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Abstract

The emergence of complex organs is driven by the coordinated proliferation, migration and 

differentiation of precursor cells. The fate behaviour of these cells is reflected in the time evolution 

their progeny, termed clones, which serve as a key experimental observable. In adult tissues, where 

cell dynamics is constrained by the condition of homeostasis, clonal tracing studies based on 

transgenic animal models have advanced our understanding of cell fate behaviour and its 

dysregulation in disease (1, 2). But what can be learned from clonal dynamics in development, 
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where the spatial cohesiveness of clones is impaired by tissue deformations during tissue growth? 

Drawing on the results of clonal tracing studies, we show that, despite the complexity of organ 

development, clonal dynamics may converge to a critical state characterized by universal scaling 

behaviour of clone sizes. By mapping clonal dynamics onto a generalization of the classical theory 

of aerosols, we elucidate the origin and range of scaling behaviours and show how the 

identification of universal scaling dependences may allow lineage-specific information to be 

distilled from experiments. Our study shows the emergence of core concepts of statistical physics 

in an unexpected context, identifying cellular systems as a laboratory to study non-equilibrium 

statistical physics.

Biological systems, being highly structured and dynamic, function far from thermal 

equilibrium. This is particularly evident in embryonic development where, through large-

scale cellular self-organisation, highly complex structures emerge from a group of 

genetically identical, pluripotent stem cells. To achieve the stereotypic ordering of organs 

and tissues, the fate of embryonic stem cells and their progeny must be tightly-regulated, 

such that the correct number and type of cells is generated at the right time and place during 

development. Mechanisms regulating such cell fate decisions are at the center of research in 

stem cell and developmental biology (3). Efforts to resolve the mechanisms that regulate cell 

fate behaviour place emphasis on emerging technologies, including single-cell genomics and 

genome editing methods, which provide detailed information on the subcellular and cellular 

processes. However, by focusing on gene regulatory programmes, such approaches often fail 

to engage with how collective cell behaviour, and the formation of functioning organs, 

emerges from the network of complex interactions at the molecular scale.

To understand how complexity at the microscopic scale translates into coherent collective 

behaviour at the macro-scale, statistical physics provides a useful theoretical framework. For 

critical systems, where fluctuations are scale-invariant, successive coarse-graining can yield 

effective theories describing macroscopic behavior. In such systems, different “microscopic” 

systems can give rise to indistinguishable macroscopic behavior – a concept known as 

universality. As a reflection of scale invariance, statistical correlations, such as size 

distributions, obtain simple scaling forms, which depend only on one or few dimensionless 

composite variables. But, given the complexity of embryonic development, can such 

concepts be applied to study cellular behaviour?

At the cellular scale, the patterns of cell fate decisions during embryonic development are 

reflected in the time-evolution of individual developmental precursors cells and their 

progeny, which together constitute a clone. While the dynamics of individual clones maybe 

complex, subject both to intrinsic and extrinsic influences, statistical ensembles of clones 

may provide robust (predictive) information about the relationship between different cell 

types and mechanisms regulating cellular behaviour. In mammals, where live-imaging of 

developing embryonic organs is typically infeasible, efforts to resolve clonal dynamics have 

relied on cell lineage tracing studies using transgenic animal models (1). In this approach, 

the activation of a reporter gene allows individual cells to be marked with a fluorescent 

reporter. As a genetic mark, this label is then inherited by all progeny of a marked cell, and 

allows clone sizes and cell compositions to be recorded at specific times post-labelling 

Rulands et al. Page 2

Nat Phys. Author manuscript; available in PMC 2018 August 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



(Figure 1A). Lineage tracing studies therefore provide a “two-time” measure of clonal 

dynamics in the living embryo. In adult tissues, where cell dynamics is heavily constrained 

by the steady state condition of homeostasis, efforts to resolve cell fate behaviour from 

clonal tracing studies have drawn successfully upon concepts from statistical physics and 

mathematics (4–6). However, in developing tissues, the interpretation of these experiments is 

complicated by the fact that clonal dynamics is, in principle, less constrained. Moreover, due 

to large-scale cellular rearrangements as well as stochastic forces from surrounding tissues, 

labelled clones may fragment into disconnected clusters, or they merge and form larger 

compounds of labelled cells (Figure 1B-F).

Here, by establishing a formal mapping between clonal dynamics and a generalization of the 

theory of aerosols, we show that, during embryonic development, clonal dynamics converges 

to a critical state, giving rise to universal scaling behaviour of the size distributions of 

labelled clusters. Further, we explore how understanding the origins of scaling and 

universality can form the quantitative basis for recovering information on cell fate behaviour 

during development. We thus find the emergence of core concepts of statistical physics in 

the unexpected context of embryonic development. As well as being of interest in the study 

of tissue development, these findings have important implications for the study of tissue 

regeneration and tumour growth.

To develop this programme, we begin with an example of clonal evolution during the 

development of mouse heart. The gene Mesp1 is transiently expressed between embryonic 

day (E)6.5 and E7.5 in mice in the earliest precursor cells of the heart (7–9). Quantitative 

analysis of hearts labelled at low density (1-2 clones per heart) have established the temporal 

progression in differentiation and proliferative capacity of these precursors (8, 9). However, 

with just 1 or 2 clones per embryo, and inherent variability in the efficiency of labelling, 

low-density labelling is highly inefficient in probing evolutionary processes during 

development. By contrast, at high (mosaic) labelling density, each embryo provides a 

potentially rich dataset. The situation is exemplified in Figure 1E, which shows mouse hearts 

at E12.5 and postnatal day P1 after mosaic labelling between E6.5 and E7.5 using the 

multicolour Mesp1-Cre/Rosa-Confetti reporter construct (with 50% of the cardiac surface 

being fluorescently labelled with each of three colours, cyan, yellow and red, roughly 

equally represented). However, at this density of labelling, a single contiguous cluster of 

labelled cells can be derived from the chance fusion of two or more independent clones 

induced with the same colour (10). Given that clone sizes are not constrained by tissue size, 

and the ambiguity arising from clone merger and fragmentation, to what extent can 

information on cell fate behaviour be recovered?

To address this question, we quantified the surface area (SA) covered by each cluster in a 

given heart compartment at different developmental time points. From the SAs, we then 

determined their distributions in each heart region (Fig. 1F). Although cardiac development 

involves complex cell fate decisions, with regional and temporal variations in proliferation 

(11, 12), we found that the resulting cluster size distribution was remarkably conserved: 

After rescaling the SA of each cluster by the ensemble average for each compartment at a 

given time point, the resulting rescaled size distributions perfectly overlapped (Fig. 1G,H). 

This result implies that, despite the complex and variable histories, the resulting SA 
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distribution is fully characterized by the average alone, the defining property of scaling. 

Formally, the frequency f(x,t)dx of a cluster with a SA between x and x + dx at time t post-

labelling acquires the statistical scaling form, f(x,t) = ϕ(x/〈x(t)〉), where ϕ denotes the 

scaling function.

The simplicity of the cluster size distribution that is reflected in scaling behaviour suggests 

that its origin may not rely on details of the morphogenic programme in heart. Rather, to 

uncover its origin, we began by considering the simplest set of processes that could 

determine cluster size: First, as labelled cells divide, clusters may grow at a rate proportional 

to their size. Second, in expanding tissues, clones may fragment into disconnected clusters 

as cells disperse or the tissue deforms. If the rate of growth and fragmentation increase in 

proportion to cluster size, the SA distribution would be predicted to become stationary. 

However, although clonal tracing studies indicate that growth and fragmentation occur on a 

similar time scale during the early phase of heart development (E6.5 and E12.5) (9), average 

cluster sizes at E12.5 and P1 differ by a factor of 2.7, showing that steady-state is not 

reached. More importantly, such a simple line of argument neglects the possibility that 

clusters of the same colour can merge into larger, cohesively labelled regions. Yet the 

number of clusters varies only marginally between E12.5 and P1 (9), indicating that merger 

and fragmentation could be equally abundant.

To resolve the origin of scaling, it is instructive to leave temporarily the realm of biology and 

consider the growth dynamics of “inanimate” compounds. Indeed, processes involving 

merger and fragmentation occur in multiple contexts in physics, including the nucleation of 

nano-crystals, amyloid fibrils, polymerisation, endocytosis and the dynamics of aerosols 

(13–16). In common with clonal evolution in tissues, droplets in aerosols may merge 

(coagulate) or they may fragment (Fig. 2A). By analogy with clonal growth due to cell 

division, droplets may also expand by condensation of free molecules, while cell loss due to 

death or migration out of the imaging window is mirrored in the evaporation and shrinking 

of droplet sizes. Finally, by analogy with the migration of cells into the field of view, new 

droplets may nucleate from free molecules. Through this correspondence, can the statistical 

physics of aerosols provide insight into the dynamics of cell clusters in tissues and the 

emergence of scaling?

The distribution of cluster sizes, f(x,t), is the result of different sources of variability 

including merger, fragmentation, cell division and loss. Formally, the time evolution of the 

cluster size distribution can be cast (symbolically) as a sum of operators that describe the 

effect of these contributions on the time evolution,

∂t f (x, t) = Lgrowth f (x, t) + φ Lfragmentation f (x, t) + μ Lmerger f (x, t) + …,

where the parameters, φ, μ, etc. characterize the relative strength of these processes against 

that of growth (for details, see Supplementary Theory). To investigate the origin of scaling, 

we questioned what determines the long-term, large-scale dependence of the cluster size 

distribution. In statistical physics this question is typically answered by successively coarse-

graining the dynamics and monitoring changes in the relative contributions of different 
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processes. Under this renormalization, when a cell divides, cluster sizes are rescaled by the 

resulting increase in tissue size, x → x/(1 + δX) ≡ ρ. Simultaneously, time is rescaled in 

such way that the total rate of merging and fragmentation events remains constant in this 

process. Notably, after repeated rounds of dynamic renormalisation, the kinetic equation 

converges to a self-similar (critical) form, where the fluctuations in cluster sizes are 

dominated solely by a balance between merger and fragmentation events (Supplementary 

Theory), while the influence of other processes becomes vanishingly small,

∂τ f (ρ, τ) ≈ φ′Lfragmentation f (ρ, τ) + μ′Lmerging f (ρ, τ) ,

where φ′ and μ′ are rescaled parameters and τ is a rescaled time (Supplemental Theory). 

Intuitively, this means that, as the organ grows, different sources of variance contribute to the 

cluster size distribution by different degree (Fig. 2B and S1A). Crucially, in the long term, 

contributions relating to cell fate behaviour (e.g. cell division or loss) become dominated by 

merger and fragmentation processes, resulting in information on the former becoming erased 

(Supplementary Theory). Therefore, while cell fate decisions affect the mean cluster size, 

the shape of the distribution is determined entirely by merger and fragmentation events (Fig. 

2C), leading to the emergence of scaling behaviour observed in heart development (Fig. 1F).

Importantly, these results suggest not only that the cluster size distribution is entirely 

determined by its average (scaling), but also that the shape of the distribution is independent 

of the biological context (universality). The form of the scaling function, ϕ, relies on the 

dependence of the merging and fragmentation rates on cluster size. In a uniformly growing 

tissue, clone merger and fragmentation events are the result of the slow diffusive motion of 

clusters originating from random forces exerted by the surrounding tissue (17). In this case, 

the resulting scaling form is well-approximated by a log-normal size dependence (Fig. 2C, 

Supplementary Theory). Indeed, such distributions are typical of merging and fragmentation 

processes and describe the empirical distribution of droplet sizes in aerosols (18, 19). 

Similar universal behaviour is recapitulated by a simple lattice-based Monte Carlo 

simulation of uniform tissue growth, where the stochastic nature of cell division alone leads 

to merger and fragmentation (Figure S1B and Supplementary Theory). Importantly, this 

analysis provides an explanation for the observed scaling behaviour of labelled cluster sizes 

of mouse heart, where the distribution indeed follows a strikingly log-normal size 

dependence (Fig. 3A,B and S2A,B). To further challenge the universality of the scaling 

dependences, we used a similar genetic labelling strategy to trace the fate of early 

developmental precursors in mouse liver and pancreas as well as the late stage development 

of zebrafish heart (20). In all cases, cluster size distributions showed collapse onto a log-

normal size dependence (Fig. 3C-F and S2C-E), with the notable exception of a 

subpopulation of pancreatic precursors (see below).

This analysis shows that, in the long term, the collective cellular dynamics leads to a critical 

state dominated by a balance between merging and fragmentation events. The emerging 

universal scaling distributions progressively become void of information on underlying 

biological processes on a time scale determined by the merging and fragmentation rates. But 

how can such information be recovered? In analogy to the turnover of adult homeostatic 
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tissues, such as interfollicular epidermis or intestine (4, 21), the behaviour of the size 

distribution under renormalization (Fig. 2B and Supplemental Theory) shows how lineage-

specific information can be recovered: First, it is preserved in the non-universal cluster size 

dependences at short times post-labelling, prior to convergence to the scaling regime. 

Second, convergence onto universal scaling dependences is the slowest for small cluster 

sizes (x ≪ 〈x〉). Third, if the rate of clone merger is negligibly small, different cluster size 

distributions can emerge according to the mode of cell division. The range of possible 

behaviours is summarised in Table 1. Finally, as merging and fragmentation are emergent 

properties of cell fate decisions, deviations from the scaling form can inform on structural 

properties of organ formation. As an example, in the developing pancreas, acinar cells 

initiate from precursors localized at the tips of a complex ductal network and aggregate as 

cohesive cell clusters thereby supressing clonal fragmentation. This results in a departure 

from scaling behaviour of the cluster size distribution (Figs. 3F and S2F).

In recent years, there has been a growing emphasis on genetic lineage tracing as a tool to 

resolve the proliferative potential and fate behaviour of stem and progenitor cells in normal 

and diseased tissues (1). Here, we have shown that the collective cellular dynamics in tissue 

growth and turnover lead to universal clone dynamics, where cluster size distributions 

become independent of the fate behaviour of cell populations. As well as highlighting the 

benefit of low-density labelling and the dangers of making an unguarded assessment of 

clonality in lineage labelled systems, these findings identify quantitative strategies to unveil 

cell fate-specific information from short-term or small cluster size dependencies, with 

potential applications to studies of clonal dynamics in both healthy and diseased states. At 

the same time, by highlighting the unexpected emergence of core concepts of statistical 

physics in a novel context, this study provides a model of how the cellular dynamics of 

living tissues can serve as a laboratory for statistical physics.

Methods

Surface area analysis of mosaically labeled hearts

To generate mosaically labelled hearts at high density, Mesp1-Cre mice (22) were crossed 

with the Rosa-Confetti reporter mice (23) kindly provided by Hans Clevers. Hearts collected 

at embryonic days E12.5 and P1 were fixed in 4% paraformaldehyde for 1hr at room 

temperature. Nuclei were counterstained with Topro3 (1/500, Invitrogen). The surface 

images were acquired with a confocal microscope (LSM780; Carl Zeiss). The surface area 

(SA) of each independent clusters was measured using Fiji software (24) on the maximum 

intensity projection.

Pancreas

R26R-CreERT2; R26-Confetti mice were intraperitoneally injected with Tamoxifen (from 

Sigma) at 0.030mg per gram of female at E12.5 of pregnancy under Home Office guidelines, 

Animal Scientific Procedure Act (ASPA) 1986. P14 pancreas was fixed in 4% 

Paraformaldehyde (PFA) overnight, and then washed in PBS. Samples were sucrose-treated 

(30%) and mounted in OCT, and subsequently thick 100μm cryostat sectioned. Sections 

were rehydrated in PBS, blocked overnight in PBS, 2% donkey serum and 0.5% 
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Triton-100X. The samples were incubated in Dolichos biflorus agglutinin (DBA), 

biotinylated (from Vectorlabs) for 3 days at 4°C, and AF647-Streptavidin (from Life 

Technologies) was applied for 2 days at 4°C. Next, sections were cleared with RapiClear 

1.52 (from SunJin Lab). Images were acquired with Leica TCS SP5 confocal microscope, 

using the tiling mode. The images were analyzed with Volocity and volumes and coordinates 

of centers of clonal clusters quantified. To obtain 3D reconstructions from Z stacks obtained 

with Leica SP5 microscope, Imaris (v8, Bitplane) was used.

Liver

R26R-CreERT2+;Rainbow+ mice were a kind gift from Magdalena Zernicka-Goetz 

(University of Cambridge, UK). R26R-CreERT2+;Rainbow+ male mice were crossed with 

wild-type MF1 females and labelling induced by intraperitoneal injection of pregnant dams 

with Tamoxifen (Sigma). Tamoxifen was prepared at 10 mg/mL in sunflower oil and 

induction performed using 0.025 mg Tamoxifen per gram of pregnant dam. Pregnant dams 

were induced at E9.5 and the resulting pups had livers collected at postnatal day P30 – P45. 

Livers were divided into pieces of thickness ~10mm, washed at least 3 times in PBS to 

remove blood and fixed in 4% Paraformaldehyde overnight before being washed twice in 

PBS. Liver pieces were mounted in 4% Low Melt Agarose (Bio-Rad) and 100µm thick 

sections cut using a vibratome (Leica VT1000 S). Thick sections were stored in PBS at 4 °C 

before immunostaining. Briefly, sections were blocked in PBS + 5% DMSO (Sigma) + 2% 

donkey serum (Sigma) + 1% Triton-X100 (Sigma) overnight before incubation in PBS + 1% 

DMSO + 2% donkey serum + 0.5% Triton-X100 + 1:40 goat anti-Osteopontin (R&D 

Systems, AF808) for 3 days at 4 °C. Following several washes in PBS + 1% DMSO + 0.5% 

Triton-X100 at 4 °C for 24 h, sections were incubated in PBS + 1% DMSO + 2% donkey 

serum + 0.5% Triton-X100 + 1:250 donkey anti-goat antibody conjugated to AF647 (Life 

Technologies) for 2 days at 4 °C. Following the staining, sections were cleared by increasing 

glycerol gradient before incubation with PBS + 1:1000 Hoechst 33342 (Sigma) for 1h at 

4 °C to counterstain nuclei and mounted with Vectashield (Vector Laboratories). Images of 

liver sections were acquired using a Leica TCS SP5 confocal microscope and processed 

using LAS AF Lite software (Leica). Cell numbers for each labelled cluster were counted 

manually from acquired images.

Code availability

Custom code used to in this study is available from the corresponding authors upon 

reasonable request.

Data availability

The data that support the plots within this paper and other finding of this study are available 

from the corresponding author upon request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Clonal dynamics during tissue development.
(A) Lineage tracing allows resolving clonal dynamics using a “two-time” measurement in 

living organisms. (B) Merger and fragmentation of labelled cell clusters occur naturally 

because of large-scale tissue rearrangements during the growth and development of tissues. 

(C,D) Illustration of clone fragmentation in mouse during the development of (C) liver and 

(D) pancreas (collection at post-natal day (P)45 and P14, respectively) following pulse-

labelling using, respectively, R26R-CreERT2;Rainbow and R26R-CreERT2; R26-Confetti at 

E9.5 and E12.5, respectively. Portal tracts (PT) and central veins (CV) are highlighted in 

Rulands et al. Page 10

Nat Phys. Author manuscript; available in PMC 2018 August 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



white, osteopontin (a ductal marker) is shown in purple and nuclei are marked in blue. 

Pancreatic ducts are shown in grey. (E) High density (mosaic) labelling of mouse heart using 

the Mesp1-Confetti system showing the left/right atrium (L/RA), left/right ventricle (L/RV) 

and the in/out-flow tracts (I/OFT). (F) Distributions of cell cluster sizes on the surface of the 

developing mouse heart at E12.5 (680 clusters from 4 mice) and P1 (373 clusters from 3 

mice). (G) Average cluster sizes in different heart compartments and time points during 

development. Error bars denote 95% confidence intervals. (H) Rescaled cluster size 

distributions showing scaling behaviour.
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Fig. 2. Origin of scaling and universality in clonal dynamics during development.
(A) Sizes of labelled cell clusters in developing tissues are determined by processes 

analogous to the kinetics of droplets in aerosols, as depicted. (B) Sketch of the 

renormalisation flow diagram showing how the relative contributions of different processes 

to the cluster size distribution evolve during development. At long times and/or larger cluster 

sizes, the time evolution of the cluster size distribution becomes controlled by three fixed 

points (dependent on the details of the merging and fragmentation processes), where it 

acquires a universal scaling dependence (Supplementary Information). The inset shows a 

schematic of the renormalization process, with the largest cluster sizes (grey) converging 

more rapidly onto the universal distribution than the smallest cluster sizes (red). (C) 
Rescaled cluster size distributions for different division modes obtained by numerical 

simulations (Supplemental Theory) collapse onto a universal log-normal form (grey line).
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Fig. 3. Universality of cluster sizes in different tissue types and organisms.
(A-B) Cumulative cluster size distributions obtained from lineage tracing studies of the 

mouse heart. (C-E) Experimental cumulative cluster size distributions for (C) mouse liver 

(892 clusters from 4 mice), (D) mouse pancreas (988 clusters from 3 mice), and (E) 
zebrafish heart (from (20)) collapse onto the predicted universal log-normal dependence 

fitted by maximum likelihood estimation (grey). Data shown in colour and shading shows 

95% Kolmogorov confidence intervals. (F) Experimental cumulative cluster size 

distributions (solid lines) separated by time, region, cell type labelling strategy collapse onto 

a universal shape (dashed line) with the exception of a subset of pancreatic acinar cells 

(inlay).
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Table 1
Non-universal dependencies of the cluster size distribution.

Analytical expressions for the cluster size distribution (top row in each cell) and average cluster size (bottom 

row). Shown are expressions in situations, where labelling density is clonal, labelling density is almost clonal 

but clones are subject to fragmentation, and where both merging and fragmentation of clones occur (left to 

right). As merging and fragmentation both result from tissue rearrangements merging should always imply 

fragmentation. Time is measured in units of the cell cycle time. Expressions are valid after convergence to the 

scaling regime, when the typical cluster size is much larger than the size of single cells, and in the mean-field 

limit, which is a good approximation for two and three dimensional tissues. In addition, it is assumed that the 

full spectrum of cluster sizes can be experimentally resolved. If clones fragment but not merge fragmentation 

and growth ultimately compensate to lead to a stationary distribution. In case of clonal merging and 

fragmentation expressions give empirical approximations, where depends on the details of the merging and 

fragmentation processes (see Supplemental Theory).

Growth mode Clonal Fragmentation Merging & fragmentation

Exponential 〈x〉−1 exp (−x/〈x〉)
〈x〉 = exp(t)

φ exp (−φ−1x)
〈x〉 = φ−1

(x/ x )α x ≪ x
exp( − x/ x ) x ≫ x

〈x〉 = exp(t)

Linear 1
2π x exp − (x − x )2

2 x
〈x〉 = t

φx 2 + φx exp − φx − φ
2 x2

〈x〉 = φ−1/2

(x/ x )α x ≪ x
exp( − x/ x ) x ≫ x

〈x〉 = t

Homeostasis 〈x〉−1 exp [−x / 〈x〉] (see Ref. 6)
〈x〉 ∝ t

J(x) (see Ref. 24)
〈x〉 = const. (x/ x )α x ≪ x

exp( − x/ x ) x ≫ x
〈x〉 = const.
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