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Abstract

Allosteric (i.e. long-range) communication within proteins is crucial for many biological 

processes, such as the activation of signaling cascades in response to specific stimuli. However, the 

physical basis for this communication remains unclear. Existing computational methods for 

identifying allostery focus on the role of concerted structural changes, but recent experimental 

work demonstrates that disorder is also an important factor. Here, we introduce the Correlation of 

All Rotameric and Dynamical States (CARDS) framework for quantifying correlations between 

both the structure and disorder of different regions of a protein. To quantify disorder, we draw 

inspiration from methods for quantifying “dynamic heterogeneity” from chemical physics to 

classify segments of a dihedral’s time evolution as being in either ordered or disordered regimes. 

To demonstrate the utility of this approach, we apply CARDS to the Catabolite Activator Protein 

(CAP), a transcriptional activator that is regulated by Cyclic Adenosine MonoPhosphate (cAMP) 

binding. We find that CARDS captures allosteric communication between the two cAMP-Binding 

Domains (CBDs). Importantly, CARDS reveals that this coupling is dominated by disorder-

mediated correlations, consistent with NMR experiments that establish allosteric coupling between 

the CBDs occurs without a concerted structural change. CARDS also recapitulates an enhanced 

role for disorder in the communication between the DNA-Binding Domains (DBDs) and CBDs in 

the S62F variant of CAP. Finally, we demonstrate that using CARDS to find communication 

hotspots identifies regions of CAP that are in allosteric communication without foreknowledge of 

their identities. Therefore, we expect CARDS to be of great utility for both understanding and 

predicting allostery.
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INTRODUCTION

Despite its fundamental importance, understanding of the physical mechanisms of allosteric 

communication remains incomplete. For example, significant effort has gone into studying 

how G-Protein Coupled Receptors (GPCRs) allosterically transmit extracellular signals to 

intracellular binding partners.1 However, understanding of this process is still insufficient for 

the routine design of drugs that allosterically modulate GPCRs.2

Models of allostery have typically focused on concerted structural changes.3 For example, 

the classic induced fit model postulates that ligand binding to one subunit of a protein causes 

a conformational change in other subunits.4,5 The conformational selection model also 

focuses on structural changes, positing that ligand binding to one subunit stabilizes an 

alternative (but pre-existing) structure of other subunits.6 Extensive work establishes there is 

often a role for conformational selection,7 though there is clearly a continuum between 

extreme versions of induced-fit and conformational selection.8–10 This conclusion implies 

allostery can be inferred from proteins’ equilibrium fluctuations even in the absence of an 

allosteric perturbation. Inspired by this implication, numerous methods have been developed 

to infer allosteric communication from structural fluctuations observed in molecular 

simulations.11–32

While concerted structural changes are clearly important for allostery, there is mounting 

evidence that conformational disorder has an important role to play, and can even lead to 

allosteric communication in the absence of concerted structural transitions.3,33–39 The 

importance of allostery without conformational change first appeared in a model where 

ligand binding perturbs the entropy of a distant site rather than its preferred structure.40 

Since then, NMR and ITC experiments on Catabolite Activator Protein (CAP) have 

established allosteric communication without conformational change exists in nature.41–43 

CAP is a homodimeric transcription factor whose DNA-binding affinity increases upon 

binding of cAMP to the cAMP-Binding Domains (CBDs).44,45 In wild-type CAP, cAMP 

binding allosterically induces the DNA-Binding Domains (DBDs) to swivel around the 

central hinge region into a DNA-binding conformation (Fig. 1).46,47 There is also negative 

coupling between the two CBDs.44,45,48 A combination of NMR and ITC measurements 

reveal that binding of cAMP to one CBD reduces the cAMP-binding affinity of the second 

CBD without changing its structure.42,48 Additional experiments reveal that binding of 

cAMP activates the S62F variant of CAP without causing a conformational change in the 

hinge or DBDs.49,50
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While the importance of disorder is gaining widespread acceptance, the field lacks 

systematic methods for identifying allosteric communication in the absence of 

conformational change. For example, NMR has yet to uncover how these signals are 

transmitted. COREX/BEST,35,51,52 other coarse-grained models,18 and normal modes53 

provide valuable insights but miss essential subtleties, such as important side-chain motions. 

Using molecular dynamics simulations to measure the mutual information between the 

orientations of different dihedral angles captures the reduction in uncertainty (measured with 

an entropy metric) about the structure of one dihedral given knowledge of another,19–21 but 

does not capture phenomena like changes in the rotameric state of one dihedral increasing 

the conformational heterogeneity of a distant site. Approaches for inferring allosteric 

coupling from sequence covariation54,55 are agnostic to the mechanism underlying this 

communication and cannot explain how it occurs. A method for identifying timing 

correlations has promise for capturing disorder-mediated coupling.56 For example, 

application of this approach to side-chain degrees of freedom in CAP successfully identified 

hotspots for allosteric communication. It also demonstrated that disorder-mediated 

correlations give rise to long-range communication, while purely structural correlations are 

limited to short-ranged communication. However, timing correlations do not integrate 

structural and dynamical correlations into a holistic measure of communication that can 

capture the continuum of possibilities between purely structural and purely disorder-

mediated coupling.

Here, we introduce the CARDS (Correlation of all Rotameric and Dynamical States) 

methodology for quantifying the roles of both concerted structural changes and 

conformational disorder. CARDS is based on our observation that a single degree of 

freedom (e.g. a dihedral angle) can transition between “ordered” regimes, wherein it 

undergoes small fluctuations within a single structural state, and “disordered” regimes 

wherein it undergoes bursts of transitions between different structural states (Fig. 2A). 

Similar “dynamic heterogeneity”57–59 has been observed in the physics of glasses, where it 

has been shown that a single degree of freedom’s local environment can either facilitate 

dynamics by flattening out the effective free energy surface that degree of freedom 

experiences or freeze out dynamics.60–62 CARDS identifies ordered and disordered regimes 

based on two kinetic signatures: the average time a degree of freedom persists within a 

structural state and the typical timescale for transitions between structural states. For many 

dihedrals, we observe that the typical time that elapses between structural transitions, which 

is dominated by segments of a trajectory in disordered regimes, is orders of magnitude 

smaller than the typical persistence time in a state. Based on these kinetic signatures, 

CARDS assigns segments of trajectories to dynamical states (i.e. ordered and disordered 

regimes). CARDS then quantifies correlations between the structural and dynamical states of 

different dihedrals. Specifically, we employ the mutual information to assess how much 

better one can predict the structural and dynamical states of one dihedral given knowledge of 

the structural and dynamical states of another dihedral. To demonstrate the utility of 

CARDS, we assess whether it can identify allosteric communication in the absence of 

concerted structural changes observed in CAP.
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THEORY AND METHODS

CARDS captures all forms of correlated fluctuations, including concerted structural 

changes, correlations between the conformational disorder of different degrees of freedom, 

and correlations between the structure of one degree of freedom and the conformational 

disorder of another. As in other recent work, we focus on dihedral angles, as they are natural 

degrees of freedom for describing protein structure and dynamics and are easily decomposed 

into a small number of rotameric states.20,21

Molecular dynamics simulations

We ran three 500 ns simulations with our previously published protocol63 (see SI for 

details). Briefly, we placed PDB ID 4N9H47 in a dodecahedron box and solvated it with 

TIP3P explicit solvent64 extending 1 nm beyond the protein in any dimension. We used 

PyMOL65 to mutate Ser62 to Phe to create a starting structure for the S62F variant. For each 

system, we ran simulations with the Gromacs software package66 using the Amber03 force 

field.67 This combination of software and parameters was selected because it has proven 

reliable in our past studies of both protein folding68 and structural fluctuations within folded 

proteins.63,69,70

As described in the Results section, our microsecond timescale simulations are sufficient to 

recapitulate much of what is known from experiments about allostery in CAP. The 

correlation coefficient between the couplings obtained from any individual simulation and 

the combination of three simulations is 0.64±0.02, suggesting that hundreds of nanoseconds 

of simulation may be sufficient to discover gross patterns of communication but are 

insufficient to obtain converged results. The correlation coefficient between the coupling 

obtained from any pair of simulations and the combination of three simulations is 0.79±0.02, 

suggesting that 1–1.5 microseconds of simulation give more reproducible results. Taken 

together with our past work, we conclude that a few microseconds of simulation are 

adequate to demonstrate the utility of our new method and, likely, to gain valuable insights 

into many systems.

Assignment of dihedrals to rotameric states

Dihedral angles were calculated with MDTraj71 and assigned to discrete rotameric states 

(e.g. gauche+, gauche−, and trans for most χ angles and cis or trans states for backbone 

dihedrals). Transition-Based Assignment (TBA) is used to distinguish lasting transitions 

from transient fluctuations.72–75 TBA prevents over-counting of transitions (e.g. due to 

fluctuations at a barrier peak where a simulation repeatedly crosses a hard cutoff between 

rotameric states) by defining a core region within each rotameric state and buffer zones 

between them. A dihedral is only considered to have changed rotameric states if it 

transitions from the core of one state to the core of another state, passing completely through 

the buffer zone between cores (Fig. 2A and 2B). A dihedral that starts in one core, enters a 

buffer zone, and then returns to its initial core is said to have remained in the initial 

rotameric state. We define the core of a rotameric state as a region of width W centered 

between the boundaries between rotamers. We present results using a core width of 90°, but 

our results are robust to variations in the core width ranging from 60° to 90° (Fig. S1A).

Singh and Bowman Page 4

J Chem Theory Comput. Author manuscript; available in PMC 2018 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Assignment of snapshots to dynamical states

CARDS assigns snapshots to ordered and disordered regimes based on two variables that 

describe the dynamics of the trajectory: the mean ordered time (〈τord〉) and mean disordered 

time (〈τdis〉). An ordered time (τord) is the time from any time-point to the next time where a 

transition occurs and a disordered time (τdis) is the time between two consecutive transitions 

(Fig. 2C). These times are called persistence and exchange times in the condensed matter 

physics literature.61,62,76 For many dihedrals, we observe that 〈τdis〉 ≪ 〈τord〉 〈τdis〉 because 

〈τdis〉 is dominated by the short times between transitions in disordered regimes, whereas 

〈τord〉 is heavily influenced by the lengthy times without any transitions in ordered regimes. 

To calculate these times, CARDS first identifies the time points where a dihedral transitions 

between two different rotameric states (Fig. 2C), referred to as the transition indicator 

function. The method then extract the complete set of τdis and τord values in the trajectory. 

Next, CARDS classifies each segment of a trajectory between two consecutive transitions as 

being in an ordered or disordered regime based on whether the length of the segment (t) 
between the transitions is more consistent with the distribution of ordered or disordered 

times (Fig. 2D). We find that transitions within ordered and disordered regimes are roughly 

Poisson processes with different characteristic times (〈τord〉 and 〈τdis〉, respectively), see 

Fig. S2. Therefore, CARDS determines if a segment of a trajectory of length t between two 

consecutive transitions is more consistent with an ordered or disordered regime using the 

likelihood ratio (L):

L(t) =
Pdis(t)
Pord(t) =

1
< τdis >e

− t
< τdis >

1
< τord >e

− t
< τord >

(1)

where Pdis is the probability the segment is disordered and Pord is the probability it is 

ordered. Taking inspiration from the interpretation of Bayes factors,77 CARDS classifies a 

segment of a trajectory as being disordered if L > 3.0, otherwise the trajectory segment is 

classified as being in an ordered regime. Our results are robust to varying this cutoff from 

1.5 to 5 (Fig. S1B).

Calculation of structural, disorder-mediated, and holistic correlations

The primary objective of CARDS is to calculate the total correlation between different 

dihedrals, including both their rotameric state and dynamical state (e.g. whether the dihedral 

is in an ordered or disordered regime at a given time). Towards this end, we define the 

holistic correlation (IH) between dihedrals X and Y as

IH(X, Y) = Iss(X, Y) + Isd(X, Y) + Ids(X, Y) + Idd(X, Y) (2)
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where Iss(X, Y) is the normalized mutual information between the structure (i.e. rotameric 

state) of dihedral X and the structure of dihedral Y, Isd(X, Y) is the normalized mutual 

information between the structure of dihedral X and the dynamical state of dihedral Y, 

Ids(X, Y) is the normalized mutual information between the dynamical state of dihedral X 

and the structure of dihedral Y, and Idd(X, Y) is the normalized mutual information between 

the dynamical state of dihedral X and the dynamical state of dihedral Y. The mutual 

information (I) is:

I(X, Y) = ∑
x ∈ X

∑
y ∈ Y

p(x, y) log p(x, y)
p(x)p(y)

where x ∈ X refers to the set of possible states that dihedral X can adopt, p(x) is the 

probability that dihedral X adopts state x, and p(x, y) is the joint probability that dihedral X 
adopts state x and dihedral Y adopts state y. We define the normalized mutual information 

( I(X, Y)) as

I(X, Y) = I(X, Y)/C(X, Y)

where C(X, Y) is the maximum possible mutual information between two dihedrals, called 

the channel capacity.78 Using this normalized mutual information allows for a direct 

comparison between the different components of the holistic correlation by correcting for 

the fact that the largest possible mutual information between different types of dihedrals will 

vary based on how many different states there are. For example, a side-chain dihedral has 

three possible rotameric states but only two possible dynamical states, so structural 

correlations (Iss) can be as large as log(3) while the correlations between dynamical states 

(Idd) can only reach as high as log(2).

In addition to the above, we define the disorder-mediated correlation (IDM) as all forms of 

correlation between two dihedrals that rely, at least in part, on disorder ( Isd + Ids + Idd). This 

construct is useful for assessing the importance of disorder relative to existing methods 

based purely on concerted structural changes (Iss). We use bootstrapping to measure the 

uncertainty in our estimates of all the components of the holistic correlation to ensure any 

comparisons we make are statistically sound. Specifically, we draw 20 random samples of 

our trajectories, with replacement, and calculate the structural and disorder-mediated 

correlations between all pairs of residues. We conclude that disorder-mediated 

communication dominates if the average disorder-mediated communication minus the 

standard deviation across all our bootstrap samples is greater than the mean structural 

correlation plus the standard deviation.

Calculation of the net communication to a target site

We are often interested in calculating how much influence a particular residue has over 

another site, such as an active site or ligand-binding site. To calculate the communication 

between a reference residue and some target site, we take the average mutual information 
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between two sets of dihedrals: 1) all dihedrals in the reference residue and its nearest 

neighbors and 2) all dihedrals in the target site. We define the nearest neighbors of a 

reference residue as all residues with atoms that fall within 3 Å of any atom in the reference 

residue. Varying this cutoff does not alter our results (Fig. S1C). Including both a reference 

residue and its nearest neighbors accounts for the fact that mutating the reference residue 

will directly change the environment of all neighboring residues.

Calculation of global communication

In addition to identifying residues that have strong correlations to a specific target site, it 

would also be valuable to identify residues that generally appear to play an important role in 

allosteric networks. Towards this end, we define the global communication strength of a 

residue as the sum of its holistic correlations to all other residues. For these calculations, we 

also include neighboring residues, as in our calculation of the net communication to a target 

site.

RESULTS AND DISCUSSION

Many dihedrals have the potential for disorder-mediated communication

For a dihedral to have ordered and disordered regimes, 〈τord〉 must be significantly larger 

than 〈τdis〉. We reasoned that determining if 〈τord〉 ≥ 3 × 〈τdis〉 is a reasonable heuristic for 

identifying dihedrals with separable ordered and disordered regimes based on the likelihood 

ratio defined in Eq. 1. Dihedrals that do not meet this criterion are classified as entirely 

being in ordered regimes and, therefore, are only capable of having structural correlations 

with other dihedrals.

Based on the criterion defined above, we find that 556 of the 1584 dihedrals in CAP have 

separable ordered and disordered regimes and, therefore, are capable of disorder-mediated 

communication with other dihedrals (Fig. S3). Mapping these dihedrals to the apo structure 

of CAP highlights a number of interesting patterns (Fig. 3). First of all, CARDS reveals that 

many side-chain dihedrals buried in CAP’s core are capable of disorder-mediated 

communication. This finding helps to rectify the apparent contradiction between the 

common physical intuition that proteins’ cores should be rigid due to their tight packing and 

the observation that there is substantial conformational heterogeneity within proteins’ cores.
79,80 That is, dihedrals within a protein’s core are commonly locked in a single rotameric 

state for extended periods of time but rare fluctuations create room for conformational 

changes. Backbone dihedrals that are capable of disorder-mediated communication tend to 

reside on the protein’s surface. Notably, a number of these backbone dihedrals are in β-

sheets that contact cAMP. However, there are also backbone dihedrals within the core that 

are capable of disorder-mediated communication. For example, we find backbone dihedrals 

within the central hinge region that are capable of disorder-mediated communication. This 

observation is noteworthy because the hinge region undergoes a large conformational change 

upon activation of CAP (Fig. 1).48–50 We find that similar patterns emerge when we vary the 

cutoff for determining whether a dihedral has separable ordered and disordered regimes (Fig. 

S4).
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Disorder-mediated correlations dominate communication between the CBDs

Given experimental evidence for allosteric communication between the CBDs without a 

concerted structural change,49 we expect the disorder-mediated component of the holistic 

correlation between these sites to be larger than the purely structural component. To test this 

prediction, we simulated apo CAP for 1.5 μs and calculated the net communication of every 

residue to one of the cAMP-binding sites. Specifically, we defined the target site as all 

residues with heavy atoms within 6 Å of one of the two cAMP molecules in the holo crystal 

structure (PDB ID 1CGP46). The residues in this target site are 30, 36, 49, 61–62, 64, 69–86, 

and 99 from chain A and residues 122–129 from chain B.

As predicted, CARDS successfully identifies that there is communication between the two 

CBDs. Fig. 4A shows the holistic correlations to a single cAMP-binding site. 

Unsurprisingly, the residues with the strongest correlations to this set of residues reside 

within the same CBD. However, there is also strong communication between the target site 

and residues lining the other cAMP-binding pocket. There are also strong correlations on the 

central hinge region and the interface between the CBDs and DBDs that may be responsible 

for allosteric coupling between these domains.

To determine the relative importance of disorder-mediated communication and purely 

structural correlations, we broke the holistic communication into structural and disorder-

mediated components. Furthermore, we used bootstrapping to estimate the uncertainty in 

each of these components.

Identifying residues where disorder-mediated communication to the target cAMP-binding 

site is larger than purely structural correlations automatically identifies a number of residues 

in the second cAMP-binding site (Fig. 4B, Fig. S5). This finding demonstrates that CARDS 

recapitulates the experimental finding that communication between the two CBDs does not 

primarily occur through concerted structural changes.49 CARDS also identifies disorder-

dominated communication within a single CBD. Furthermore, the Pearson correlation 

coefficient between structural and disorder-mediated communication is 0.44. This result 

indicates there are some similarities between patterns of allosteric coupling that could be 

observed by focusing entirely on structural correlations and those identified by CARDS, but 

that considering disorder provides additional information.

Disorder-mediated communication is enhanced in the S62F variant

The S62F variant of CAP is still activated by cAMP binding.49,50,81,82 However, NMR 

studies have revealed that the conformation of the DBDs does not change upon cAMP 

binding. Rather, NMR and ITC experiments suggest an important role for conformational 

entropy, with the DBDs only changing conformation in the presence of both cAMP and 

DNA.49,50 Therefore, we expect an increase in disorder-mediated communication between 

the CBDs and DBDs in the S62F variant, compared to wild-type CAP.

To determine the effect of the S62F variant, we also ran 1.5 μs of simulation of this variant. 

Then we calculated the holistic communication to a single cAMP-binding site, as described 

for wild-type CAP.
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As expected, we observe significant increases in disorder-mediated communication between 

the target CBD and the DBDs. There are particularly large increases in disorder-mediated 

correlations in regions of known importance for CAP activation, such as the central hinge 

region and along the interfaces between the CBDs and DBDs (Fig. 5A). At the same time, 

there are some decreases in disorder-mediated communication within the CBDs. There are 

also changes in purely structural correlations. These changes often follow the same 

qualitative trends as the changes in disorder-mediated communication. However, the 

magnitudes of any increases in purely structural correlations are considerably smaller than 

the increases in disorder-mediated correlations. Furthermore, reductions in structural 

correlations are often larger than any decreases in disorder-mediated communication.

Side-chain-side-chain and backbone-side-chain correlations dominate allosteric 
communication in CAP

To begin understanding the relative importance of different types of degrees of freedom, we 

plotted the matrix of correlations between every pair of dihedrals (Fig. 6A). The upper 

triangle represents purely structural correlations, while the lower triangle represents purely 

disorder-mediated correlations. Side-chain and backbone dihedrals are also grouped together 

to enable comparisons between the relative strengths of backbone-backbone, backbone-side-

chain and side-chain-side-chain correlations.

Inspection of the matrix of all pairwise correlations immediately reveals that side-chain-

side-chain correlations dominate allosteric communication in CAP. This observation is 

consistent with previous reports that side-chain degrees of freedom are more variable than 

the backbone.79,80,83–89 Backbone-backbone correlations are far rarer, and we find that 

disorder-mediated correlations between backbone dihedrals are more common than 

structural correlations.

We also find a small number of backbone dihedrals that appear to be hubs of communication 

that are coupled to the side-chains of a large fraction of the residues in CAP. These hubs 

appear as lines in the backbone-side-chain quadrants of the matrix in Fig. 6A. Mapping the 

strongest (top 5%) backbone hubs to the structure reveals that they cluster in two regions: 

the phosphate-binding cassette (PBC) of each CBD and the interface between the CBDs and 

DBDs, including the central hinge (Fig. 6B). Using an even stricter cutoff (top 2%) only 

identifies residues along the CBD-DBD interface and within the central hinge (Fig S6), 

further emphasizing their importance in the allosteric network. This result suggests that 

perturbations to these functionally important regions (e.g. cAMP binding) can influence the 

behavior of the entire protein, and vice versa.

Locating communication hotspots identifies key functional sites

The coincidence of backbone dihedrals that are hubs of communication and key functional 

sites suggests that CARDS may be capable of predicting the locations of such sites. Indeed, 

if evolution has selected for communication between particular sites, then one might expect 

residues in these sites to have stronger coupling to other regions of a protein than typical 

residues.
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To detect strongly communicating residues, we ranked each residue based on the sum of its 

correlations to all other residues in the protein. This measure of global communication will 

highlight two types of hotspots: 1) hubs with correlations to many residues and 2) residues 

that have strong correlations to a few residues.

Coloring each residue in the apo structure according to its global communication highlights 

that the central hinge region and the helices between the two cAMP-binding sites are key 

mediators of allosteric communication in CAP (Fig. 7). There are also hotspot residues in 

other parts of the cAMP-binding sites and along the interfaces between the CBDs and 

DBDs. These are precisely the regions that were identified by assessing communication to a 

single cAMP-binding site, providing evidence that CARDS can indeed identify key 

functional sites without foreknowledge of their locations. This conclusion is further 

supported by the fact that the central hinge region has even stronger communication in the 

S62F variant (Fig. S7).

CONCLUSIONS

CARDS provides a means to integrate concerted structural changes and disorder-mediated 

correlations into a holistic view of allostery. Application of this approach to wild-type CAP 

and the S62F variant demonstrates the method’s ability to identify allosteric coupling in the 

absence of concerted structural changes. Specifically, we showed that examining the 

coupling of every residue to a known cAMP binding site naturally highlights regions of the 

protein that are known to be impacted by cAMP binding, such as the second cAMP binding 

site and the central hinge region connecting the CBDs and DBDs. Decomposing the 

correlations between these sites into disorder-mediated and purely structural components 

demonstrates an important role for disorder-mediated coupling in the absence of concerted 

structural changes. Our global communication metric also provides a means to identify 

important functional sites without foreknowledge of their existence and locations. For 

example, this metric identifies the central hinge region—which undergoes the largest 

conformational change upon activation—and the cAMP binding pockets as important 

components of the allosteric network in CAP. Therefore, CARDS should be a powerful 

means to identify allosteric networks in systems that have not been studied as thoroughly as 

CAP. Taken together, we expect CARDS to be of great utility for understanding allostery in 

systems where it is already known to occur, as well as for predicting allostery in systems 

where it has yet to be observed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Structures of CAP in apo and holo forms. A. Structure of apo-CAP, with cAMP-binding 

domains (CBDs) and DNA-binding domains (DBDs) indicated by brackets. Residues that 

make up the hinge region are colored in red. B. Structure of holo-CAP with cAMP ligands 

(spheres) bound to the CBD regions. The same hinge residues are colored in red.
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Figure 2. 
Workflow for identifying ordered and disordered regimes. A. An example of the time-

evolution of a χ1 angle. The core of each rotameric state is shaded green and the buffer 

zones between them are white. B. Assignment of each snapshot in the trajectory to rotameric 

states. C. Transition indicator function identifying where the dihedral changes states. 

Examples of ordered (τord) and disordered (τdis) times are labeled. D. Assignment of each 

snapshot in the trajectory to dynamical states (e.g. ordered and disordered regimes).
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Figure 3. 
Residues whose dihedrals are capable of disorder-mediated communication. A. Residues 

with at least one backbone dihedral that is capable of disorder-mediated communication 

(orange). B. Residues with at least one side-chain dihedral that is capable of disorder-

mediated communication (green).
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Figure 4. 
Communication to a single CBD. A. Holistic mutual information (IH) of each residue to the 

residues lining a single cAMP-binding pocket (shown in sticks). B. Residues whose 

communication to the cAMP-binding pocket is dominated by disorder-mediated 

communication (orange sticks). Residues lining the target cAMP-binding pocket are in blue 

sticks.
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Figure 5. 
Change in coupling to a single CBD pocket upon the S62F mutation. A. Change in disorder-

mediated communication of each residue to the single cAMP-binding pocket depicted in 

Fig. 4. B. Change in structural communication of each residue to the same cAMP-binding 

pocket. Red indicates increased communication in S62F compared to wild-type, and blue 

indicates decreased communication.
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Figure 6. 
Hubs of backbone-side-chain communication in wild-type CAP. A. Mutual information 

between every pair of dihedrals in wild-type CAP. The upper triangle of the matrix (above 

the green diagonal) represents structural communication and the lower triangle (below the 

green diagonal) represents disorder-mediated communication. The pink and cyan squares 

encompass the regions of the matrix that capture backbone-side-chain communication that is 

mediated by disorder-mediated and structural coupling, respectively. B. Structure of wild 

type CAP highlighting the residues that are the strongest hubs (top 5%) of backbone-side-

chain communication (red sticks).
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Figure 7. 
Global communication strength of each residue in apo CAP.
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