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Abstract

The maintenance of cellular identity requires continuous adapta-
tion to environmental changes. This process is particularly critical
for stem cells, which need to preserve their differentiation poten-
tial over time. Among the mechanisms responsible for regulating
cellular homeostatic responses, mitochondria are emerging as key
players. Given their dynamic and multifaceted role in energy meta-
bolism, redox, and calcium balance, as well as cell death, mito-
chondria appear at the interface between environmental cues and
the control of epigenetic identity. In this review, we describe how
mitochondria have been implicated in the processes of acquisition
and loss of stemness, with a specific focus on pluripotency.
Dissecting the biological functions of mitochondria in stem cell
homeostasis and differentiation will provide essential knowledge
to understand the dynamics of cell fate modulation, and to estab-
lish improved stem cell-based medical applications.
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Introduction

Living cells need to constantly respond to the environment. The

cellular responses must be rapid and tightly regulated in order to

allow the adaptation to environmental changes and the maintenance

of cellular identity. These mechanisms are at the basis of cellular

homeostasis and require epigenetic remodeling, that is, chromatin

reorganization leading to a different gene expression program with-

out changes in the DNA sequence [1]. Environmental cues can also

cause transcriptional responses that challenge the identity of the

cell, resulting in survival or cell death depending on whether the

cells are plastic enough to adapt.

Adaptation and plasticity are particularly relevant for stem

cells, given their ability to generate different progenies. This

feature is known as potency and varies among stem cells

according to how many distinct “identities” they can give rise

to. Pluripotent stem cells (PSCs)—including embryonic stem cells

(ESCs) and induced pluripotent stem cells (iPSCs)—can differenti-

ate into virtually any cell of the body (i.e., belonging to all three

germ layers). Multipotent adult stem cells—including hematopoi-

etic stem cells (HSCs), mesenchymal stem cells (MSCs), and

neural stem cells (NCSs)—can generate several cell types within

a defined lineage. At the same time, all stem cells are capable to

continuously proliferate while preserving their identity, a prop-

erty known as self-renewal. Cellular homeostasis is therefore crit-

ical for stem cells, given their need for constant preservation of

both potency and self-renewal.

Upon exposure to environmental stimuli, stem cells dynamically

regulate the transcriptional machinery and constantly choose

between the maintenance of stemness or the exit from stemness,

which results in either differentiation or cell death. In the complex-

ity of the cytoplasmic response of stem cells to the environment,

mitochondria are poised to play an essential and unique role, given

that they are at the center of numerous homeostatic processes [2–4].

In this review, we discuss how mitochondria may contribute to

stem cell homeostasis. We focus particularly on pluripotency. In

fact, since the discovery of iPSCs in 2006 [5], pluripotent stem cells

have acquired a remarkable importance in several biomedical appli-

cations, including regenerative medicine, disease modeling, and

drug discovery, even in the context of diseases impairing mitochon-

drial function [6,7]. In order to dissect the role of mitochondria in

stem cell homeostasis, we simplify the mitochondrial response to

the environment and divide it into three branches: (i) mitochondrial

bioenergetics and dynamics, (ii) mitochondrial regulation of redox

and calcium balance, and (iii) crosstalk between mitochondrial

metabolism and epigenetics (Fig 1).

The picture emerging from studies on PSCs and other stem cell

types is that mitochondria can play a contributing role in the

instruction of cell fate outcomes, given their dynamic ability to inte-

grate environmental cues to modulate cellular homeostasis. Unrav-

eling the plasticity of the mitochondrial response to the stem cell

environment can provide critical insights into how cell fate deci-

sions are established. Moreover, this knowledge may have implica-

tions for our understanding of disorders affecting mitochondrial

function and could ultimately support the development of improved

stem cell-based clinical applications.
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Mitochondrial metabolism and dynamics in stem
cell homeostasis

The first and best known function of mitochondria is the production

of energy in the form of ATP via oxidative phosphorylation

(OXPHOS). This process takes place in the mitochondrial cristae

through the action of respiratory chain (RC) complexes [8]. A struc-

tural change to the morphology of the cristae or to the overall mito-

chondrial shape can have an impact on the cellular bioenergetic

output. In fact, mitochondria do not operate as individual organelles

but rather as an interconnected intracellular network [3]. This mito-

chondrial network is constantly modulated by continuous cycles of

mitochondrial fusion and fission, a process collectively known as

mitochondrial dynamics [9]. Given the lack of de novo mitochon-

drial biogenesis, the fusion and fission balance is essential for mito-

chondria to acquire the morphological structure needed to fulfill the

specific cellular requirements. Hence, mitochondrial dynamics allow

the cells to rapidly respond to environmental cues and adapt the

bioenergetic needs. A fused interconnected mitochondrial architec-

ture is generally present in cells that are metabolically active and

rely on OXPHOS for energy production. Non-fused spherical mito-

chondria are instead common in cells that are quiescent or that are

using glycolytic metabolism [10]. The state of the mitochondrial

network is also changing in response to the nutrient availability, as

nutrient-rich environments associate with mitochondrial fragmenta-

tion and nutrient-poor environments with mitochondrial elongation

[11].

The first studies investigating the mitochondrial changes occur-

ring during the induction of pluripotency observed that mitochon-

dria in iPSCs acquire a non-fused morphology with underdeveloped

cristae [12,13]. At the same time, the metabolic profile of the repro-

grammed cells shifts from OXPHOS to glycolysis [12,14–16] (Fig 2).

The activation of DRP1 (dynamin-related protein 1), the protein

regulating mitochondrial fission, is indeed critical for reprogram-

ming to iPSCs [17,18]. During the differentiation of PSCs, oxidative

metabolism is activated [12,19]. Consequently, the proteins that

drive mitochondrial fusion, MFN (mitofusin) 1 and 2 and OPA1 (op-

tic atrophy 1) are required for the differentiation of stem cells into

cells that depend on OXPHOS metabolism, like cardiomyocytes and

neurons [20,21]. Interestingly, reprogramming to iPSCs is signifi-

cantly improved under high-glucose conditions [22], which are

supportive of non-fused mitochondrial network [11]. These findings

underscore the importance of nutrient availability in the conversion

to pluripotency and in the achievement of its correct mitochondrial

and metabolic state [4,23].

The metabolic switch from OXPHOS metabolism to glycolysis

occurring during iPSC generation is reminiscent of the effect

noticed by Otto Warburg in the context of cancer cells, which he

described as being able to maintain high glycolytic rates even in

the presence of oxygen, a phenomenon known as “aerobic glycoly-

sis” or “Warburg effect” [24]. The glycolytic state of both tumor

cells and PSCs has been suggested to be related to their high prolif-

erative rates that require biomass precursors derived from the

higher branches of glycolysis and the pentose phosphate pathway

(PPP) [25]. In fact, non-replicative cells, such as neurons and

cardiomyocytes, typically rely on OXPHOS [26]. However, adult

stem cells, including HSCs and NSCs, also depend on glycolysis

despite being lowly proliferative or even quiescent [27–29]. This

suggests that the preference of glycolysis over mitochondrial func-

tion may represent a feature of stemness irrespective of their prolif-

erative features. One likely reason for the glycolytic state of stem

cells may be that the reduction in mitochondrial metabolism

allows the maintenance of low levels of harmful free radicals (see

below).

Despite the importance of glycolysis, mitochondrial metabolism

can also play a role in stemness. Even in the context of cancer, it

is now evident that mitochondria are not simply defective, as initi-

ally postulated by Warburg, but are instead essential for tumor

growth and progression and may even represent a therapeutic

target [30]. Accordingly, PSCs express high level of the mitochon-

drial protein uncoupling protein 2 (UCP2) [31], which is involved

in the transport of metabolites out of the mitochondria, thereby

regulating glucose oxidation [32]. Although a glycolytic switch is

required for the acquisition of pluripotency, the early phases of

iPSC generation are characterized by an initial burst of OXPHOS

activity and by the up-regulation of RC complexes [33–35]. Mito-

chondrial metabolism may also be important in the self-renewal of

human PSCs, as its activation is increased when the lipid presence

Glossary

ACL ATP-citrate lyase
aKG alpha-ketoglutarate
AMPK AMP-activated protein kinase
BCL-2 B cell lymphoma-2
DNMTs DNA methyltransferases
DRP1 dynamin-related protein 1
ESCs embryonic stem cells
GPX2 glutathione peroxidase-2
GSH glutathione
HDAC histone deacetylases
HIF1a hypoxia inducible factor one alpha
HMTs histone methyltransferases
HSCs hematopoietic stem cells
iPSCs induced pluripotent stem cells
JHDMs Jumonji C domain demethylase
LIF leukemia inhibitory factor
MFN mitofusin
MSCs mesenchymal stem cells
mtDNA mitochondrial DNA
NAD+ nicotinamide adenine dinucleotide (oxidized form)
NADH nicotinamide adenine dinucleotide (reduced form)
NADPH nicotinamide adenine dinucleotide phosphate (reduced

form)
NPCs neural progenitor cells
NRF2 nuclear respiratory factor 2
NSCs neural stem cells
OPA1 optic atrophy 1
OXPHOS oxidative phoshorylation
PDC pyruvate dehydrogenase complex
PDK pyruvate dehydrogenase kinases
POLGA polymerase gamma A
PPP pentose phosphate pathway
PSCs pluripotent stem cells
PTP permeability transition pore
RC respiratory chain
ROS reactive oxygen species
TCA tricarboxylic
TET ten-eleven translocation
UCP2 uncoupling protein 2
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in the media is reduced [36], further highlighting how nutrients in

the environment can shape the metabolic and functional state of

stem cells.

The relevance of mitochondrial metabolism for pluripotency is

illustrated by recent studies aiming at dissecting the functional and

molecular differences between two PSC states, namely naı̈ve and
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Figure 2. Mitochondrial plasticity during reprogramming and differentiation.
Mitochondria undergo several changes during the reprogramming of somatic cells into pluripotent stem cells (PSCs) and upon the differentiation of PSCs. These modifications
impact the OXPHOS activity, the morphology and localization of the mitochondrial network, the appearance of the mitochondrial cristae, the production of reactive oxygen
species (ROS), and the balance between pro-apoptotic and anti-apoptotic BCL-2-like proteins.
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Figure 1. Mitochondrial regulation of stem cell homeostasis.
Summary of the three mechanisms that we describe in the text as being associated with the regulation of stem cell homeostasis. Upon exposure to environmental cues (left),
mitochondria respond by modulating (i) their network morphology and bioenergetics (purple arrows), (ii) the redox and calcium balance (light green arrows), and
(iii) the epigenetic landscape of the cells (orange arrows). Following these mitochondria-based cellular responses, stem cells can either maintain their identity or exit
stemness. This latter route can either lead to physiological differentiation or cell death (right).
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primed. Naı̈ve PSCs are believed to correspond to the pre-implanta-

tion stage of embryo development, while primed PSCs should

reflect the post-implantation stage [37]. Despite being potentially

less developmentally mature, naı̈ve PSCs exhibit higher OXPHOS

activity than primed PSCs [38–41]. In accordance, the conversion

from primed to naı̈ve PSCs is facilitated by STAT3-mediated

activation of mitochondrial respiration [42] and by the induction of

OXPHOS genes following the down-regulation of LIN28 [43], whose

expression is low in naı̈ve PSCs. However, the OXPHOS increase in

naı̈ve PSCs does not necessarily translate into reduced glycolysis.

Naı̈ve PSCs display a bivalent metabolism dependent on both

glycolysis and OXPHOS [39] and also exhibit increased glycolytic

metabolism [44–46]. Therefore, the role of mitochondrial activity in

pluripotency may be independent from glycolytic regulation.

Self-renewing proliferative progenitors also show active mito-

chondrial metabolism. This is the case for both mouse embryonic

NPCs and adult NPCs, which activate the OXPHOS program already

during the initial stages of neurogenesis [47]. NPCs derived from

human PSCs also display a tubular mitochondrial network and

OXPHOS-dependent metabolism when they are generated and

cultured using leukemia inhibitory factor (LIF) [48], itself capable of

activating mitochondrial respiration [42].

The relationship between the architecture of the mitochondrial

network and the cellular metabolism of stem cells is however more

complex than previously thought [3]. In fact, even if naı̈ve PSCs

show higher OXPHOS activity than primed PSCs, their mitochon-

drial morphology is less tubular and non-fused compared to that of

primed PSCs [4,39–41]. Moreover, glycolytic embryonic mouse

NSCs have been found to contain a relatively connected mitochon-

drial network [49]. The findings have been corroborated in adult

mouse NSCs [47]. Mesenchymal stem cells, although mainly glyco-

lytic [50], also exhibit tubular mitochondria that can further elon-

gate upon differentiation [51]. Even HSCs, which are known to rely

on glycolysis [27], show elongated mitochondria and require the

expression of the fusion protein MFN2 [52]. Therefore, the general

assumption that glycolytic cells, like stem cells, have fragmented

non-fused mitochondrial network is likely to be imprecise. In fact,

by looking at different stem cell types and at cancer cells, it becomes

clear that the association between proliferation, mitochondrial

metabolism, and mitochondrial dynamics is rather complex and

probably highly plastic and environment-dependent (Table 1).

Mitochondrial control of redox and calcium balance in
stem cell homeostasis

Mitochondria play a critical role in the balance between cell survival

and cell death. These mechanisms are at the bases of cellular home-

ostasis and regulate the potential outcomes in response to environ-

mental cues. Mitochondria influence cell death pathways associated

with necrosis, apoptosis, and autophagy [53] mainly through the

modulation of redox and calcium balance [54].

The constant and tight regulation of cell death is essential for

stem cells in order to preserve genome integrity, which ensures the

faithful derivation of functional progeny [55]. The main insult caus-

ing loss of genome integrity is evoked by oxidative stress that occurs

when the amount of free radicals is not properly counterbalanced

by the cellular antioxidant defenses. Reactive oxygen species (ROS),

generated upon OXPHOS metabolism during the transport of elec-

trons in the RC [56], can have detrimental consequences on DNA,

proteins, or lipids. Oxidative damage of DNA is particularly harmful

for stem cells as it can cause unwanted mutations [57]. ROS may

also damage mitochondrial DNA (mtDNA), which is particularly

susceptible to oxidative stress, given the proximity to free radicals

and the lack of histones [58,59]. Importantly, PSCs carrying high

mtDNA mutation load have been shown to generate defective dif-

ferentiated cells [60–63]. Furthermore, mtDNA mutagenesis can

impair the derivation of iPSCs [64]. Increased ROS levels and

mtDNA mutagenesis can also lead to defective NSCs and HSCs [65].

In order to limit the occurrence of DNA lesions, stem cells must

be equipped with a specific strategy. To this aim, the glycolytic

metabolism of stem cells may represent a protective mechanism, as

it avoids excessive ROS production by lowering OXPHOS activity. In

accordance, PSCs have been found to exhibit reduced ROS and

reduced ROS-mediated damage to lipids, proteins, and DNA [12,66].

Pluripotent stem cells are also highly proficient in DNA repair capac-

ity and antioxidant defenses, including glutathione (GSH) and

glutathione peroxidase-2 (GPX2), which undergo down-regulation

Table 1. Mitochondrial properties in stem cells and cancer.

Stem cell type Proliferation Metabolism Mitochondrial network ROS Sensitivity to cell death

Primed PSCs High Glycolysis Non-fused with underdeveloped
cristae, but some tubular

Low High

Naïve PSCs High Glycolysis but also
OXPHOS

Non-fused with underdeveloped cristae Low High

NSCs Low Glycolysis Tubular Low Intermediate

NPCs High Glycolysis; OXPHOS
(when grown with LIF)

Non-fused; tubular (when grown with LIF) Low Intermediate

HSCs Low Glycolysis Tubular Low Intermediate

MSCs High Glycolysis Tubular Low Intermediate

Cancer cells High Glycolysis Tubular with disorganized cristae High Low

In Table 1, we report some of the mitochondrial features in distinct stem cell types and cancer cells. It is interesting to point out that OXPHOS metabolism can be
associated also with stem/progenitor cells and that tubular mitochondrial network may also be present in stem/progenitor cells regardless of their metabolic
state. The proliferative rate of the cells also does not seem to be uniquely correlated with a specific metabolism. By comparing the mitochondrial properties of
stem/progenitor cells with that of cancer cells, it becomes clear that they exhibit key differences in the response to cell death.
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upon differentiation [67–69]. Furthermore, the high energy flux of

glycolysis and PPP support stem cell antioxidant defenses by provid-

ing NADPH that maintains GSH in its reduced form [70]. HSCs also

display enhanced self-renewal potential under conditions of low

ROS content [71]. NPCs exhibit decreased amount of free radical

production in comparison with neuronal and astrocytic counterparts

[72]. MSCs show low levels of ROS and high level of GSH [73].

As mentioned above, aerobic glycolysis can be favored by stem

cells and proliferative cells even in the presence of oxygen. The

simple absence of oxygen also causes increased glycolysis, a

phenomenon known as “anaerobic glycolysis”. The underlying

mechanisms might be similar and may involve the induction of a

gene expression program activated by hypoxia inducible factors

such as the hypoxia inducible factor one alpha (HIF1a). Accord-

ingly, low oxygen conditions increase the glycolytic flux of ESCs

[74,75] and improve iPSC derivation [76]. At the same time, glycoly-

sis and HIF1a are activated during reprogramming to pluripotency

even under normoxic culture [77,78]. Low oxygen in in vitro

cultures is more reminiscent of the actual in vivo situation in the

inner cell mass, where the physiological oxygen concentration is

lower than 5% and thus far less of the 20% of atmospheric oxygen

[2]. Physiological oxygen levels are also present in the in vivo niches

of adult stem cells, including HSCs and MSCs [79,80], and NSCs

[81,82]. Given the direct effect of environmental oxygen on tran-

scriptional regulation, it may be possible that differences in the

oxygen exposure could cause slightly altered gene expression

programs in distinct cells within the in vivo niche. This effect may

contribute to the functional heterogeneity of stem cells in vivo [83].

Despite the decreased OXPHOS-mediated ROS generation, oxida-

tive damage may still occur in stem cells. Therefore, there should be

mechanisms in place to ensure the efficient elimination of damaged

cells. Consequently, PSCs are highly sensitive to agents causing

DNA lesions, including pro-apoptotic chemicals and gamma irradia-

tion [84,85]. This hyper-sensitivity of PSCs has been dubbed “mito-

chondrial priming”, as the cell death pathways of PSCs appear

specific for mitochondria-triggered apoptosis and not receptor-

mediated apoptosis [68,86,87]. Pluripotent stem cells exhibit a

specific state of BCL-2 (B cell lymphoma-2) family proteins, with

high amount of pro-apoptotic BCL-2-like proteins (like BAX, BAK,

and BOK/MTD) and low levels of anti-apoptotic BCL-2-like proteins

(like BCL-2, BCL-XL, BCL-W, and MCL-1) [84,88]. This mitochon-

drial priming allows PSCs to rapidly undergo cell death when DNA

damage has occurred. The mitochondrial apoptotic pathway is also

crucial during the early exit from pluripotency, where it can cause

the elimination of those cells that are not efficiently undergoing dif-

ferentiation. Interestingly, cellular apoptosis typically involves mito-

chondrial fission. Accordingly, BCL-2 family members can

contribute to the regulation of mitochondrial dynamics [89]. This

suggests that the processes underlying the changes mentioned above

in mitochondrial morphology and metabolism occurring during the

acquisition and loss of pluripotency may also be important for the

configuration of a PSC-like apoptotic sensitivity (Fig 2).

Adult stem cells are considered to be more resistant to cell death

than PSCs [90]. Nonetheless, adult stem cells may still retain the

ability to undergo cell death upon DNA damage [91–93]. On the

other hand, the sensitivity to cell death is radically different in

cancer cells, which are capable of surviving in the presence of high

levels of ROS and DNA damage (Table 1).

In addition to their role in redox biology, free radicals can act as

second messengers to modulate cellular processes. The biological

role of mitochondrial ROS may be particularly relevant for stem cell

homeostasis [94]. An increase in ROS, independently from OXPHOS,

can promote the differentiation of PSCs [95] and adult stem cells,

including MSCs [73,96] HSCs [97] and NSCs [98]. Modulation of

ROS may also be important in the regulation of stem cell self-

renewal [99]. Physiological free radicals can trigger a nuclear

response that includes the expression of nuclear respiratory factor

(NRF) 2, which in turn leads to stem cell differentiation [49]. ROS-

mediated NRF2 induction occurs also during the initiation of iPSC

reprogramming, where it causes an initial burst of OXPHOS

followed by the activation of glycolytic metabolism [35].

Reactive oxygen species are also important for the stem cell

response to low oxygen [100]. In order for the physiological ROS

production to successfully induce a HIF1a response, the mitochon-

drial network acquires a perinuclear clustering. The typical perinu-

clear localization of mitochondria that has been detected in PSCs

[12,101,102] has been therefore suggested to play a role in the

oxygen-dependent regulation of cell fate in PSCs [2].

In accordance with the physiological importance of ROS in stem

cell homeostasis, the exogenous administration of antioxidants may

not always be beneficial. Although vitamin C was initially found to

improve the derivation of iPSCs [103], the use of various antioxi-

dants failed to increase the efficiency of iPSC reprogramming and

did not ameliorate the growth defects of iPSCs carrying mtDNA

mutations [64]. Even in the context of tumor cells, antioxidants may

promote cancer proliferation by down-regulating the endogenous

protective mechanisms [104].

Intracellular calcium is another mechanism that is regulated by

mitochondria and is implicated in both cell death activation and

physiological signaling pathways [105,106]. Mitochondria regulate

calcium balance in the cells by acting as high capacity buffers [53].

Intra-mitochondrial calcium positively affects energy metabolism

through the stimulation of ATP production by OXPHOS. At the same

time, excessive accumulation of calcium into the mitochondria can

lead to apoptosis through the opening of the permeability transition

pore (PTP) and the consequent release of cytochrome c in the cyto-

plasm [107].

The regulation of intracellular calcium might be crucial for the

physiological differentiation of PSCs [21] and adult stem cells,

including MSCs [108] and NSCs [109]. Nonetheless, the specific

importance of mitochondrial calcium regulation for stem cell home-

ostasis remains overall under-investigated [110,111].

Mitochondrial metabolism–epigenetics crosstalk in stem
cell homeostasis

A growing body of evidence suggests that the metabolic profile of the

cells can influence the cytoplasmic signaling, connecting environ-

mental inputs with transcriptional programming [1,112]. Metabo-

lism-driven chromatin regulation is crucial for cellular plasticity for

dictating the changes required to modulate cellular identity, a key

process during cancer transformation and reprogramming to iPSCs

[4].

Mechanistically, the importance of mitochondrial metabolism for

stem cell fate regulation may be due to the action of metabolites
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generated in the tricarboxylic (TCA) cycle that can function as co-

factors or substrates for chromatin modifying enzymes. The mecha-

nisms through which mitochondrial metabolites influence stem cell

epigenetics is actively investigated in the context of PSCs. However,

the metabolism–epigenetic crosstalk could be important for stem-

ness in general [113]. A schematic representation of the interplay
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Figure 3. Mitochondria metabolism and epigenetic modulation.
Schematic representation of the interaction between mitochondrial metabolism and chromatin regulation mechanisms. (A) Interplay between mitochondrial metabolites
and epigenetics. Orange arrows indicate the connection with the extracellular environment. Blue arrows refer to the mitochondrial metabolites (like citrate, acetyl-CoA,
and aKG). (B) Interplay between mitochondrial bioenergetics and epigenetics. Bordeaux arrows indicate pathways related to mitochondrial bioenergetics (like AMPK,
sirtuins, and ROS).
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between mitochondrial metabolism and epigenetics in stem cells is

shown in Fig 3A and B.

An important TCA metabolite associated with epigenetic modula-

tion is citrate. Citrate can be exported outside the mitochondria,

where it is converted into acetyl-CoA by the enzyme ATP-citrate

lyase (ACL) [114]. Cytosolic acetyl-CoA is the primary donor for the

acetylation of histones, an epigenetic modification associated with

transcriptional activation. High levels of acetyl-CoA induce the

expression of proliferation-related genes in yeast [115], a response

that is highly relevant for cancer transformation [116]. Acetyl-CoA-

dependent histone acetylation plays a role in the maintenance of

primed PSCs [117].

Mitochondrial citrate is primarily obtained from mitochondrial

acetyl-CoA. Mitochondrial acetyl-CoA can be imported from the

cytoplasm under conditions promoting lipid oxidation. Alterna-

tively, mitochondrial acetyl-CoA can be generated from glycolysis-

derived pyruvate through the action of pyruvate dehydrogenase

complex (PDC). This latter route is the preferred one of primed

PSCs [117]. At the same time, pyruvate dehydrogenase kinases

(PDK) 1 and 3, which inhibit the PDC and redirect pyruvate

away from the mitochondria into lactate, have been reported to

be over-expressed in cancer cells and primed PSCs

[16,78,118,119]. This apparent controversy may perhaps be

explained by the fact that PDC has been suggested to translocate

into the nuclear compartment in response to mitochondrial inhibi-

tion [120]. Therefore, we can speculate that pyruvate (glucose-

derived and/or exogenously provided) might have two fates in

PSCs. On the one hand, pyruvate could be shunt away from

mitochondria to generate lactate following PDC inhibition within

the mitochondria. On the other hand, pyruvate might be

converted into acetyl-CoA by PDC localized in the nucleus in

order to enable rapid histone acetylation. Further studies are

needed to fully address these mechanisms (Fig 4).

Another important TCA metabolite is alpha-ketoglutarate (aKG).

aKG is transported into the cytosol via the aKG-malate shuttle that

also facilitates the NAD+/NADH mitochondria–cytosol transfer

[121]. alpha-ketoglutarate can enter the nucleus where it is used as

a substrate of ten-eleven translocation (TET) proteins for DNA

methylation (associated with transcriptional repression) and of

Jumonji C domain demethylase (JHDMs) for histone demethylation

(linked to context-dependent gene silencing or activation) [116].

Global DNA hypomethylation is a known feature of PSCs that must

be obtained during cellular reprogramming for the faithful establish-

ment of pluripotency [122]. The level of genomic methylation can
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Figure 4. Energy flux and pyruvate fate in PSCs.
Intracellular pyruvate can be obtained from glucose or directly taken up from the environment. The fate of pyruvate depends on the activity of pyruvate dehydrogenase
complex (PDC), which converts pyruvate into acetyl-CoA that is in turn used in the TCA cycle in the mitochondria. In PSCs, hypoxia inducible factors (HIF) are activated
and lead to increased expression of pyruvate dehydrogenase kinase (PDK)1-3 that inhibit mitochondrial PDC. The inhibition of mitochondrial PDC re-routes pyruvate outside
the mitochondria to be used for lactate generation. However, this mechanism is in apparent contrast with the importance of pyruvate-derived acetyl-CoA for histone
acetylation. Given that it has been reported that PDC can translocate outside the mitochondria and into the nucleus under conditions of mitochondrial inhibition, we
speculate that a PDC translocation may also occur in PSCs. This might help explaining the double importance of pyruvate in PSCs for glycolytic metabolism and epigenetic
regulation.
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also have an impact on the mtDNA copy number. PSCs and cancer

cells may in fact maintain low level of mtDNA replication by reduc-

ing the activity of the nuclear-encoded mitochondrial polymerase

gamma A (POLGA) through the hypermethylation at its exon 2

[123]. Finally, aKG-dependent DNA and histone methylation may be

important for promoting naı̈ve pluripotency [124,125]. In primed

PSCs, aKG has been found to both accelerate differentiation [126]

and support the undifferentiated state [127]. Therefore, aKG might

exert opposite effects in cell fate regulation depending on the speci-

fic cellular context.

Tricarboxylic intermediates can be derived not only from glucose

but also from glutamine, which is converted into glutamate and

afterward into aKG in the cytoplasm. aKG can then function in the

cytoplasm or be transferred into the mitochondria. The glutamine

dependence of the TCA cycle is known as reductive carboxylation,

and it is believed to be important for cancer metabolism [128].

Glutamine appears also indispensable for the survival of primed

PSCs [129]. This supports the notion that mitochondrial metabolism

and active TCA cycle are maintained during pluripotency and can

be fueled by different sources.

In addition to TCA metabolites, the bioenergetic state of the

cells can influence the epigenetic landscape. The energy sensor

AMP-activated protein kinase (AMPK), which is activated when

intracellular ATP levels lower, can phosphorylate histones and

histone acetylases. By doing so, AMPK induces the expression of

genes involved in cellular metabolic stress and inhibits cellular

growth [130]. AMPK activation may function as a barrier for repro-

gramming to pluripotency [131]. Another example of bioenerget-

ics-related regulation of epigenetics is represented by sirtuins.

Sirtuins are activated following increased NAD+/NADH ratio that

occurs for example upon energy starvation due to glucose deple-

tion. Sirtuins can act as histone deacetylases (HDAC) to achieve

transcriptional silencing [1,116,132]. The chromatin regulation of

sirtuins may contribute to cell fate transition. Indeed, sirtuins have

been implicated in enhancing the generation of iPSCs [133,134].

Finally, the epigenetic landscape might also be affected by the

redox state of the cells. In addition to their described importance

in signaling, free radicals can alter chromatin remodeling through

the oxidation of DNA methyltransferases (DNMTs), histone

methyltransferases (HMTs), or through the direct oxidation of

nucleotide bases [135,136]. The role of vitamin C in the repro-

gramming to pluripotency may in fact be linked to both its

antioxidant features and its action as cofactor for epigenetic

enzymes [103].

Concluding remarks

The ability of mitochondria to integrate environmental cues to

influence cellular homeostatic responses is emerging as a key

aspect of stem cell biology. A growing body of work suggests that

mitochondria play an active role in shaping the cellular fate

through the modulation of bioenergetics, redox and calcium

balance, and epigenetics. Moreover, mitochondria regulate cell

death pathways, which are crucial to allow stem cells to preserve

their genome integrity and the functionality of the differentiated

progeny.

Dissecting the importance of mitochondria for stemness (see also

Box 1) will help designing improved stem cell-based medical appli-

cations. Furthermore, it may lead us to broaden our understanding

of the pathogenetic mechanisms of diseases causing mitochondrial

dysfunction. If mitochondrial impairment can impact stem cell func-

tion, then mitochondrial disorders may also affect the stem cell

compartment and not only fully differentiated cells. This might be

the case of aging and neurological diseases, where defects in neural

stem cells and neurogenesis are starting to be identified

[47,137,138]. Finally, uncovering the mitochondrial control of stem

cell homeostasis will shed light on the cellular strategies underlying

the establishment of cell fate identity and how to modulate its plas-

ticity.
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