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Overall survival of patients with osteosarcoma (OS) has improved little in the past three decades 

and better models for study are needed. OS is common in large dog breeds and is genetically 

inducible in mice, making the disease ideal for comparative genomic analyses across species. 

Understanding the level of conservation of inter-tumor transcriptional variation across species and 

how it is associated with progression to metastasis will enable us to more efficiently develop 

effective strategies to manage OS and improve therapy. In this study, transcriptional profiles of OS 

tumors and cell lines derived from humans (n=49), mice (n=103) and dogs (n=34) were generated 

using RNA-sequencing. Conserved inter- tumor transcriptional variation was present in tumor sets 

from all three species and comprised gene clusters associated with cell cycle and mitosis and with 

the presence or absence of immune cells. Further, we developed a novel Gene Cluster Expression 

Summary Score (GCESS) to quantify inter-tumor transcriptional variation and demonstrated that 

these GCESS values associated with patient outcome. Human OS tumors with GCESS values 

suggesting decreased immune cell presence were associated with metastasis and poor survival. We 

validated these results in an independent human OS tumor cohort and in 15 different tumor data 

sets obtained from The Cancer Genome Atlas (TCGA). Our results suggest that quantification of 

immune cell absence and tumor cell proliferation may better inform therapeutic decisions and 

improve overall survival for OS patients.

Introduction

Osteosarcoma (OS) is the most common primary bone malignancy, accounting for ~2% of 

childhood cancers. The total number of new human cases diagnosed each year in the United 

States is low, ~400-600 annually, which presents a significant challenge to studying this rare 

but deadly cancer (1). The relative 5-year survival rates for all OS (~60%) and for metastatic 

OS (~20%) have not significantly changed since the mid-1980s (1–7). OS in dogs is much 

more common, with an overall incidence rate 30-50 times higher than humans, and a 

lifetime risk up to 10% in larger, pre-disposed breeds(8). OS tumors can also be generated in 

wildtype and predisposed mice via tissue specific mobilization of the T2/ONC transposon by 

the Sleeping Beauty Transposase (9, 10).

While in humans OS is primarily a pediatric disease, in dogs the majority of cases occur in 

older dogs with an average onset at 7.5 years (8). Unfortunately ~80% of dogs die as a result 

of metastasis within one year of diagnosis (11). Human dog and mouse OS share many 

clinical and molecular features and insight gained from one species may be translatable to 

the others (9–12).

Identifying and understanding molecular mechanisms of OS have lagged behind other 

cancer types, partly due to the small number of human tumors available for study (12, 13). 

Additionally, OS is characterized by complex karyotypes with highly variable structural and 

numerical chromosomal aberrations in humans, dogs and mice (9, 14–16). Sequencing 

studies have identified recurring genetic alterations in OS, some of which are common to 

both human and dog OS (12, 14, 17–19). However, understanding of these genetic 

alterations has not led to improved outcomes for OS patients. There remains a critical need 

to develop diagnostic tests that can identify risk of OS progression at an early, pre-metastatic 

stage.
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The goal of this study was to assess transcriptional variation in OS tumor samples, identify 

common patterns of expression across different species, and evaluate their association with 

metastases and clinical outcomes. To accomplish these goals, we developed the Gene 

Cluster Expression Summary Score (GCESS) technique to identify and quantify 

transcriptional patterns present across datasets and across species. We then use the GCESS 

method to derive associations between metastatic progression, outcome and transcriptional 

patterns in OS and extend these results to a wide range of human tumors. Based solely on 

our genome wide method, we show that the loss of immune cell transcripts as well as 

increases in cell cycle transcripts are associated with poor outcomes in OS and extend these 

results to a wide range of human tumor types.

Methods

Biospecimen collection and processing

Human and dog biospecimens were collected from newly diagnosed OS patients prior to 

treatment with cytotoxic chemotherapy drugs. Specimens were obtained under protocols 

approved by either the University of Minnesota’s Institutional Review Board or Institutional 

Animal Care and Use Committee (protocol numbers 0802A27363, 1101A94713, 

1312-31131A) or the University of Colorado Institutional Review Board or Institutional 

Animal Care and Use Committee (AMC 635040202, AMC 200201jm, AMC 2002141jm, 

02905603(01)1F, COMIRB 06-1008).

Human samples

Human patient OS samples (n=44) and normal bone samples (n=3) were obtained from the 

University of Minnesota Biological Materials Procurement Network (UMN BioNet) or the 

Cooperative Human Tissue Network (CHTN), both of which follow standardized patient 

consent protocols. Samples had been de-identified and only a limited amount of patient 

information was provided. Saos-2, U-2 OS, MG- 63, and 143B human OS cells line 

purchased from American Type Culture Collection (Manassas, VA, USA) and authenticated 

by the University of Arizona Genetics Core using short tandem repeat profiling, as well as 

an osteoblast cell line, which was a gift from Dr. Richard G. Gorlick (Albert Einstein 

College of Medicine, NY, USA), were also sequenced. Supplemental Table 1 summarizes 

the available metadata characteristics for the samples used in this study.

Dog samples

Dog OS samples (total n=31) were obtained from dogs with naturally occurring primary 

appendicular tumors, recruited between 1999 and 2012. The majority of the samples were 

from Rottweilers and Golden Retrievers. Specimens were obtained with owner consent 

under approved protocols as previously described (13). Also included in this study were two 

cell lines (OSCA-8 and OSCA-78) derived from primary OS tumor as previously described 

(20), and one dog osteoblast sample, CnOB, purchased from Cell Applications (San Diego, 

CA, USA). The OSCA cell lines are available for distribution through Kerafast, Inc. 

(Boston, MA).
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Mouse samples

Mouse OS samples (n=92 tumor, n=11 cell line) were derived from previously established 

experimental models. Included in this study were 25 OS samples from mice with somatic 

induction of Trp53R270H expression in Osx1-expressing cells (9), 67 samples from Sleeping 

Beauty transposon accelerated OS in wildtype and Trp53R270H mice (10), and 11 cell lines 

established from mouse OS tumors(9).

RNA extraction from frozen tumor tissue and cell lines

Isolation of total RNA from tissues, avoiding areas of necrosis, and from cell lines was 

performed according to the recommended protocol for Ambion’s TotalRNA kit from 

Thermo Fisher Scientific (Denver, CO, USA). Samples were quantified using fluorescence 

by RiboGreen dye (Thermo Fisher Scientific). RNA integrity was assessed using capillary 

electrophoresis (RIN > 6.5) with the Agilent 2100 BioAnalyzer system (Agilent 

Technologies, Santa Clara, CA, USA).

RNA-Sequencing (RNA-Seq)

Sequencing libraries of each sample were prepared using the TruSeq Library Preparation Kit 

(Illumina, San Diego, CA). Paired end sequencing (30-40 million reads per sample) was 

done at the University of Minnesota Genomics Center (UMGC) on a High Seq 2000 

(Illumina, San Diego, CA, USA). The raw FASTQ files are available at the NCBI Sequence 

Read Archive and linked to from Gene Expression Omnibus SuperSeries GSE87686.

Publically available human data

RNA-Seq FASTQ files and outcome related metadata for 35 additional human OS samples 

(HOS2) were obtained from dbGap:phs000699.v1.p1 (http://www.ncbi.nlm.nih.gov/gap)

(21). RNA-Seq files were also obtained from 25 additional human OS samples (HOS3) 

available from previously published studies (9, 15, 17).

FASTQ files from the HOS2 cohort were mapped to the reference genome and FPKM 

values were calculated using the same protocols as the samples in this study, while FASTQ 

files from the HOS3 cohort were mapped to the reference genome and RSEM expression 

values were calculated using the TCGA RNA-Sequencing protocol (22, 23). In this study, 

the samples from both of these cohorts were used for calculating pairwise Pearson 

correlation coefficients and were included in the transcriptome analyses described below. 

The HOS2 cohort included survival data and information on presence of metastasis at 

diagnosis so this cohort was used for survival analysis.

GEO dataset series GSE21257, which consisted of genome-wide expression data of 53 

human OS tumors produced from the Illumina human-6 v2.0 expression array was 

downloaded for this study. Patient outcome data, including survival and metastasis, was 

included in this study.

The Cancer Genome Atlas (TCGA) data portal, (http://tcga-data.nci.nih.gov/tcga) was used 

to download survival times, death events and RNA- Seq data for 5582 tumors as described in 

Supplemental Table 2.
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RNA-Seq workflow

Briefly, mapping was carried out using Tophat (24), Samtools (25) and Cufflinks (26) to 

generate FPKM values using reference genomes as described in supplementary methods. To 

minimize the effects of dividing FPKM values by numbers close to 0 and stochastic noise, 

0.1 was added to each FPKM value (27, 28). The FPKM files are available at GEO 

GSE87686. Mapping statistics are summarized in Supplemental Table 3.

Transcriptome analyses

Due to the high correlations between human OS datasets from multiple sources, the human 

datasets were combined for further analyses (9, 15, 17, 21). The ~8,000 most variable genes 

across the full same-species datasets were identified for clustering by species (standard 

deviation cutoffs: human > 0.93, mouse > 0.72, and dog > 0.79). Cluster 3.0 (C Clustering 

Library 1.52) was used to log2 transform and gene-mean-center the data and then perform 

hierarchical average linkage clustering using the Pearson similarity metric. Clustering data 

were visualized in Java TreeView (version 1.1.6r4). OptiType, a precision HLA typing tool 

(29) was used to identify human OS samples derived from the same patient.

Systematic identification of gene clusters

Gene clusters with a dendrogram node correlation > 0.60 and at least 60 individual genes 

were identified in each of the species datasets. The 0.6 Pearson correlation cutoff value was 

chosen, as it is a widely accepted conservative confidence threshold. The minimum cluster 

size of 60 was chosen to ensure that only larger transcriptional patterns were identified. 

Permuted and random datasets were used to show that these thresholds would not identify 

clusters in artificial datasets that do not contain meaningful transcription patterns. Gene 

clusters representing batch effects from the combination of different human samples were 

removed from further analyses.

Generation of control datasets

For each species, a random dataset and a permuted dataset were generated as controls. 

Random datasets were generated by randomly selecting values between −2 and 2 to replace 

the actual (mean-centered) values. Permuted datasets were generated by randomly 

reordering the values for each gene.

Gene Cluster Expression Summary Score (GCESS) calculation

The GCESS is defined as the sum of expression values (log2-transformed and mean 

centered) of all genes in a particular defined cluster for a single sample. The GCESS 

quantifies transcriptional variation between tumors. It takes many correlated individual 

transcript data points and condenses them into a single value.

Pathway analysis

The Ingenuity Pathway Analysis (IPA) suite (Qiagen, Redwood City, CA, USA) was used to 

identify pathways associated with gene clusters.
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Statistics

Statistical significance was calculated using the log-rank test or by Fisher’s exact test 

depending on analysis and a p < 0.05 was considered significant. Kaplan-Meier (KM) 

survival plots were generated using the ‘survival’ package in R (Version 0.98.1103)(30, 31). 

The GCESS values were used to rank the tumors into quartile groups and the quartile groups 

were systematically tested for association with outcome.

Histopathology, Immunohistochemistry and additional statistical information provided in 

Supplementary Methods.

Results

OS tumors show a common transcriptional profile across species that is distinct from 
other types of tumors

To better understand the OS transcriptome, we performed RNA-Seq analysis on mRNA 

libraries generated from human, dog, and mouse tumors and cell lines (Table 1). We 

hypothesized that despite the highly complex karyotypes associated with OS, tumors would 

maintain common transcriptional characteristics between species that were distinct from 

other types of tumors. To test this hypothesis, we calculated pairwise Pearson correlation 

coefficients within and between our OS cohort (HOS1) and two independent human OS 

tumor cohorts (HOS2, HOS3) recently published by other groups (9, 15, 17, 21) (Fig 1). 

Strong correlations were observed within each human cohort (average intra-cohort 

correlations: HOS1 0.62, HOS2 0.67, HOS3 0.66). Strong correlations were also observed 

between our cohort and the previously published cohorts (average inter-cohort correlations: 

HOS1-HOS2 0.61, HOS1-HOS3 0.53). In contrast, strong correlations were not observed 

between HOS1 and other human tumors obtained from TCGA (cervical 0.26, colorectal 

0.41, glioblastoma 0.30, leukemia 0.24, prostate adenocarcinoma 0.34, and thyroid cancer 

0.17), indicating that there are common transcriptional events that define OS pathology (Fig 

1A).

To establish the cross-species relevance of the dog (DOS) (Fig 1B) and mouse (MOS) (Fig 

1C) OS tumors we calculated both inter- and intra-species correlations. Similar to humans, 

average intra-species correlations were high in both dog (0.76) and mouse (0.68) samples. 

Dog and mouse OS samples were both correlated with the human OS tumors (HOS1-DOS 

0.48, HOS1-MOS 0.52), but not with other human cancers (DOS-cervical 0.18, MOS-

cervical 0.14, DOS-colorectal 0.31, MOS-colorectal 0.28, DOS-glioblastoma 0.21, MOS-

glioblastoma 0.25, DOS-leukemia 0.14, MOS- leukemia 0.14, DOS-prostate 

adenocarcinoma 0.24, MOS-prostate adenocarcinoma 0.21, DOS-thyroid cancer 0.13, MOS-

thyroid cancer 0.12), validating a cross-species analysis strategy to identify common 

transcriptional components in the development and progression of OS.

OS tumors show common transcriptional variation patterns across three species

We hypothesized that patterns of transcriptional variation would be conserved in OS tumors 

across species. To systematically assess transcriptional variations across human, dog, and 

mouse OS tumors each dataset was first analyzed independently using average linkage 
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clustering. Tightly correlated and large gene clusters representing patterns of inter-tumor 

transcriptional variation were defined as having both a dendrogram node correlation greater 

than 0.6 and a minimum of 60 genes. A total of nine human, five dog, and 11 mouse gene 

clusters were identified (Fig 2A, Supplemental Table 4). To ensure that these clusters were 

not artifacts, similarly sized random datasets and shuffled permutations of the real data were 

generated and clustered. No clusters passed the threshold criteria in either the random or 

permuted datasets, validating that the clusters observed in the real RNA- Seq data represent 

true transcriptional variation (Supplemental Figs 1-9).

To determine whether the identified gene clusters represented sets of genes common across 

the 3 species, pairwise percent overlaps were calculated between each gene cluster from a 

single species and all clusters in the other 2 species. The resulting percentage overlap values 

were clustered for each species pair. Several clusters of genes showed clear overlap across 

species (Fig 2B-D, Supplemental Table 4), indicating conserved patterns of transcriptional 

variation in OS tumor samples.

To describe the potential biological significance of these common gene clusters, enriched 

functional annotations were identified using IPA software (Qiagen). The most conserved 

cluster across species was composed of transcripts that were independently highly enriched 

in genes associated with cell cycle and mitotic functions. The next two highly conserved 

clusters across species were each independently enriched in transcripts relating to immune 

cell functions. (Fig 2D, Supplemental Table 5). A gene cluster enriched for muscle 

differentiation genes was observed in the human and mouse tumors but it was not present in 

the dog tumors.

We next asked if the genes in the two immune cell gene clusters represented a broad 

spectrum of immune cells or were enriched for particular leukocytes. We compared these 

immune cell gene clusters to a gene signature matrix (LM22), which consists of 547 genes 

and was created to identify genes unique to 11 different subtype populations of immune cells 

(32). Overall, our human immune cell annotated gene clusters were highly enriched in the 

LM22 gene transcripts (Supplemental Table 4). Using the LM22 annotations to determine 

the types of active leukocytes present (as represented by their unique transcripts), we found 

genes representing monocytes to be most enriched in human cluster-1 and genes 

representing T cells to be most enriched in human gene cluster-8 (Supplemental Table 4). 

Results from assessing enrichment of the LM22 genes in the dog and mouse immune cell 

gene clusters also supported these results (Supplemental Table 4).

The Gene Cluster Expression Summary Score (GCESS) technique quantifies tumor 
transcriptional variation

The GCESS was developed to reduce the high dimensionality of expression profiles 

generating a normalized and easily comparable value per sample for use in further 

association analyses. The GCESS is defined as the sum of expression values (log2-

transformed and mean centered) of all genes in a particular gene cluster for a single sample. 

A negative GCESS indicates relative under-expression of the group of genes in that sample 

compared to all of the samples in the analysis set, a positive GCESS indicates 

overexpression, and a GCESS close to 0 (zero) indicates mean expression. The GCESS 

Scott et al. Page 7

Cancer Res. Author manuscript; available in PMC 2018 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



summarizes the relative transcript levels of many correlated genes into a single value. This 

value is calculated for each cluster in each tumor. This allows for tumors to be rank ordered 

by summary score, which is based on the observed transcriptional data. Multiple summary 

scores were generated for each tumor sample, allowing for the independent comparison of 

the impact of each identified gene cluster, thereby achieving an unbiased dimensional 

reduction.

To better characterize the conserved OS tumor transcriptional variation, GCESS values were 

calculated for the identified for all identified gene clusters in each sample (Fig 3A and 

Supplemental Table 6). In addition to human, dog, and mouse OS tumor samples, we also 

analyzed tumor-derived cell lines, normal human bone cells, and dog osteoblasts. The 

distribution of GCESS values (Fig 3B-D) shows distinct patterns for cells/cell lines, normal 

bone, and tumor samples.

Tumor-derived cell lines had higher cell cycle GCESS values compared to tumor tissues, 

while normal human bone had cell cycle GCESS values corresponding to the lower range of 

GCESS values obtained from tumor samples (Fig 3B). Dog osteoblasts had an extremely 

low cell cycle GCESS. These results are consistent with the upregulation of cell cycle genes 

in a subset of highly proliferating OS tumors (13).

Tumor-derived cell lines had lower immune GCESS values compared to the majority of 

tumor tissues in all three species datasets. The immune cell GCESS of the normal human 

bone sample was within the middle of the range seen in human tumor samples. Dog 

osteoblasts had GCESS values corresponding to the tumor-derived cell lines (Fig 3C-D). 

These results are consistent with the absence of immune cells in cell lines and the variable 

presence of immune cells in tumor-derived tissues from all 3 species.

To validate the variable presence of immune cells indicated by GCESS immune cluster 

scores, we evaluated 10 FFPE sections derived from canine OS tumors, which were also 

sequenced, for the presence of T cells and macrophages within tumor stroma by 

immunohistochemistry. (Supplemental Figure 10A-D and Supplemental Table 7). 

Immunohistochemistry staining supported the transcriptome derived GCESS data for both 

MAC387 and CD3 staining. Stromal MAC387 was not observed in the 3 tumors with the 

lowest GCESS scores for the immune cell cluster-1 and occasional MAC387 positive cells 

were observed for the 3 tumors with the highest immune cluster-1 GCESS scores. One of the 

middle range tumors showed the presence of MAC387 positive staining cells within the 

stroma while 3 others did not. For CD3, only the sample with a positive GCESS immune 

cluster-2 score showed T-cells present within the tumor stroma. Of note, the next four 

tumors sorted by immune cluster-2 GCESS score all showed MAC387 positive cells within 

the tumor stroma.

Minimization of multiple testing errors

We hypothesized that patterns of transcriptional variation present in tumors should indicate 

associations with patient outcome and that methodological data analyses improvements 

would be necessary to reveal these associations. Associations between OS patient outcomes 

and individual gene transcript levels are commonly calculated using the Kaplan-Meier (KM) 
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estimator, a non-parametric statistic that estimates the survival function based on censored 

lifetime data. KM survival analyses were calculated using groups defined by individual 

transcript levels for our dog and human HOS2 datasets. Potentially significant events were 

present following comparison of all transcripts (p < 0.00001) (Supplemental Fig 11) used in 

clustering. To assess whether these associations were false positives or not, similarly sized 

random datasets and shuffled permutations of the real data were also analyzed. Random and 

shuffled permutations led to similarly “significant events” as were observed in the real data 

due to multiple testing of ~8-9000 individual tests, indicating that methodological 

improvements were necessary (Supplemental Fig 11).

Two routes are typically used to minimize the effects of multiple testing in statistical 

analyses. The first entails increasing sample numbers in order to surpass multiple testing 

corrections via increased statistical power. This was not feasible in this case. A second 

approach, which we used here, was to drastically decrease the number of tests performed 

(dimensionality reduction) by testing the gene cluster GCESS values rather than all 

individual transcript values. The GCESS was used to rank the tumors into quartile (Q) 

groups and systematically compare Q1- (lowest GCESSs) vs-Q234, Q12-vs-Q34, and Q123-

vs-Q4. (Fig. 3A) Using this approach, associations between outcome and immune cell 

GCESS could be systematically examined without prior knowledge of the type of 

association present. Examination of randomly generated and real, but permuted datasets 

using the full pipeline did not identify gene clusters, limiting association analyses to gene 

clusters defined by non-random transcript patterns.

Systematic examination of GCESSs with tumor outcomes identifies poor patient outcome 
association with high expression of cell cycle cluster genes and low expression of immune 
cell cluster genes

Applying the GCESS approach to the dog data revealed an association between increased 

transcript levels of cell cycle genes and decreased time to death. Significantly worse 

outcomes were associated with the higher GCESS groups in both the Q123-vs-Q4 and Q12-

vs-Q34 comparisons. Similarly, the human outcome analysis revealed that the highest cell 

cycle GCESSs (Q4) also had a strong trend towards decreased patient survival times (Q123-

vs-Q4). Analyzing the human Immune-1 GCESSs demonstrated that human patients with 

the lowest immune cell cluster GCESSs had significantly shorter times to death (Q1-vs-

Q234). The Immune-2 GCESSs also showed a trend towards association between low 

GCESSs and decreased time to death (Fig 3, Supplemental Figs 12-15).

Association between GCESS and patient outcome validated in independent cohort

If the conserved tumor transcriptional variation and association between GCESS and patient 

outcome revealed by this methodology are generally observable in OS tumors, they should 

also be observable in older array hybridization based data. To validate this hypothesis, we 

analyzed GSE21257, an Illumina mRNA array dataset, which contained genome wide 

expression data for 53 tumors from patients with known outcome data, including survival 

and metastasis (33). Following a strategy similar to the one used for the RNA-Seq data, 14 

highly correlated gene clusters were identified. Gene overlap analyses comparing clusters 

derived from array and RNA- Seq data sets identified gene clusters from the array which 
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corresponded to the RNA- Seq defined Immune-1, Immune-2, Cell Cycle and muscle 

transcript clusters (Fig 4A). KM survival analyses utilizing sample GCESSs generated from 

each of these array gene clusters again showed that patients whose tumors had low immune 

cell GCESSs were more likely to succumb to OS (Fig 4B-D, Supplemental Figs 16-17).

A KM-analysis examining the time to metastasis was also performed. Low immune cell 

GCESSs or high cell cycle GCESSs were strongly associated with faster progression to 

metastasis (p = 0.0001 and p = 0.02 respectively) (Supplemental Figs 18-20). These results 

independently validate the initial human data set findings as well as the general utility of the 

methodology described independent of experimental platform.

Low Immune-2 GCESS associated with metastasis in Human and Mouse samples

Following necropsy, many of the mice had observable metastases. Scores from samples with 

Metastases had lower Immune-2 scores than samples where metastatic tumors were not 

observed. In both Human datasets, Immune-2 scores were lower in samples where 

Metastases were present at diagnosis. This difference became significant when patients with 

metastasis in less than one year were combined with patients where metastasis was observed 

at diagnosis. The significance became even stronger when patients which showed metastasis 

at any point were compared to patients where metastasis was not observed. These findings 

indicate that the Immune-2 score has prognostic potential for determining the likelihood of a 

tumor metastasizing in human patients (Fig 4E).

OS-derived cell cycle and immune cell GCESSs correlate with poor clinical outcomes 
across multiple tumor types

We hypothesized that the patterns of transcriptional variations we found to be associated 

with outcomes in OS may also be relevant across many different types of tumors. To 

determine if increased cell cycle transcripts and decreased immune cell transcripts are each 

also associated with poor clinical outcome measures across different tumor types, GCESSs 

were calculated for each of the TCGA tumor datasets (using the genes comprising the 

respective human OS clusters to identify each tumor’s cell cycle and immune cluster), which 

were then subjected to KM-survival analysis. High cell cycle GCESSs were significantly 

associated with poor survival outcomes in Kidney Renal Clear Cell Carcinoma (KIRC), and 

clear trends were apparent in Liver Hepatocellular Carcinoma (LIHC), Lung 

Adenocarcinoma (LUAD), Pancreatic adenocarcinoma (PAAD), Head and Neck Squamous 

Cell Carcinoma (HNSC), and Cutaneous Melanoma (SKCM) (Table 2). Low immune cell 

GCESSs from Human OS gene cluster 1 were significantly associated with poor survival 

outcomes in SKCM, and clear trends were apparent in LUAD, Colon Adenocarcinoma 

(COAD), and Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma 

(CESC) (Table 2). Low immune cell GCESSs derived from Human OS gene cluster 8 were 

significantly associated with poor survival outcomes in SKCM and clear trends were visible 

in, HNSC, LUAD, LIHC, COAD, CESC and Breast Invasive Carcinoma (BRCA). These 

results indicate that the survival associations between cell cycle and immune transcript 

expression levels observed in OS are also present in a wide range of tumor types and that the 

GCESS methodology is capable of observing these associations in datasets where improved 

sample power exists.
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Discussion

Many diverse genetic events, including a catalog of rare events, have been reported to lead to 

OS formation, progression and metastasis. Our data indicate that loss of immune cell 

infiltration and increased levels of cell cycle transcripts are two specific transcriptional 

prognostic biomarkers for metastasis, and overall poor survival of OS patients. These 

transcriptional signatures also had prognostic utility across many types of human tumors, 

suggesting they are common transcriptional markers of pathological progression. Further, 

these two transcriptional patterns appear to be independent (Supplemental Table 6, 

Supplemental Figure 21).

Tumor transcription can be conceptualized as resulting from loss of control of a series of 

independent transcriptional modules (gene clusters). The GCESS technique described in this 

paper generates a single meaningful value for each module in a tumor. The GCESS value 

can then be used for phenotype association discovery, thereby minimizing the multiple 

testing risks in datasets underpowered for meaningful genome-wide association analyses. 

These types of errors are clearly described for SNP association studies but remain prevalent 

in genome-wide studies utilizing large numbers of parallel analyses. Empirical testing of 

single gene based strategies to associate tumor transcript level with outcome revealed that 

for every 20 random transcripts tested, 1 false positive prognostic transcript was likely to be 

identified (using an uncorrected p < 0.05). If 1,000 transcripts were tested, then this would 

result in 50 likely false-positives. Many genome-wide analyses of RNA-Seq or array data 

routinely involve testing thousands of transcripts, which would potentially result in hundreds 

of false positives. This may explain why many transcription-based prognostic tests fail to be 

reproducible in independent cohorts.

Our previous work identified increased levels of cell cycle transcripts in cell lines generated 

from OS tumors with worse outcomes (13). We have now extended this work to OS tumors 

and provide a novel methodology for identifying transcriptionally related gene clusters, even 

if they are not the primary component present in the dataset, and testing their association 

with a variety of outcomes while minimizing errors from multiple testing. These results are 

highly consistent with the CINSARC signature (Complexity INdex in SARComas) 

predictive of metastasis free survival. Many of the genes identified encode for proteins 

involved in cell cycle/mitosis, cytokinesis, mitotic checkpoint, and DNA damage repair (34, 

35).

Our data also indicate that cell cycle mediated events have more prognostic potential for dog 

disease progression compared to human disease. We speculate this is largely due to 

differences in therapeutic regimens and overall commitment to therapy, however it may also 

represent a fundamental difference between human and dog immune responses. Another 

potential confounding factor is the general characteristic of dog OS to progress much faster 

than typically observed in either normal or late-onset human OS. Dogs with OS may not 

survive long enough for the role of the immune cells to become observable. In specific dog 

breeds, the immune system may also have a reduced capability to recognize and respond to 

tumor cells.
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Transcriptional profiles derived from grossly dissected tumors have variable types and 

quantities of cells present, including stromal and immune cells in addition to cancer cells. 

Our GCESS technique provides a straightforward method to indicate the relative abundance 

of immune cells in the tumor tissue sample, which can also be generally applied to any 

component present in a transcriptional dataset. Importantly, we compared results from our 

method with a previously published tool (ESTIMATE) which infers tumor purity (36). We 

found that in the naturally occurring human and dog OS tumor samples there was a strong 

correlation between our immune cell GCESS value and the ESTIMATE immune score.

The GCESS method provides a useful tool to distinguish between osteosarcoma tumor sub-

types that seem to have distinctly different likelihoods of metastatic progression as a result 

of the presence of decreased numbers of immune cells within the tumor stroma. Supporting 

our conclusion is the lack of expression of these genes in OS cell lines, high correlation to 

the ESTIMATE scores, validation in multiple independent datasets, and a growing body of 

literature on the potential, variable immunogenicity in cancers such as OS.

As a genomically chaotic disease, conventional wisdom suggests OS must provide an 

abundance of antigens that typically would result in increased recognition by the host 

immune system, yet somehow OS tumors and their metastases have proven capable of 

escaping immune surveillance. Our results reinforce the theory that immune cell infiltration 

and monitoring is a normal process in bone tissue, and suggests that disruption of this 

process in a subset of tumors is associated with increased tumor mortality and progression to 

metastasis (Supplemental Figure 22). Determining whether the observed decrease in 

immune cells is intrinsically controlled by the tumor, or extrinsically by the immune system, 

or both, is an important, future research question in OS and other cancers.

Analyses of the TCGA data showed that the association between decreased immune cell 

GCESS and outcome was strongest in Cutaneous Melanoma (SKCM), a data set containing 

a large number of metastatic samples. Importantly, melanoma patients respond to immune 

checkpoint blockade therapy (37), and our results indicate that this same approach may have 

clinical utility in some OS patients. Furthermore, these results support an association 

between absence of immune cells, metastasis, and clinical outcome. Where immune cell 

outcome associations were seen in the TCGA the effects were more significant using the T 

cell enriched cluster relative to the monocyte enriched cluster. On the contrary, in our OS 

datasets the monocyte enriched gene cluster was more significant (lower p values) than the T 

cell enriched gene cluster.

We conclude that using multi-species datasets provides unique opportunities and insights to 

identify biologically meaningful gene signatures and to identify aspects of the immune 

response that can be manipulated therapeutically to improve the quality of life and outcomes 

of children with bone cancer, as well as patients with other sarcomas and solid tumors.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. OS transcriptome profiles across 3 species are more similar to each other than to other 
types of human tumors
Pairwise Pearson correlations were calculated between (A) Human (HOS1) (B) Dog (DOS) 

and (C) Mouse (MOS) OS data sets, publicly available OS datasets (HOS2 and HOS3) and 

sets of 25 tumors from the TCGA representing a wide range of tumor types using 12,062 

genes common in all 3 species.
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Fig 2. OS transcriptome profiles show common inter-tumor transcriptional variation across 
human, mouse, and dog samples
A) FPKM values derived from OS tumors and cell line data (indicated by black bars below 

heatmaps) were log transformed and mean centered within each species. Invariant genes 

were then removed leaving (i) human (n=9,190), (ii) mouse (n=8,051), and (iii) dog 

(n=8,003) genes which were used for unsupervised average linkage clustering. Transcripts 

with increased levels are shown in yellow while transcripts with decreased levels are shown 

in blue. Transcript level clusters with correlation > 0.60 and containing ≥ 60 genes were 
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systematically identified and these clusters are visualized with a numbered black bar to the 

right of each of the heatmaps. Lists of each gene in each cluster are provided as 

Supplementary Table 4. Gene clusters observed in more than one species are surrounded by 

colored boxes and given a reference number. The “Cell Cycle” conserved transcript cluster is 

shown in red (HOS-4,MOS-8,DOS-3). The “Immune-1” transcript cluster is shown in green 

(HOS-1,MOS-4,DOS-4). The “Immune-2” transcript cluster is shown in Purple (HOS- 

8,MOS-1,DOS-5). A cluster composed of muscle transcripts only present in Human and 

Mouse data is shown in Blue (HOS-3, MOS-2). B) Blow up the conserved Cell Cycle 

clusters (HOS-4, MOS-4 and DOS-3) showing the location of representative genes. C) Blow 

up of the Immune-1 (HOS-1,MOS-4,DOS-4) and Immune-2 (HOS-8,MOS-1 and DOS-5) 

regions showing the location of representative genes. D) Venn diagrams showing the number 

of overlapping genes observed to be commonly present in both datasets. Fishers Exact Test 

results indicated that the observed overlap is highly unlikely to occur by random chance. 

Highly significant FET (p < 10E-10) are marked with ***.
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Fig 3. Gene Cluster Expression Summary Scores (GCESS) represent the relative amount of 
transcript present for each cluster of genes and identify correlation between high cell cycle or 
low immune cell GCESSs and poor survival
A) Overview of analyses method. (i) The log2-transformed and mean-centered values for 

each gene in a cluster are summed to generate a single score (GCESS value) for each 

sample. Samples with high relative expression levels have large positive GCESSs while 

samples with low relative levels have large negative GCESSs. (ii.) The GCESS scores can be 

used to separate the tumors into groups based on GCESS score Quartiles. (iii.) The GCESS 

Quartile based groups can then be examined for associations with outcome using Kaplin 

Meier Analyses. GCESSs for human (tumors, normal bone, OS cell lines), mouse (tumors, 

OS cell lines), and dog (tumors, osteoblasts, OS cell lines) samples were calculated and 

Violin Plots were generated for (B) the “cell cycle” cluster, (C) the “immune-1” cluster, and 

(D) the “immune-2” cluster. Samples were ranked by GCESS and divided into quartiles 

groups (Q1 = lowest GCESSs, Q4 = highest GCESSs). KM analyses were performed, using 

human (n=35) and dog (n=19) samples for which survival data was known, to determine 
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correlations between low/high GCESSs and survival. There were 17 (out of 35) death events 

in the human data (HOS2), and 19 (out of 19) death events in the dog data. (B) A significant 

association with shorter time to death was observed with a high cell cycle GCESS in the dog 

cohort, and a strong trend was also present in the human data. (C) In the human data, low 

Immune-1 GCESS was significantly associated with a worse survival and (D) a strong trend 

was present between low Immune-2 and worse survival
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Fig 4. Replication of association between high cell cycle GCESS or low immune GCESS and poor 
survival outcomes using array data from independent cohort
Following a similar strategy to the one used for the RNA-Seq data, 14 strong and highly 

correlated clusters were identified in the A) GSE21257 dataset. Gene cluster overlap 

analyses comparing clusters derived from human array and human RNA-Seq data sets 

identified four clusters that corresponded to the conserved RNA-Seq clusters. The B) Cell 

cycle cluster is labeled in red, the C) Immune-1 cluster is labeled in green and the D) 
Immune-2 cluster is labeled in purple. Fisher Exact to assess the likelihood of observing the 

overlap by random chance indicated that the enrichment was highly significant (p < 1E-10) 

for the Cell Cycle and Immune clusters. KM analyses using GCESS groups using the 

approach outlined in Figure 3a showed that high levels of B) Cell cycle transcripts were 
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associated with worse outcomes and significantly increased likelihood of tumor metastasis. 

Low levels of (C) Immune-1 and (D) Immune-2 transcripts were associated with 

significantly worse survival and significantly increased likelihood of tumor metastasis (E) 
Metastatic Samples have lower Immune-2 transcript levels in mouse and human samples. 

MOS-1 GCESS values were lower in tumors from mice where metastatic lesions were 

observed during necropsy (p <0.05). Tumors from Human patients with metastases present 

at diagnoses showed a trend towards lower Immune-2 GCESS scores in both the RNA- SEQ 

data as well as the array data and this trend became increasingly significant in the array data 

when tumors where metastases were observed in the patient within one year (p < 0.001) or at 

any point (p < 0.0001) were included with the patients with metastases at diagnosis.
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