phenotypic model further into smaller constituent models. For instance, we have seen in Fig. 

3b that the antibiotic model has relatively low and unstable performance (with high 

variances) in certain diseases that do not normally involve antibiotic prescriptions as a 

treatment plan. A more comprehensive phenotypic unit for medicinal treatments would be 

by itself a two-tier model where the lower level, in addition to antibiotics, comprises the 

other pathogen-specific models, such as anthelmintics and antivirals; subsequently, these 

treatment models are combined at the meta-level through the tradeoff by weights, best model 

selection, among other model combing strategies. Furthermore, there is much flexibility in 

the design of the stacking architecture, including cascading meta-levels, partial phenotypic 

models with various feature subsets from a single phenotypic group, and dynamic 

integration of phenotypic ensembles to account for concept drifts (e.g. pathogen sensitivity 

shifting over time due to antibiotic resistance [41]), among many others.

To the best of our knowledge, this is one of the very few, if not the first, studies that attempt 

to achieve batch-phenotyping over multiple diseases using only a sparse annotation set 

curated from EHR data while other work tackles diverse disease phenotyping primarily from 

the angles of automated feature extraction [1,21,22] and knowledge engineering [22,42,43]. 

Methodologically speaking, however, learning phenotypes from noisy labels has two 

ongoing research directions that are interrelated, i.e. modeling phenotypes from anchor 

variables [44,45] and silver-standard training data [46]. We also note that from the 

perspective of learning shared representations of diseases (such as the abstraction feature 

representation in this study), contemporary phenotyping effort has led to a growing body of 

work that learns phenotypes from population-scale clinical data using the methodology of 

representation learning [47,48] including i) spectral learning such as non-negative tensor 

factorization [5], ii) probabilistic mixture models [8], and additionally, when temporal 

phenotypic patterns are considered, iii) unsupervised feature learning using autoencoders 

[32] and latent medical concepts [49], etc., and iv) deep learning [6].

5. Conclusions and Future Work

The essence of the bulk learning is to phenotype multiple diseases of the same class (e.g. a 

set of infectious diseases) simultaneously, which renders the possibility of representing the 

underlying clinical cases, as a whole, in units of shared phenotypic components expressing 

unique clinical aspects in the diagnoses and treatments common to at least a subset of the 

diseases. Using the phenotypic components as building blocks for constructing ensembles of 

classifiers facilitates the unraveling of shared clinical patterns, encoded within the tradeoff 

of each ensemble driven by stacked generalization that serves as the basis for defining 

feature abstractions. Subsequently, the dimensionality of the training data is reduced from 

the large feature space, comprising vast EHR variables, down to a relatively compact 

abstract feature space. In essence, the layer of feature abstraction is what leads to the 

minimizing of required training data for establishing predictive models, thereby alleviating 

the data annotation effort in phenotyping tasks.
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Using ICD-9 as surrogacy enables the training of component phenotypic models without 

annotated data. For future work, however, it is worth investigating other types of surrogate 

labels beyond diagnostic codes such as the keywords extracted from clinical notes and their 

derived constructs such as anchors [44]. Furthermore, we have only demonstrated a three-

level stacking architecture as a compact example to illustrate the potential of simultaneous 

disease phenotying. In general, it is possible to design a deeper stacking hierarchy where 

each tier contains multiple fine-grained component phenotypic models (e.g. pathogen-

specific treatment models) towards an even finer control of the feature space dimension and 

a better tradeoff in sample complexity required to find good classifiers.

Identifying representative clinical cases as the gold standard is yet another important step 

towards improving the model performance in that the derived abstract features, under such 

setting, could serve as a better compact representation of the bulk learning set. In this study, 

the annotation candidates were selected at random within each disease and consequently 

might not represent the population very well. This would in turn also influence the quality of 

virtual annotation set. In order to leverage the semi-supervised learning approach, we believe 

that active learning [50] on annotation candidates (i.e. an interactive selection of informative 

unlabeled instances for annotations) would promote a higher generalizability of the virtual 

annotations, which drives up the classification performance of the bulk learning system with 

potentially more well-defined decision boundaries between any two annotation types.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
An example bulk learning hierarchy comprising two levels of feature abstractions over 4 

phenotypic models.
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Fig. 2. 
a–d Base-level data profiles of the four phenotypic models in the order of: microbiology, 

antibiotic, blood test and urine test, respectively, where training set sizes are illustrated in the 

background in contrast with the number of unique patients in the foreground.

a Distribution of training set sizes for the microbiology model.

b Distribution of training set sizes for the antibiotic model

c Distribution of training set sizes for the blood-test model.

d Distribution of training set sizes for the urine-test model.
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Fig. 3. 
a. Sorted performance of the microbiology model in mean AUCs.

b. Sorted performance of the antibiotic models in their mean AUCs.

c. Sorted performance of the blood-test models in their mean AUCs.

d. Sorted performance of the urine-test models in their mean AUCs.
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Fig. 4. 
a. Performance of the global level-1 model predicting ICD-9s sorted in ascending order of 

their mean AUCs.

b. The performance of the local level-1 models in ascending order of their mean AUCs.
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Fig. 5. 
a. The performance of the ICD-9-modulated level-1 model trained with virtual annotations.

b. The performance of the ICD-9-modulated level-2 model trained with virtual annotations.
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Table 1

Infectious diseases in the bulk learning set stratified by categories according to the ICD-9 classification.

ICD-9 Classification Bulk Learning Set Count

Intestinal infectious diseases (001-009) 001.1, 003.0, 005.9, 007.1, 008.45, 008.61, 008.69, 009.0, 009.1, 
009.3

10

Tuberculosis (010-018) 010.10, 011.93, 017.00 3

Zoonotic bacterial diseases (020-027) 027.0 1

Other bacterial diseases (030-041) 031.0, 031.2, 031.8, 031.9, 033.9, 034.0, 036.0, 038.10, 038.11, 
038.19, 038.40, 038.42, 038.8, 040.82, 041.00, 041.09, 041.10, 
041.11, 041.6, 041.7, 041.85, 041.89, 041.9

23

HIV infection (042-044) n/a 0

Poliomyelitis & other non-arthropod-borne viral diseases 
of central nervous system (045-049)

046.3, 047.8, 047.9, 049.9 4

Viral diseases accompanies by exanthem (050-059) 052.7, 053.19, 053.79, 053.9, 054.10, 054.11, 054.13, 054.19, 
054.2, 054.3, 054.79, 057.9

12

Arthropod-borne viral diseases (060-066) 061 1

Other diseases duo to viruses & chlamydiae (070-079) 070.30, 070.32, 070.51, 070.70, 070.71, 075, 078.0, 078.5, 079.0, 
079.4, 079.6

11

Rickettsioses & other arthropod-borne diseases (080-088) 083.2, 087.9, 088.81 3

Syphilis & other venereal diseases (090-099) 090.1, 090.9, 091.3, 094.9, 097.1, 097.9, 098.0, 099.9 8

Other spirochetal diseases (100-014) n/a 0

Mycoses (110-118) 110.0, 110.3, 111.9, 112.2, 112.3, 112.4, 112.5, 112.84, 112.89, 
117.3, 117.5, 117.9

12

Helminthiases (120-129) 123.1, 127.4 2

Other infectious & parasitic diseases (130-136) 130.0, 130.7, 131.01, 133.0, 135, 136.3, 136.9 7

Late effects of infectious diseases (137-139) 137.0, 138 2

Pneumonia & Influenza (480-488) 481 1
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Table 2a

Most frequent active variables for the phenotypic groups: microbiology and antibiotic.

Microorganism Lab Test (Microbiology) Antibiotic Prescription (Antibiotic)

MedCode Description MedCode Description

935 Organism Result: Escherichia Coli 72900 Piperacillin/Tazobactam

799 Organism Result: Candida Albicans 72702 Vancomycin

774 Organism Result: Staphylococcus Aureus 100198 Ceftriaxone

910 Organism Result: Klebsiella Pneumoniae 66042 Levofloxacin

31826 Organism Result: Enterococcus Faecalis 61003 Tobramycin

59993 Negative for Clostridium Difficile Toxin A and Toxin B 60671 Azithromycin

39576 Rule Out Influenza Virus 62375 Meropenem

316 No Ova or Parasites Found 61461 Amoxicillin

994 Positive for Gram Negative Rods 60918 Dapsone

36453 Susceptibility Type: Microscan Mic 62879 Cephalexin
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Table 2b

Most frequent active variables for the phenotypic groups: blood test and urine test.

Intravenous Chemistry Test (Blood) Urinary Chemistry Test (Urine)

MedCode Description MedCode Description

69494 Lab Test: Vitamin B12 36265 Lab Test: Ketone

35995 Lab Test: Lactate, Arterial 36267 Lab Test: Potassium, Random Urine

39564 Lab Test: Cyclosporine, Whole Blood 36260 Lab Test: Urine Glucose

65906 Lab Test: Hemoglobin A1c 36269 Lab Test: Urine Leukocyte Esterase

36300 Lab Test: Vancomycin 36286 Lab Test: Urine Protein

59415 Lab Test: Tacrolimus 1390 Urine Blood Test

46418 Blood Bank: ABO Antigen Determination 1395 Urine pH Measurement

46421 Blood Bank: Antierythrocyte Antibody Screen 1388 Urine Urobilinogen Test

59942 Lab Test: Glucose Wholeblood 1394 Urine Albumin Test

59047 Lab Test: Creatine Kinase 1392 Urine Acetone Test
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Table 3

Four phenotypic groups and their respective seed concepts.

Concept Class Concept Seed Number of Descendants

Microorganism 315: Microbiology Results 5649

2235: Microbiology Procedure 887

41901: Microbiology Sensitivity 46

Antibiotic 6527: Antibiotic 136

23945: Antibiotic Preparations 1715

1181: Antibiotic Sensitivity Test 871

Blood 41999: Hematology Result 619

32099:Intravascular Chemistry Test 8034

Urine 32103: Urine Chemistry Test 1703

2648: Urine Panels 211
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Table 4

Sizes of the augmented annotation set viewed from the base level where the same clinical case can correspond 

to multiple training instances.

Annotation Types Size of Annotated Cases Size of Authentic Annotations Size of Virtual Annotations Total

Type TP (+) 39 119 606 725

Type FP (−) 15 43 160 203

Type TN (−) 29 92 331 423

Type FN (+) 0 0 0 0

All of the above 83 254 1097 1351
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Table 5

A summary of the four annotation types and the performance metrics for the ICD-9 system as a classifier.

Annotation Types ICD-9 Annotation Number of Instances
Sensitivity = TP/P = TP/(TP+FN)
= 39/(39+0) = 1.00
Specificity = TN/N = TN/(FP+TN)
= 29/(15+29) ≈ 0.66
Precision = TP/(TP+FP)
= 39/(39+15) ≈ 0.72

TP + + 39

FP + − 15

TN − − 29

FN − + 0
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Table 6a

Comparison of different meta-classifiers trained with the original annotation set.

Settings Sensitivity Specificity Mean AUC (Repeated 10-fold with 30 cycles)

Level 1 (L1) 583/1170 (0.50) 706/1320 (0.53) 0.520 (0.450 ~ 0.587)

Level 2 (L2) 651/1170 (0.56) 630/1320 (0.48) 0.519 (0.452 ~ 0.585)

L1 + ICD9 921/1170 (0.79) 923/1320 (0.70) 0.79 (0.73 ~ 0.84)

L2 + ICD9 920/1170 (0.79) 896/1320 (0.68) 0.78 (0.71 ~ 0.84)

ICD9 39/39 (1.00) 29/44 (0.66) 0.83 (0.74 ~ 0.92)
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Table 6b

Comparison by annotation types among different meta-classifier trained with the original annotation set.

Settings Type TP (39) Type FP (15) Type TN (29) Type FN (0)

Level 1 (L1) 583/1170 (0.50) 200/450 (0.44) 506/870 (0.58) n/a

Level 2 (L2) 651/1170 (0.56) 218/450 (0.48) 412/870 (0.47) n/a

L1 + ICD9 921/1170 (0.79) 97/450 (0.22) 826/870 (0.95) n/a

L2 + ICD9 920/1170 (0.79) 83/450 (0.18) 813/870 (0.93) n/a

ICD9 39/39 (1.00) 0/15 (0.00) 29/29 (1.00) n/a
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Table 7a

Comparison of different meta-classifiers trained by mixing virtual annotations.

Settings Sensitivity Specificity Mean AUC (Repeated 10-fold with 30 cycles)

Level 1 (L1) 1029/1170 (0.88) 212/1320 (0.16) 0.59 (0.51 ~ 0.66)

Level 2 (L2) 812/1170 (0.69) 456/1320 (0.35) 0.52 (0.45 ~ 0.60)

L1 + ICD9 1158/1170 (0.99) 771/1320 (0.58) 0.85 (0.80 ~ 0.89)

L2 + ICD9 910/1170 (0.78) 836/1320 (0.63) 0.74 (0.67 ~ 0.82)

Big Logistic 768/1170 (0.66) 866/1320 (0.66) 0.65 (0.59 ~ 0.72)

Big SVM 784/1170 (0.67) 862/1320 (0.65) 0.53 (0.51 ~ 0.56)
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Table 7b

Comparison by annotation types among different meta-classifiers trained by mixing virtual annotations.

Settings Type TP (39) Type FP (15) Type TN (29) Type FN (0)

Level 1 (L1) 1029/1170 (0.88) 102/450 (0.23) 110/870 (0.13) n/a

Level 2 (L2) 812/1170 (0.69) 158/450 (0.35) 298/870 (0.34) n/a

L1 + ICD9 1158/1170 (0.99) 10/450 (0.02) 761/870 (0.87) n/a

L2 + ICD9 910/1170 (0.78) 104/450 (0.23) 732/870 (0.84) n/a

Big Logistic 768/1170 (0.66) 276/450 (0.61) 590/870 (0.68) n/a

Big SVM 784/1170 (0.67) 291/450 (0.65) 571/870 (0.66) n/a
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