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and memory (CCR7) markers. For the clinical trial, T cells 
were activated, transduced, selected for  CD34t+ cells, then 
re-activated, and expanded in IL-2 and IL-15. After lym-
phodepleting chemotherapy, patients were given transduced 
T cells and IL-2, and were followed for clinical and biologi-
cal responses. Transduced T cells were detected in the circu-
lation of three treated patients for the duration of observation 
(42, 523, and 255 days). Patient 1 tolerated the infusion well 
but died from progressive disease after 6 weeks. Patient 2 
had a partial response by RECIST criteria then progressed. 
After progressing, Patient 2 was given high-dose IL-2 and 
subsequently achieved complete remission, coinciding with 
the development of vitiligo. Patient 3 had a mixed response 
that did not meet RECIST criteria for a clinical response and 
developed vitiligo. In two of these three patients, adoptive 

Abstract Malignant melanoma incidence has been 
increasing for over 30 years, and despite promising new 
therapies, metastatic disease remains difficult to treat. We 
describe preliminary results from a Phase I clinical trial 
(NCT01586403) of adoptive cell therapy in which three 
patients received autologous  CD4+ and  CD8+ T cells trans-
duced with a lentivirus carrying a tyrosinase-specific TCR 
and a marker protein, truncated CD34 (CD34t). This unusual 
MHC Class I-restricted TCR produces functional responses 
in both  CD4+ and  CD8+ T cells. Parameters monitored 
on transduced T cells included activation (CD25, CD69), 
inhibitory (PD-1, TIM-3, CTLA-4), costimulatory (OX40), 
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transfer of tyrosinase-reactive TCR-transduced T cells into 
metastatic melanoma patients had clinical and/or biological 
activity without serious adverse events.

Keywords Adoptive transfer · Metastatic melanoma · 
Clinical trial · Transduced T cells · Immunotherapy · 
Vitiligo

Abbreviations
2D  Two-dimensional
3D  Three-dimensional
CCR7  C–C motif chemokine receptor 7
CD34t  Truncated CD34
FDA  U.S. Food and Drug Administration
pMHC  Peptide-loaded MHC complexes, in this study, 

tyrosinase peptide-loaded HLA-A2 MHC 
molecules

rhIL-2  Recombinant human IL-2
rhIL-15  Recombinant human IL-15
TIM-3  T cell immunoglobulin and mucin-domain 

containing-3
Treg  Regulatory  CD4+ T cells

Introduction

Melanoma incidence has risen steadily to over 80,000 new 
cases a year in the United States alone (approximately 
232,000 worldwide) [1, 2]. Despite promising new therapies, 
metastatic melanoma is difficult to treat, with a 5-year sur-
vival rate of 17.9%, leading to over 10,000 mortalities in the 
United States last year (approximately 55,000 deaths world-
wide). Conventional therapies are rarely curative for meta-
static melanoma, yet results are encouraging for immuno-
therapies. Several new immunotherapies have been approved 
by the FDA, including anti-PD-1, anti-PD-L1, and anti-
CTLA-4 monoclonal antibodies, which block checkpoint 
pathways that suppress T cell responses, thereby releasing 
inhibited T cells to attack the tumor [3–5]. However, these 
therapies do not induce tumor regression in all patients [6, 
7]. There is evidence that responders to PD-1 blockade may 
have pre-existing tumor-reactive T cells in the tumor mar-
gins [8, 9] and that responders to CTLA-4 blockade change 
their T cell repertoire in ways consistent with the expansion 
of novel tumor-reactive T cells and/or expansion of pre-
existing anti-tumor T cells [10, 11]. Evidence is mounting 
that these therapies require the presence of tumor-reactive 
T cells, and patients having insufficient tumor-reactive T 
cells may not respond to these checkpoint inhibitors. We and 
others are developing strategies to introduce anti-tumor T 
cell receptors (TCRs) into T cells, redirecting large numbers 
of T cells to be tumor-reactive [12–17]. Previous studies 
have found that delivering anti-tumor T cells to patients can 

induce durable regression of tumors [18]. Such studies found 
objective clinical responses (13–56%) when treating with 
T cells targeted to both melanocyte-differentiation antigens 
and cancer-germline antigens [19–23]. Melanocyte-differen-
tiation antigen-specific T cell studies demonstrated on-target 
off-tumor toxicities to melanocytes in the skin, eye, and ear 
(vitiligo, uveitis, and hearing loss), while targeting cancer-
germline antigens had off- and on-target off-tumor effects 
including neurological toxicities and colitis. Further studies 
following the transduced T cells over time in responding 
versus non-responding patients will help identify factors that 
contribute to the safety, success or failure of TCR-transduced 
T cell therapy.

This report describes the preliminary results of monitor-
ing transduced T cells in three patients in a Phase I clinical 
trial treating metastatic melanoma patients with autologous 
T cells transduced with the tyrosinase-reactive TIL1383I 
TCR. The three patients treated had three distinct clinical 
courses: one with rapid progression of disease, a second with 
an objective clinical response, and a third with a biological 
response in the form of vitiligo. Patient 2, with the observed 
clinical response, had greater numbers of TCR-transduced 
T cells, increased activation of TCR-transduced T cells, 
and increased expression of some inhibitory receptors. In 
Patient 2, upregulation of inhibitory receptors on T cells in 
the blood did not preclude anti-tumor responses of TCR-
transduced T cells. Although, more patients are needed to 
definitively demonstrate safety and identify response rates, 
these preliminary results suggest that patients can have clini-
cal and biological responses to TIL1383I TCR-transduced T 
cell therapy in the absence of serious adverse events.

Methods

Study design

This study describes preliminary results from the first three 
patients in a 3 × 3 Phase I dose escalation trial introduc-
ing gene-modified autologous T cells into metastatic mela-
noma patients. Patients received 2.5 × 106/kg lentivirally 
transduced T cells after non-myeloablative lymphodeple-
tion and were given low-dose IL-2 for 1 week following 
the T cell infusion. The study was performed at Loyola 
University, Chicago, and registered with Clinicaltrials.gov 
(NCT01586403). Informed consent was obtained prior to 
enrolling patients. This study was approved by the Institu-
tional Review Board at Loyola Medical University Center 
(LU 203732), the Recombinant DNA Advisory Commit-
tee (RAC Protocol 1101-1086), the Institutional Biosafety 
Committee (LU 203732), the Cancer Therapy Evaluation 
Program (CTEP 9358), and the United States Food and Drug 
Administration (IND 14971).
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See full eligibility and exclusion criteria in Supplemen-
tary Table 1. Briefly, patients must have a diagnosis of meta-
static melanoma, which must test positive for HLA-A2 and 
the tyrosinase antigen by immunohistochemistry (Supple-
mentary Figure 1). Patients may not have metastatic lesions 
in the brain unless controlled and may not have previously 
received non-myeloablative chemotherapy or immunother-
apy specifically targeting tyrosinase. Patients’ descriptions 
are found in Table 1.

T cell production

For each patient, PBMCs (isolated from an apheresis) were 
activated for 2 days with anti-CD3 antibody (CD3 Pure, 
50  ng/mL, Miltenyi Biotec GMP grade), recombinant 
human IL-2 (rhIL-2, Prometheus Therapeutics & Diagnos-
tics, 300 IU/mL), and recombinant human IL-15 (rhIL-15, 
Biologic Resources Branch of the National Cancer Insti-
tute, 100 ng/mL). Activated T cells were transduced by 
spinoculation for 2 h at 2000×g with a GMP-grade repli-
cation-deficient lentivirus carrying the TIL1383I TCR and 
CD34t genes (Supplementary Figure 2). Transduced T cells 
were cultured 4 days then isolated by CD34-selection using 
the CliniMACS cell selector. After culturing 4 more days, 
 CD34t+ T cells were tested for viral copy number, then 
expanded by culturing with CD3 Pure (30 ng/mL), rhIL-2 
(300 IU/mL), rhIL-15 (100 ng/mL), and irradiated non-
autologous PBMCs at 1:200 T:PBMC ratio for 10 days (14 
for Patient 1). During the last 5 days of culture, patients were 
treated with cyclophosphamide (60 mg/kg) and fludarabine 

(25 mg/m2) to induce non-myeloablative lymphodepletion 
[24]. Twenty-four hours after the end of lymphodepletion, 
expanded transduced T cells were collected, and 2.5 × 106/
kg (1.67 × 106/kg for Patient 1)  CD34t+ T cells were admin-
istered to the patient via continuous i.v. infusion. Patients 
were treated with a reduced dose IL-2 regimen [25, 26] of 
72,000 IU/kg, delivered i.v. three times daily for 7 days. Cell 
counts during the production process are described in Sup-
plementary Table 2.

Flow cytometry

Each set of patient samples was stained with the following 
antibodies: CD3-Brilliant Violet 785 (OKT3, Biolegend), 
CD4-APC/Cy7 (OKT4, Biolegend), CD8-Alexafluor 700 
(SK1, Biolegend), CD11b-Brilliant Violet 570 (M1/70, 
Biolegend), CD19-Brilliant Violet 570 (HIB19, Bioleg-
end), CD34-Brilliant Violet 421 (561, Biolegend), TCR 
vβ12-PE (VER2.32.1, Beckman Coulter), CD25-Brilliant 
Violet 711 (BC96, Biolegend), CD69-PE/Cy7 (FN50, Biole-
gend), OX40-FITC (Ber-ACT35, Biolegend), PD-1-PerCP/
Cy5.5 (EH12.2H7, Biolegend), T cell immunoglobulin and 
mucin-domain containing-3 (TIM-3)-APC (F38-2E2, Bio-
legend), CTLA-4-PE-CF594 (BNI3, BD Biosciences), C–C 
motif chemokine receptor 7(CCR7, CD197)-Brilliant Violet 
650 (G043H7, Biolegend), and a viability dye (Live/Dead 
Aqua, Invitrogen). Representative stains are shown in Sup-
plementary Fig. 3. All samples were analyzed on the LSR-
Fortessa in the Loyola University, Chicago, Flow Cytometry 
Core. The absolute number of TCR-transduced T cells per 

Table 1  Patient and product descriptions

a  All patients Stage IV at time of treatment
b  In Patient 2, the primary site of melanoma was not identified

Patient 1 Patient 2 Patient 3

Age (years) 56 41 66
Gender Male Male Male
Stage of melanoma at  diagnosisa IIIA (T2aN2aM0) Not  determinedb (TxN2bMx) IIIB (T1aN2bM0)
Prior therapies received High-dose IFN-α, High-dose IL-2, Ipili-

mumab, palliative intensity-modulated 
radiation therapy to right upper lobe of 
lung, paclitaxel/carboplatin

Ipilimumab High-dose vemurafenib, 
IL-2, ipilimumab, 
dabrafenib

Tissue involvement LNs, right upper lobe lung, colonic mass LNs, subcutaneous tissue LNs, right adrenal
Number of transduced (and total) T cells 

given
2.00 × 108 (2.27 × 108) 2.72 × 108 (2.87 × 108) 2.06 × 108 (2.22 × 108)

Transduced T cells/kg 1.67 × 106 2.5 × 106 2.5 × 106

Final product percent  CD34+ of  CD3+ 88.1 95.8 92.9
Final product percent vβ12+ of  CD34+ 27.7 46.5 43.7
Final product IFNγ: T2+ Tyro (T2 alone)
[pg/mL]

879 (32) 1492 (449) 2738 (176)

IFNγ: 624-Mel  (A2− 624-28) [pg/mL] 356 (10) 494 (18) 908 (77)
Treatments received post-T cell therapy None Pembrolizumab high-dose IL-2 Pembrolizumab
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milliliter (mL) of study blood was estimated by combining 
the percentages of TCR-transduced T cells with counts of 
total white blood cells from known volumes of whole blood.

Affinity measurements

The solution (three dimensional, 3D) binding affinity of 
TIL1383I was determined by surface plasmon resonance 
(SPR). Soluble TIL1383I TCR and HLA-A2–tyrosinase 
complexes were refolded from bacterial inclusion bodies and 
purified chromatographically [27]. Solution (3D) binding 
affinity was measured at 25 °C using a Biacore T200 instru-
ment [27, 28]. HLA-A2–tyrosinase complexes were tethered 
to a CM5 sensor surface using standard amine coupling. Sol-
uble TIL1383I TCR complexes were injected over the sensor 
surface at increasing concentrations, and the response due 
to binding recorded. After subtracting the responses from a 
mock surface, the data were fit to 1:1 binding model using 
Biaevaluation 4.1.

Two-dimensional (2D) affinity measurements were taken 
using the micropipette adhesion frequency assay [29, 30]. 
Briefly, frozen patient T cell samples were thawed and 
permitted to recover for 3 days in AIM V medium in the 
presence of rhIL-2 (300 IU/mL) and rhIL-15 (100 ng/mL). 
Human RBCs coated with HLA-A2–tyrosinase-peptide 
(pMHC, using HLA-A2 molecules mutated to abrogate CD8 
binding) and patient T cells were aspirated onto opposing 
pipettes and brought into contact 50 times with the same 
area (Ac) and time, using an electronically controlled piezo-
electric actuator. Upon retraction of the T cell, adhesion was 
observed as a distention of the RBC membrane, allowing 
for the quantification of adhesion frequency (Pa) at equi-
librium. Surface pMHC (ml) and TCRβ (mr) densities were 
determined by flow cytometry using BD QuantiBRITE 
PE Beads for standardization (BD Biosciences). Relative 
2D affinities were calculated using the following equation: 
A
c
K
a
= − ln

[

1 − P
a
(∞)

]

∕m
r
m

l
 [29].

Results

Clinical responses

All three patients tolerated the infusion well. Some toxici-
ties were observed (Supplementary Table 3), which were 
similar to previously observed toxicities seen in patients 
receiving non-myeloablative lymphodepletion (lympho-
penia, neutropenia, thrombocytopenia, and rash). Con-
sidering toxicities previously observed in patients given 
melanoma/melanocyte-specific T cells [20, 31], our toxici-
ties did not include uveitis or hearing loss but did include 

vitiligo. Patient 3 developed vitiligo after treatment with 
transduced T cells and Patient 2 developed vitiligo after 
progressing and receiving treatment with high-dose IL-2 
(Fig. 1c).

In Patient 1, there was neither tumor nor biologi-
cal response attributable to the TCR-transduced T cells. 
Patient 1 received two-thirds the dose of TCR-transduced 
T cells given to the other two patients, following U.S. 
Food and Drug Administration (FDA) recommendations 
in response to a high viral copy number in the final T cell 
product. Patient 1 had 7.5 copies per cell, instead of 5 or 
fewer copies per FDA guidelines, and the recommenda-
tion was to reduce the T cell dose proportionally. Patient 
1 also had the highest tumor burden, with tumors over 
1 cm in size in at least eight sites, with the largest tumor 
being over 3 cm in diameter at time of treatment. Patient 
1 passed away 47 days post-transfer without responding 
to treatment.

Patient 2 had a partial response with tumors shrink-
ing over 30% for 5 months post-treatment (Fig. 1a). He 
began the trial with tumors at six locations, each measur-
ing less than 1.5 cm in diameter. Tumors at all locations 
regressed or stabilized for over 2 months. After his dis-
ease progressed, Patient 2 received PD-1 blockade with 
pembrolizumab for 6 weeks (days 214–256). After pro-
gressing again, Patient 2 received high-dose IL-2 therapy 
(600,000 IU/m2 given i.v. every 8 h for a maximum of 14 
doses on days 284, 298, and 368 post-T cell infusion), 
which preceded tumor regression and remission persisting 
over 2 years. On two separate occasions of receiving high-
dose IL-2 treatment, he developed rhabdomyolysis. This 
rhabdomyolysis was not considered a treatment-related 
event from the transduced T cells, as histology of biopsy 
samples of inflamed muscle tissue stained for CD3 and 
CD34t did not reveal a significant population of  CD34t+ T 
cells. Patient 2 developed progressive vitiligo after high-
dose IL-2 and has very little normal skin pigmentation 
remaining.

Patient 3 had an observed biologic response to the T 
cells, in the form of progressive vitiligo (Fig. 1b). Histol-
ogy demonstrated that  CD3+vβ12+CD34t+ T cells were 
present at the margins of the vitiligo but not normal skin 
in both Patient 2 and Patient 3 (Fig. 1c). There were sub-
stantially higher percentages of these in the skin at the 
margin of the vitiligo than in the blood, suggesting that 
patients’ transduced T cells were functional and targeting 
melanocytes. Patient 3 began the trial with a 3-cm tumor at 
one location and another tumor less than 1 cm in diameter. 
Although his tumors had a small reduction in size (cumu-
latively about 10%) for 5 months, other tumors progressed; 
therefore Patient 3 was nonresponsive by RECIST criteria. 
He went on to receive PD-1 blockade, but passed away 
from progressive disease shortly thereafter.
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Fig. 1  Clinical responses of patients. a. Lesions in Patient 2 before 
and after T cell transfer. (Top) Tumor in the right axial lymph node. 
(Bottom) Tumor in the right apical lung nodule. b. Vitiligo in Patient 
3, with boundaries approximately shown by white outline. c. Trans-
duced T cells in the margins of the vitiligo in Patients 2 and 3. (i) 
vitiligo in Patient 2 with location of punch biopsy (arrow); (ii) vitiligo 
in Patient 3 with locations of first punch biopsy (1, taken at 3 weeks 
post-transfer, had neither melanocytes nor T cells present) and sec-
ond punch biopsy (2, taken at 4 weeks post-transfer); (iii–viii): Sec-

ond punch biopsy from Patient 3, scale bars are 10 µm (iii) Remain-
ing TRP-1+ melanocytes (black arrows, blue staining) in second 
biopsy taken from patient 3; (iv) CD3 expression in violet; (v) Vβ12 
expression in red; (vi) CD34 expression in green; (vii) DAPI nuclear 
staining in blue (E  =  epidermis, D  =  dermis); (viii) Colocalized 
 CD3+Vβ12+CD34t+ staining after DAPI; (ix) Percent of  CD3+Vβ12+ 
cells (gray bar), percent of  CD3+CD34t+ cells (black bar), and per-
cent of  CD3+Vβ12+CD34t+ cells (white, striped bar) in biopsy from 
patient 2 and biopsy 2 from patient 3
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Biology of the T cells: T cell numbers and phenotype 
pre‑ and post‑transfer

In this study, CD34t is expressed on the surface of trans-
duced cells and provides a powerful marker to uniquely iden-
tify transduced T cells, as the transduced TCR is expressed 
at lower levels due to competition with the endogenous TCR 
for CD3 components [32, 33]. Over 85% of the final prepa-
ration of T cells were  CD34t+, whereas only a fraction of 
 CD34t+ T cells had detectable TCR (vβ12 in Table 1). The 
clinical responder, Patient 2, had the highest CD34 expres-
sion in T cells prior to transfer, but interestingly, there was 
not a strong correlation between clinical response and the 
intensity of TCR expression (Supplementary Figure 4). We 
detected transduced  (CD34t+) T cells in all patients for the 
duration of observation (Fig. 2). In all patients, the percent-
age transduced of total T cells peaked within 7 days, while 
the number of transduced T cells per milliliter of blood 
kept increasing until it peaked between 14 and 21 days. The 
prolonged increase in the number but not the percentage of 
transduced T cells is due to a substantial increase in total 
T cell numbers after day seven (Supplementary Figure 5). 
Peak numbers of transduced T cells are highest in the clini-
cal responder, Patient 2 (1145  CD8+ and 2174  CD4+ cells/
mL), and lowest in the non-responder, Patient 1 (461  CD8+ 
and 661  CD4+ cells/mL).

Treatment of Patient 2 with high-dose IL-2 preceded a 
dramatic increase in both the percent and number of trans-
duced  CD8+ T cells, and a smaller increase in the percent 
and number of transduced  CD4+ T cells, occurring after 
the third course of high-dose IL-2. Thus, Patient 2 had the 
highest initial peak number of transduced T cells and a sub-
stantial increase in the number of transduced T cells after 
the third course of high-dose IL-2, potentially contributing 
to the lasting remission thereafter.

Activation (CD25 and CD69)

To determine whether the transduced T cells were respond-
ing to tumor or melanocyte antigens in the patients, we 
utilized two well-characterized activation markers, CD25 
(IL-2Rα) and CD69. CD25 and CD69 are both upregu-
lated within hours of T cell activation and decrease back to 
baseline levels after several days; thus expression of these 
markers identifies recently activated T cells [34, 35]. Due 
to prior activation and culture in IL-2 and IL-15, up to 40% 
of transduced  CD4+ and  CD8+ T cells co-express CD25 
and CD69 immediately prior to transfer into the patients 
(Fig. 3). The percent of activated transduced  CD4+ and 
 CD8+ T cells is higher than endogenous T cells at almost 
all points and increases after day one in each patient, sug-
gesting that transduced cells were activated in all patients. 
Comparing patients, Patient 2 had higher percentages of 

activated transduced  CD4+ and  CD8+ T cells than Patient 
1 or 3. Thus, while TCR-transduced T cells were somewhat 
activated in all patients, the clinical responder (Patient 2) 
had the highest frequency of activated transduced  CD4+ T 
and  CD8+ T cells in the blood.

PD-1 blockade did not precede any increase in activation 
markers in Patient 2. In Patient 3, PD-1 blockade preceded 
a substantial increase (from 15.6 to 37.1% in  CD4+ cells 
and 8.2–23.1% in  CD8+ cells) in the expression of activa-
tion markers in transduced T cells and a slight increase in 
untransduced T cells. During high-dose IL-2 therapy in 
Patient 2, activation markers fluctuate on transduced  CD4+ 
and  CD8+ T cells. In these patients, therefore, treatment with 
immunotherapies after progression coincides with changes 
in activation, but further work is necessary to determine 
whether and how immunotherapies influence transduced T 
cell activation.

Inhibitory receptors (PD‑1, TIM‑3, and CTLA‑4)

In melanoma patients, tumor-reactive T cells have been 
found to up-regulate inhibitory receptors, including PD-1, 
CTLA-4, and TIM-3, and to be functionally inhibited by 
interaction of these receptors with their cognate ligands 
[36–39]. PD-1 and CTLA-4 blockade are promising FDA-
approved immunotherapies [40–46] and TIM-3 antibody-
mediated blockade is currently in Phase I clinical tri-
als (NCT02817633, NCT02608268) for the treatment of 
metastatic melanoma. We analyzed PD-1 and TIM-3 co-
expression on transduced T cells in the patients over time. 
At most time-points in all three patients, less than 20% of 
transduced  CD4+ and  CD8+ T cells co-express PD-1 and 
TIM-3, suggesting that there was no overwhelming exhaus-
tion of transduced T cells in the blood (Fig. 4), although 
tumor-infiltrating transduced T cells might be substantially 
more exhausted. Patients 1 and 3 did not have consistently 
higher percentages of  CD4+ or  CD8+  CD34t+ T cells co-
expressing PD-1 and TIM-3 than Patient 2. Patient 2 had 
higher percentages of transduced  CD4+ and  CD8+ cells 
expressing PD-1 than Patients 1 or 3 (Supplementary Fig-
ure 6), perhaps because PD-1 is upregulated on activated T 
cells. These results suggest that absent or reduced anti-tumor 
responses in Patient 1 and 3 cannot be attributed to higher 
levels of exhaustion in transduced cells in the blood.

Treatment with PD-1-blockade did not precede substan-
tial or consistent increases in the percentage of transduced 
cells expressing PD-1 or co-expressing PD-1 and TIM-3 
in Patients 2 or 3, suggesting that PD-1-blockade did not 
enhance the survival or proliferation of PD-1-expressing 
transduced T cells in the blood in these patients. High-dose 
IL-2 therapy preceded a substantial transient increase in 
the percentage of transduced  CD4+ T cells co-expressing 
PD-1 and TIM-3, and an increase in the percentage of 
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PD-1-expressing transduced  CD8+ T cells. It is possible 
that in Patient 2, high-dose IL-2 augmented activation 
and tumor-trafficking of TCR-transduced T cells, thereby 
increasing PD-1 and TIM-3 expression and mediating some 
or all of the tumor regression seen after high-dose IL-2. This 

does not exclude the possibility that endogenous tumor-spe-
cific T cells may have been activated and responding as well.

CTLA-4 is an inhibitory receptor upregulated after acti-
vation and expressed on tumor-reactive T cells [36, 47]; 
CTLA-4-blockade has been found to enhance anti-tumor 

Fig. 2  Transduced T cell per-
centages and numbers in PBL 
samples. Patient blood samples 
were collected at indicated time-
points post-infusion. PBMC 
were isolated from these blood 
samples by density gradient 
centrifugation and cryopre-
served for later batch analysis. 
At least a year after each patient 
was treated, or after the patient 
passed away, the collection 
of samples for that patient 
was thawed and collectively 
analyzed by flow cytometry. 
All patients were treated with 
low-dose IL-2 (72,000 IU/
kg, i.v., three times daily) for 
7 days after T cell infusion 
(green line). Two patients went 
on to receive pembrolizumab, 
each course (2 mg/kg, given 
i.v. every 3 weeks) indicated by 
closed purple arrows, and one 
patient further received high-
dose IL-2, with each course 
(600,000 IU/m2, given i.v. every 
8 h for a maximum of 14 doses 
on days 284, 298, and 368 
post-T cell infusion) indicated 
by open green arrows. a. The 
percent transduced  (CD34t+, 
green triangles), transduced 
 CD4+  (CD34t+CD4+, blue dia-
monds) and transduced  CD8+ 
 (CD34t+CD8+, red squares) of 
 CD3+ T cells in patient blood 
samples drawn at indicated 
times post-T-cell transfer. b. The 
number of  CD34t+CD3+ (green 
triangles),  CD34t+CD3+CD4+ 
(blue diamonds), and 
 CD34t+CD3+CD8+ (red 
squares) T cells per milli-
liter patient sample blood at 
indicated times post-transfer. 
Bar graphs show the average 
percentages of indicated cells 
across all time-points with error 
bars representing the standard 
error
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T cell responses [42–46]. In all patients, the percentage of 
CTLA-4+ cells in both transduced and endogenous  CD8+ 
and  CD4+ T cells increased transiently during low-dose 
IL-2 treatment. Patient 1 had the highest peak percentage 
of transduced  CD8+ T cells expressing CTLA-4, reaching 

99% by day 7 (Supplementary Figure 7). Patient 2 had the 
highest peak percentage of transduced  CD4+ T cells express-
ing CTLA-4, reaching 44.2% versus 18.5 and 25.7% in 
Patients 1 and 3, respectively. The absence of a cytolytic 
tumor response in Patient 1 might be related to the very high 

Fig. 3  Expression of activation 
markers, CD25 and CD69, in 
transduced and endogenous T 
cells. Patients were treated and 
samples collected and stained as 
described in Figs. 1 and 2. Cells 
were analyzed by flow cytom-
etry to identify the percentage 
of transduced  (CD34t+) and 
endogenous  (CD34t−)  CD4+ 
and  CD8+ T cells co-expressing 
CD25 and CD69. a. The percent 
 CD25+CD69+ of transduced 
 (CD34t+, solid red line) vs. 
endogenous  (CD34t−, dotted 
black line)  CD8+CD3+ T cells. 
b. The percent  CD25+CD69+ of 
transduced  (CD34t+, solid blue 
line) vs. endogenous  (CD34t−, 
dotted black line)  CD4+CD3+ 
T cells. Bar graphs show the 
average percentages of indicated 
cells across all time-points 
with error bars representing the 
standard error
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percentage of CTLA-4-expressing transduced  CD8+ T cells 
in this patient’s blood immediately post-transfer.

Following CTLA-4 expression after further clinical inter-
vention, we found that PD-1 blockade preceded an increase 
in CTLA-4-expressing transduced  CD4+ but not  CD8+ T 

cells in both Patient 2 (from 11.3 to 28.6%) and Patient 3 
(from 11.9 to 25.7%). High-dose IL-2 therapy did not pre-
cede consistent changes in CTLA-4 expression on  CD4+ 
or  CD8+ T cells. Therefore, in Patient 1, PD-1 blockade 
preceded greater expression of CTLA-4 but not PD-1, while 

Fig. 4  Transduced and 
endogenous T cell expression 
of exhaustion-related receptors 
PD-1 and TIM-3 post-transfer. 
Patients were treated and blood 
collected as described in Figs. 1 
and 2. Cells were analyzed 
by flow cytometry to identify 
the percentage of transduced 
 (CD34t+) and endogenous 
 (CD34t−)  CD4+ and  CD8+ 
T cells co-expressing PD-1 
and TIM-3. a. The percent 
PD-1+TIM-3+ of transduced 
 (CD34t+, solid red line) vs. 
endogenous  (CD34t−, dotted 
black line)  CD8+CD3+ T cells. 
b. The percent PD-1+TIM-3+ of 
transduced  (CD34t+, solid blue 
line) vs. endogenous  (CD34t−, 
dotted black line)  CD4+CD3+ 
T cells. Bar graphs show the 
average percentages of indicated 
cells across all time-points 
with error bars representing the 
standard error
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in Patient 2, high-dose IL-2 may have preceded more expres-
sion of PD-1 but not CTLA-4 on TCR-transduced T cells.

CD25 and CTLA-4 may be co-expressed on regulatory 
 CD4+ T cells  (Treg) [48]. We assessed the percentages of 
 CD25+CTLA-4+ transduced  CD4+ cells in all three patients, 
and found that Patient 2 had the highest percentage, reaching 
41.9%, versus 16.7 and 21.7% in Patients 1 and 3, respec-
tively (Supplementary Figure 8). Differences in the percent-
ages of potential  Treg in the blood do not explain the absence 
of a clinical or biological response in Patient 1 or clinical 
response in Patient 3.

Costimulation (OX40)

OX40 is upregulated after activation in both  CD4+ and 
 CD8+ T cells and enhances T cell proliferation, survival, 
and development of memory [49, 50]. Tumor-antigen-spe-
cific T cells may express OX40 and OX40 costimulation 
augments anti-tumor responses [51, 52]. Patients express-
ing OX40 on a higher percentage of their TIL have a better 
prognostic outcome [53]. So, we examined OX40 expression 
on transduced T cells. Patient 2 had fewer OX40-expressing 
transduced  CD8+ T cells at most time-points (Supplemen-
tary Figure 9). However, Patient 2 had the highest peak 
percentage of transduced  CD4+ T cells expressing OX40 
(81% in Patient 2 vs. 51.6 and 61.2% in Patients 1 and 3, 
respectively). After PD-1 blockade in Patients 2 and 3, 
there was an increase in the percent of transduced  CD4+ T 
cells expressing OX40, although neither patient had tumor 
regression. Overall, OX40 expression on transduced  CD4+ 
or  CD8+ T cells in the blood does not clearly correlate with 
clinical responses, and future studies with more patients are 
needed to determine whether PD-1 blockade regulates OX40 
on tumor-reactive  CD4+ T cells.

Memory differentiation (CCR7)

To develop long-term protection from tumor recurrence, 
transduced T cells must differentiate into memory T cells. 
CCR7 is a chemokine receptor regulating entry into lym-
phoid structures which identifies central memory T cells 
[54]. We examined CCR7 expression on transduced versus 
endogenous  CD4+ and  CD8+ T cells in all three patients. 
Prior to transfer, a fraction of transduced  CD4+ and  CD8+ 
T cells expressed CCR7. As expected by the accumulation 
of memory cells, the percentage of transduced and endog-
enous cells expressing CCR7 increased over time in all 
patients (Supplementary Figure 10). Patient 2 had a higher 
mean percentage of CCR7-expressing transduced  CD4+ and 
 CD8+ cells than Patients 3 and 1. Collectively, these results 
indicate that a substantial fraction (over 50%) of transduced 
 CD4+ and  CD8+ cells eventually expressed memory markers 
in the blood in Patient 2.

TCR affinity

All three patients received autologous T cells transduced 
with the same high-affinity (CD8-independent) TIL1383I 
TCR. The solution (3D) affinity of the TIL1383I TCR was 
measured at 9 μM, consistent with a high-affinity TCR/
pMHC interaction (Fig. 5a). However, TCR affinities meas-
ured in solution do not account for all of the interactions that 
lead to T cell activation and function, and accordingly do not 
always correlate with functional outcomes [55]. Therefore, 
we performed 2D affinity measurements on the TIL1383I 
TCR-transduced T cells delivered to the patients to deter-
mine whether an assay that measures TCR/pMHC affinity 
in the context of other cell surface interactions correlates 
with clinical outcome. Interestingly, the 2D affinity was 
notably lower in cells from Patient 1 (nonresponder) than 
Patients 2 (partial responder) or 3 (vitiligo), as was adhe-
sion frequency (Fig. 5b, c). Although based on just three 
patients, these results suggest that 2D affinity and adhesion 
frequency should be explored as markers for predicting clini-
cal outcomes.

Discussion

While melanoma-specific T cells are present in most 
patients [56], self-reactive T cells have low affinity for 
target antigens [57, 58], and tumor-reactive T cells may 
have poor viability and function after sustained growth 
in the immunosuppressive tumor microenvironment [58, 
59]. Specialized protocols that expand tumor-infiltrating 
cells with antigen and IL-2 ex vivo have had some suc-
cess inducing complete remission in some patients but 
these protocols depend on expanding a small number 
of cells substantially to generate sufficient cells to treat 
the tumor—a process that requires an accessible tumor 
with tumor-infiltrating lymphocytes as well as successful 
expansion of these TIL—which is not always feasible [60, 
61]. In this clinical trial, we are utilizing a viral vector to 
introduce a high-affinity antigen-specific TCR into meta-
static melanoma patients’  CD4+ and  CD8+ T cells to redi-
rect them to attack the melanoma. Following the fate of 
the TCR-transduced T cells after transfer, we found that, in 
these three patients, TCR-transduced T cells had a pheno-
type distinct from endogenous  CD34t− T cells, including 
higher expression of both activation and inhibition-related 
receptors, reminiscent of tumor-reactive T cells visual-
ized by tetramer staining. Certain characteristics of the T 
cell response were distinct in Patient 2, who had a clini-
cal response, compared to non-responding Patient 1 and 
Patient 3, who developed vitiligo. In Patient 2, there were 
substantially more transduced  CD8+ T cells present at later 
time-points, with a greater expansion of transduced  CD8+ 
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and  CD4+ T cells in the blood. This was associated with 
higher expression of activation markers and of activation-
associated inhibitory receptor PD-1 on transduced  CD4+ 
and  CD8+ T cells. Collectively, these results indicate that, 
in these three patients, there were higher numbers of TCR-
transduced T cells that expressed more activation markers 
in a clinical responder. The mechanisms behind increased 
activation of the transduced T cells are more elusive, and 
further elucidation of mechanisms that enhance T cell 
anti-tumor efficacy in vivo would greatly help develop 
more effective strategies to target melanoma.

The affinity measurements gave some indication about 
underlying cellular differences that might have led to a bet-
ter response in Patient 2. Despite being treated with T cells 
expressing the same TCR, different 2D affinity measure-
ments on the final product suggested that transduced T cells 
given to Patient 2 might have had higher binding affinity. 
Parameters, such as membrane composition, TCR clustering, 
and cooperative binding, will influence 2D but not 3D TCR/
pMHC affinity measurements. While 3D TCR/pMHC affin-
ity measurements are the gold standard for selecting TCRs 
for cell therapy, preliminary results from our three patients 
indicate that 2D affinity measurements might be predictive 
of the potency of T cell products for patient treatment. Fur-
ther experiments are necessary to see if this observation is 
repeatable in a larger cohort of patients.

In the field of immunotherapy of cancer, there has been a 
great deal of research about generating the most effective T 
cell response for the treatment of patients. However, clini-
cal responses depend on many patient and tumor-specific 
factors, such as tumor mutational load [62–66], expression 
of immune-inhibitory receptors and molecules [67], recruit-
ment of immunosuppressive cells [68–70], loss of antigen 
or antigen expression [71–73], and total tumor burden [74, 
75]. In this study, Patient 1 had the highest tumor burden 
and had no response to the therapy, while Patients 2 and 3 

with lower tumor burdens had a clinical and a biological 
response, respectively.

Novel immunotherapies, most notably checkpoint 
blockades, such as PD-1 blockade or CTLA-4 blockade, 
offer promises of helping suppress inhibitory mechanisms 
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that may vary between patients. A question that has come 
up is whether combination of these therapies with T cell 
adoptive transfer would be beneficial. Given the expres-
sion levels of PD-1 on adoptively transferred T cells in 
the blood, it appeared that PD-1 blockade should have 
enhanced the T cell responses in Patient 2, but it had no 
effect on tumor burden or T cell activation. Conversely, 
PD-1 blockade in Patient 3 immediately preceded an 
increase in the activation and number of adoptively 
transferred  CD4+ T cells, in spite of the observation that 
only a small fraction of adoptively transferred T cells in 
Patient 3 express PD-1. It is possible that PD-1-express-
ing T cells in Patient 3 are suppressed by high expression 
of PD-L1 on the tumor but the tumor was not tested for 
PD-L1 expression. While PD-1 blockade had no effect 
on Patient 2, a second immunotherapy, high-dose IL-2, 
immediately preceded a lasting remission. It is not pos-
sible to dissect what part of the remission and autoim-
mune response seen in Patient 2 is due to transduced T 
cells, PD-1 blockade, high-dose IL-2, or the interactions 
of these three therapies. Notably, while PD-1 blockade 
had neither a clinical effect nor an effect on transduced 
T cell numbers or phenotype in Patient 2, high-dose IL-2 
therapy preceded both an increase in the number of TCR-
transduced T cells in Patient 2 and the progression of 
vitiligo associated with the presence of transduced T cells 
in the skin. Therefore, in one of two patients given further 
immunotherapies after progressing on TCR-transduced T 
cells, the immunotherapies led to tumor regression. Fur-
ther experiments will help find biomarkers identifying 
which patients will benefit from immunotherapies after 
transduced T cell delivery.
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