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Abstract

Hair color is one of the most recognizable visual traits in European populations and is under 

strong genetic control. Here we report the results of a genome-wide association study meta-

analysis of almost 300,000 participants of European descent. We identified 123 autosomal and one 

X-chromosome loci significantly associated with hair color; all but 13 are novel. Collectively, 

SNPs associated with hair color within these loci explain 34.6% of red hair, 24.8% of blond hair 

and 26.1% of black hair heritability in the study populations. These results confirm the polygenic 

nature of complex phenotypes and improve our understanding of melanin pigment metabolism in 

humans.

Human pigmentation refers to coloration of external tissues due to variations in quantity, 

ratio and distribution of the two main types of the pigment melanin: eumelanin and 

pheomelanin1. Most melanin is produced by melanosomes2,3, large organelles specialized 

in melanin synthesis and transportation located mainly in the epidermis, hair and iris as well 

as the central nervous system. Early humans had a darkly pigmented skin4,5 which 

protected against high Ultraviolet radiation (UVR) and its consequences such as skin 

cancer6 and folate depletion7. European and Asian populations evolved to lighter skin 

pigmentation8,9, as they migrated towards northern latitudes with lower UVR4. The lighter 

pigmentation maximizes UVR absorption needed to maintain adequate vitamin D levels. In 

Europeans, pigmentation of skin, hair and or eyes has characteristic geographic distributions 

because of natural selection10 and perhaps genetic drift; a role for sexual selection has been 

debated 11–13.

Hair color is one of the most prominent traits in humans. Twin studies suggest that up to 

97% of variation in hair color may be explained by heritable factors14 and genome-wide 

association studies (GWAS) 15–20 have identified several chromosomal regions associated 

with hair color and related pigmentation traits21. Except for red hair, known variants have a 

relatively low predictive value22 and the heritability gap remains relatively large14 which 

suggests that many hair color genes, remain undiscovered.

Here we report the results of a meta-analysis of two GWAS carried out in two large 

discovery cohort studies: 157,653 research participants from the 23andMe, Inc. customer 

base18 and 133,238 individuals from the UK Biobank (UKBB). Participants in both studies 

self-reported the natural color of their hair in adulthood (Supplementary Figure 1 and 

Supplementary Methods). For the purpose of this work, each hair color category collected 
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(black, dark brown, light brown, red and blond) was assigned numerical values ranging from 

lowest (blond) to highest (black). These codes were used as the outcome variable in linear 

regression based GWAS analyses. To minimize population admixture and stratification, the 

analyses were restricted to individuals of European ancestry (Supplementary Figures 2 and 

3) and adjusted for the first ten principal components (PCs) of the genotype matrix, as well 

as age and sex.

The analyses confirmed a strong association between hair color and PCs, especially in the 

less ethnically homogeneous 23andMe dataset, which includes participants of more varied 

European origin, in line with the known North-South cline in hair color variation and other 

regional differences in hair color across Europe12 (Supplementary Table 1). The strongest 

associations in both groups were with sex (Table 1). Women were more likely to report 

blond (OR=1.20 and OR=1.29 in the 23andMe and UKBB participants, respectively), or red 

hair (OR=1.72 and OR=1.40, respectively) than any other color and three to five times less 

likely to report black hair (OR=0.35 and OR=0.20, respectively) compared to men.

Genomic inflation factors 23 (λGC) from the 23andMe and the UKBB GWAS were 1.147 

and 1.146, respectively, in line with expectations of high power to detect large polygenic 

effects in these large samples24 (Supplementary Figure 4). Meta-analyzed GWAS results 

reached conventional genome-wide significance (p<5x10-08) in many regions, primarily 

clustering around 123 distinct autosomal genomic SNPs and one X-chromosomal locus 

(Figure 1, Supplementary Table 2), mostly new (Table 2). In line with power expectations 

(Supplementary Figure 5), 75 of these regions were genome-wide significant in at least one 

of the two cohorts and always at least nominally significant (p<0.01) in the other.

Previously known pigmentation loci were all strongly associated in the meta-analysis results: 

HERC2 (rs12913832), IRF4 (rs12203592), MC1R (rs1805007), as well as others, showed 

some of the strongest statistical evidence for association ever published for human complex 

traits. Strong associations were found for genes whose mutations reportedly cause 

impairment of pigmentation such as Waardenburg (EDNRB, rs1279403, p<10-100; MITF, 

rs9823839, p<10-100), Hermansky-Pudlak (HPS5, rs201668750, p=4.68x10-11), 

Trichomegaly (FGF5 rs7681907, p=5.684x10-25) or Ablepharon-Macrostomia (TWIST2, 

rs11684254, p=1.233x10-20) Syndromes. Many polymorphisms significantly (p<5x10-08) 

associated with hair color in our meta-analysis had existing entries in the GWAS Catalog21. 

In previous publications, they were associated to several phenotypes, including most known 

pigmentation loci (Supplementary Table 3).

Among the associated loci, some of the strongest effects were observed for two solute carrier 

45A family members (SLC45A1, rs80293268, p<10-100 and the SLC45A2 gene, 

rs16891982, p<10-100); polymorphisms near a third solute carrier gene were also 

significantly associated with the trait (rs60086398 upstream of SLC7A1, p=4.93x10-08). In 

addition, forkhead box family genes (FOXO6, rs3856254, p=4.0x10-09 and FOXE1, 

rs3021523, p=4.23x10-23) and sex determining region Y (SRY)-box genes (SOX5 
rs9971729, p=8.8x10-17 and SOX6, rs1531903, p=9.1x10-16) were among those highlighted 

in our results. An additional locus, located on chromosome X, on the second intron of the 

collagen type IV alpha 6 gene was also significantly associated (COL46A, rs1266744, 
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p=5.03x10-12). Chromosome Y information was not analyzed. Interestingly, given the 

observed strong association of hair color with sex, there was no particular difference in 

effect sizes observed for these loci among men and women in either cohort (Supplementary 

Table 4, Supplementary Figure 6); only one SNPs significantly associated with hair color in 

the meta-analysis showed significant (p=1.6x10-08) interaction with sex in the 23andMe 

(Supplementary Table 5), but much weaker interaction in the UK Biobank cohort (p=0.04). 

As reported before10, some hair color genes are subject to significant natural selection 

(Supplementary Table 6); SNPs associated with hair color in our meta-analysis, tended to 

have lower selection score centiles and higher than average evidence for natural selection 

within European populations (p=0.04) and compared to Africans (Supplementary Figure 7).

To further validate the results and to introduce a testing dataset, we collected GWAS 

summary statistics from 10 additional cohorts with 27,865 European participants from 

International Visible Trait Genetics (VisiGen) Consortium25 and meta-analyzed them. For 

114 of the 123 autosomal loci highlighted by the discovery GWAS meta-analysis, the 

direction of the association was the same as observed in the meta-analysis; despite the lower 

statistical power of the replication due to smaller sample sizes, most leading SNP loci from 

the discovery meta-analysis (75 of the 123 autosomal regions) replicated at least at a 

nominal level and the same direction of association (p<0.05); for 35 of these loci the 

association was stronger even after correction for multiple testing (Supplementary Table 2).

Next, we assessed the potential relationship of the most associated polymorphisms and 

expression of the genes nearest to them. In line with most previous GWAS26, the majority of 

these polymorphic loci had eQTL effects in several tissues. The strongest associations were 

observed with transcript of the CBWD1 (rs478882, p=1.30x10-30), PPM1A (rs7154748, 

p=3.30x10-14) and RALY genes (rs6059655 being associated with ASIP gene expression, 

p=6.0x10-09) in sun-exposed skin tissues (Supplementary Table 7).

As expected, genes showing the strongest association in the meta-analysis were significantly 

enriched for several Gene Ontology entries, especially pigmentation, melanin biosynthetic 

and metabolic processes, etc. (Figure 2, Supplementary Table 8).

A conditional analysis of the discovery cohorts identified 258 SNPs independently 

associated with hair color (Supplementary table 9). These SNPs explain overall 20.68% of 

the hair color heritability (using ordinal categories) and 34.58% (SE=3.64%) of the 

population liability scale27 heritability for red hair (vs. any other color, assuming population 

prevalence is as in the UKBB at 0.047), 24.80% for blond hair (SE=2.49%, assuming a 

prevalence of 0.11) and 26.12% (SE=3.11%) of the black hair heritability (prevalence 0.046, 

Table 3).

Finally, we modelled hair color prediction in two cohorts (QIMR N=7,283 and RS N=7,724) 

using the 258 independently associated SNPs from the discovery GWAS meta-analysis 

(Supplementary Table 9) together with previously reported SNP predictors for hair color 

from the HIrisPlex System28. We split the data into model building (80%) and validation 

(20%) sets to assure that marker discovery, model building and model validation were 

independently executed. In both cohorts, prediction accuracies were high for black (QIMR 
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AUC=0.91, RS AUC=0.81) and red (0.87 and 0.84) hair colors, but lower for blond (0.79 

and 0.74) and brown (0.76 and 0.64; Supplementary Table 10, Supplementary Figure 8). 

Using the same datasets, these new models outperformed the previous HIrisPlex model22 

(QIMR/RS black 0.82 vs 0.77, red 0.87 vs. 0.83, blond 0.67 vs. 0.65, brown 0.66 vs. 0.57, 

Supplementary Table 10).

Our work identified over a hundred new genetic loci involved in hair pigmentation in 

Europeans and raises interesting questions. First, the observation of higher prevalence of 

lighter hair colors among women (Supplementary Figure 9), follows previous findings based 

on objective quantitative measurement of hair color29,30 suggesting that sex is truly 

associated with hair color, independent of socially driven self-reporting bias. Second, 

although hair pigmentation spans a spectrum from very bright (blond) to very dark (black), 

the genetic mechanisms don’t always follow this linear scale, as red hair color often has 

unique predisposing genetic factors 16,17. However, our results explain even higher portions 

of heritability than before14 for all hair colors and not just for the extremes of the light-dark 

hair color spectrum. Third, hair color is a trait that follows special distribution patterns of 

distribution, therefore is prone to issues of population structure bias that may be controlled 

in several ways. A comparison of different methodologies (Supplementary Figure 10) shows 

that our approach is roughly equivalent with others. Fourth, annotation of genetic regions 

based on physical distances and association probability most likely underestimates the 

number of regions involved in hair pigmentation. For example, the involvement of OCA2 
and HERC2 genes in human pigmentation is not simply due to linkage disequilibrium31, yet 

because of their proximity, both loci in our study were assigned to the same association 

region. This would, however, not affect the conditional analysis at a marker level, which 

discriminates separate effects.

In conclusion, this large GWAS meta-analysis has improved our knowledge on the genetic 

controls of human hair and pigmentation by bringing the number of known genes into the 

hundreds. The newly identified genetic loci explain substantial portions of the hair color 

phenotypic variability and will guide future research into better understanding the functional 

mechanisms linking these genes to pigmentation variation. Our findings are also useful in 

the future for both the better molecular understanding of human pigmentation including their 

DNA-based prediction as relevant in forensic and anthropological applications, and the 

diseases that result from biological impairment of pigmentation including the development 

of treatment strategies.

Online Methods

Data Availability

This work used data from two primary sources. The original datasets can be accessed as 

follows: For UK Biobank data, through the UK Biobank Access management, as specified 

here: http://www.ukbiobank.ac.uk/register-apply/. The hair color data accession codes are 

1747.0.0, 1747.1.0 and 1747.2.0. The participants age UK Biobank accession code is 21022, 

for sex 31.0.0 and the pre-computed principal components used here 22009.0.1 through 

22009.0.10.
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For the 23andMe participants requests for summary statistics access can be made at https://

researchers.23andme.org/collaborations. There are no accession codes available.

For the TwinsUK datasets access can be asked through http://www.twinsuk.ac.uk/data-

access/ and access to the secondary source of data through the corresponding authors.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Manhattan plot of the inverse variance meta-analysis for association with hair color of the 

23andMe and UKBB cohorts (meta-analysis N=290,891). The unadjusted significance of 

association (y-axis) for each SNP on different chromosomes is shown in alternating navy 

and green along the x-axis with polymorphisms reaching significance at GWAS level 

(p<5x10-08) depicted in red. The values on the y-axis were truncated at p=10-500.
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Figure 2. 
Gene Ontology Biological Processes annotations for genes adjacent to the SNPs showing the 

strongest associations with hair color via GWAS meta-analysis in the 23andMe and UKBB 

cohorts.
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Table 1

Effect of sex on the hair color phenotypes in the 23andMe (N=157,653 independent participants) and UK 

Biobank (N=133,238 independent participants) cohorts

23andMe Odds Standard 95% Confidence Interval

Ratio Error low upper

Blond (all) 1.202 0.024 1.174 1.230

Red 1.721 0.014 1.675 1.768

Light Brown 1.116 0.013 1.088 1.145

Dark Brown 0.663 0.011 0.650 0.677

Black 0.348 0.030 0.329 0.369

UKBB Odds Standard 95% Confidence Interval

Ratio Error Low upper

Blond 1.285 0.018 1.241 1.330

Red 1.395 0.026 1.325 1.469

Light Brown 1.101 0.011 1.077 1.125

Dark Brown 0.993 0.011 0.971 1.015

Black 0.195 0.033 0.182 0.208
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Table 3

Phenotypic variance explained by the identified autosomal loci significantly associated with hair color. The 

current estimates are given as the ratio of the genetic variance, V(G), over the phenotypic variance (Vp) and 

scaled over the population prevalence, V(G)/Vp_L, (estimated in the UKBB cohort, N=133,238), on the right. 

The estimates of genetic variance explained by known SNPs prior to this study were taken from previous 

publications. The phenotypes in this table were compared with all other hair colors. Since 80% of the 

participants reported some shade of brown hair color (dark or light), the heritabilities for these two phenotypes 

were considered baseline and were not calculated.

Current heritability estimates Previous estimates

Phenotype V(G)/Vp SE V(G)/Vp_L SE Prevalence V(G)/Vp SE

Blond 0.094 0.009 0.248 0.025 0.113 0.058 0.022

Red 0.074 0.008 0.346 0.036 0.046 0.069 0.069

Black 0.056 0.007 0.261 0.031 0.047 0.005 0.005
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