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Abstract

We develop a Bayesian variable selection method for logistic regression models that can 

simultaneously accommodate qualitative covariates and interaction terms under various heredity 

constraints. We use expectation-maximization variable selection (EMVS) with a deterministic 

annealing variant as the platform for our method, due to its proven flexibility and efficiency. We 

propose a variance adjustment of the priors for the coefficients of qualitative covariates, which 

controls false-positive rates, and a flexible parameterization for interaction terms, which 

accommodates user-specified heredity constraints. This method can handle all pairwise interaction 

terms as well as a subset of specific interactions. Using simulation, we show that this method 

selects associated covariates better than the grouped LASSO and the LASSO with heredity 

constraints in various exploratory research scenarios encountered in epidemiological studies. We 

apply our method to identify genetic and non-genetic risk factors associated with smoking 

experimentation in a cohort of Mexican-heritage adolescents.
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1. Introduction

Consider modelling the relation between a binary outcome, Yi ∈ {0, 1}, and a set of 

covariates, xi′ = (xi1, …, xip), with a generalized linear model using the canonical logit link 

function [1]. Formally, this relation can be modelled as

logit(ω(xi)) = log
ω(xi)

1 − ω(xi)
= α0 + β1xi1 + β2xi2 + ⋯ + βpxip, (1)

where α0 is an intercept term, β1, …, βp are regression coefficients, and ω(xi) is the 

probability that Yi = 1. There are various other methods for modelling this relation [2–5], 

including the probit link [6]. However by avoiding the logit link, regression coefficients are 

no longer interpreted as log odds ratios. For many fields, including epidemiological research, 

this interpretation is essential to the model’s development and utility.

A critical step in model building is variable selection or determining associated covariates in 

a regression model [7]. Model misspecification leads to biased parameter estimates [1]. This 

results in inaccurate model interpretation, a problem when the model’s purpose is to explain, 

rather than predict. In exploratory epidemiological research, the relation between a set of 

covariates, or risk factors, and a binary outcome (e.g. death, disease onset, or health 

behaviour occurrence) is not fully understood. To generate hypotheses then, researchers use 

variable selection methods to identify associated covariates. Bayesian variable selection 

methods allow researchers to incorporate prior knowledge of a covariate’s possible 

association with the outcome. Some of these include Markov Chain Monte Carlo model 

composition [8], Bayesian model averaging [9], Bayesian LASSO [10], stochastic search 

variable selection [11], and expectation- maximization variable selection (EMVS) [12]. 

These methods are attractive because they inherently perform variable selection through the 

flexibility of a Bayesian hierarchical structure.

In exploratory epidemiological studies, researchers need variable selection methods for 

binary outcomes that can handle related covariates, such as interaction terms and qualitative 

covariates. Epidemiological researchers typically reparameterize qualitative covariates, such 

as race, with indicator variables to simplify interpretation (i.e. an m+1-level qualitative 

covariate enters the model as m-indicator variables). Often, the indicator variables associated 

with the qualitative covariate are treated as a group [13–17]. If one member of the group is 

included in the model as a significant covariate, the entire group is included in the model. By 

assigning one inclusion parameter to the group, the dimension of the model space is 

reduced, and the indicator variables associated with the qualitative covariate enter or leave 

the model together. In practice, this method prevents researchers from having to fit a 

secondary model that forces in the entire group when at least one but not all of the indicator 

variables are initially selected. Since only one fit is necessary, this strategy maintains false 

positive rates while incorporating knowledge of covariates’ relations and preserving 

interpretation.
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In practice, main effects, xi1, xi2, …, xip, may not fully characterize the complex relation 

between risk factors and an outcome. For example, in a study investigating risk factors 

associated with smoking experimentation, it may be of interest to identify gene × gene and 

gene × environment interactions. Among model selection methods, researchers impose 

hierarchical structures to constrain the relation between main effects and their interactions 

[13,18–24]. Constraints, such as strong or weak heredity, follow the inheritance principle 

(i.e. a higher order term depends on the lower order terms that compose it) [13]. We 

characterize inheritance by referring to main effects that combine to interact as parents of the 

interaction. For example, a strong heredity constraint considers an interaction if both parents 

forming the interaction are included in the model, and a weak heredity constraint implies at 

least one active parent [13]. Heredity constraints shrink the model space and produce well 

formulated, interpretable models [25].

While methods for selecting qualitative covariates and interaction terms are well developed 

separately, researchers require variable selection methods that can handle them 

simultaneously. Lim and Hastie [22] suggest a method that accommodates both data types 

but only under a strong heredity constraint. Further, their method does not follow the 

inheritance principle, since lower order terms’ inclusion can depend on their higher order 

terms. Our goal is to develop a variable selection method for binary outcomes that can 

identify interaction terms of continuous and qualitative covariates under the inheritance 

principle, is generalizable to different types of heredity constraints, and can handle all 

pairwise interaction terms as well as selected subsets of specific interactions. To achieve this 

goal, we select EMVS as the platform of our method.

EMVS is a flexible and efficient Bayesian method motivated by stochastic search variable 

selection. The continuous spike-slab normal mixture model prior framework of stochastic 

search variable selection shrinks non-associated covariates’ coefficients to zero and allows 

associated covariates’ coefficients to be freely estimated. Selection is determined by 

corresponding inclusion parameters. In contrast to stochastic search variable selection, 

where inference is drawn from the fully sampled posterior distribution using Markov Chain 

Monte Carlo, EMVS simply estimates the posterior modes with the expectation-

maximization (EM) algorithm [26]. This algorithm iteratively estimates the model’s 

unknown parameters, treating the covariates’ inclusion in the model as missing information, 

by alternating between an expectation step (E-step) and maximization step (M-step) until 

convergence. The EM algorithm is sensitive to starting values and is not guaranteed to 

converge at the global mode, which leads to biased interpretation of the model. To resolve 

this problem, Ročková and George [12] reinforce EMVS with a deterministic annealing 

variant. This variation removes the algorithm’s dependence on initial parameterization and 

increases the probability of finding the true global mode. As a result, EMVS outperforms 

stochastic search variable selection in a fraction of the time [12]. EMVS’s short runtime 

allows researchers to tune the model and adjust priors efficiently. By adjusting selection 

priors, EMVS accommodates dynamic, model-building challenges, such as structured 

covariates [12]. EMVS was originally shown to perform well selecting covariates associated 

with continuous outcomes in p > > n settings [12], but it has since been developed for binary 

outcomes in p > > n settings [27] and quantile regression models in p < n settings [28]. 
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EMVS’s proven flexibility to different data structures and efficiency in practice support its 

role as the platform of our method.

The remaining sections of this paper are organized as follows. In Section 2, we develop 

EMVS with a deterministic annealing variant for logistic regression models and propose 

adjustments to the E-step that accommodate interaction terms and qualitative covariates. In 

Section 3, we present the results of simulation studies conducted to assess the performance 

of EMVS for logistic regression models with these accommodations. In Section 4, we 

briefly discuss the application of this method to identify risk factors associated with smoking 

experimentation in a cohort of Mexican-heritage adolescents. In Section 5, we provide 

concluding remarks.

2. Methods

2.1. EMVS logistic

We present EMVS in the context of logistic regression models and then reinforce the method 

with a deterministic annealing variant. Consider i = 1, …, n, observations of an outcome yi ∈ 
{0, 1}, that are potentially related to p covariates, typically centred, through:

f (y | β) = ∏
i = 1

n
ω(xi)

yi(1 − ω(xi))
(1 − yi), (2)

where ω(xi) = exp(α0 + β1xi1 + ⋯ + βpxip)/(1 + exp(α0 + β1xi1 + ⋯ + βpxip)) and 

xi′ = (xi1, …, xip) (Note if we use the logit transformation on ωi, we get Equation (1)). α0 

represents an intercept term whose prior follows a normal distribution with mean zero and 

diffuse variance, v1. β is a p-dimensional vector of regression coefficients whose prior 

regulates the variable selection procedure within EMVS

π(β |γ, v0, v1) = N p(0, Dγ), (3)

where Dγ is a p × p diagonal matrix with each Djj term equal to (1 − γj)v0 + γjv1. Here, v0 

and v1 are pre-set variances of exclusion and inclusion, similar to the τ and c tuning 

parameters in stochastic search variable selection [11,12]. By setting v0 and v1 to small and 

large fixed values, respectively, non-associated covariates’ coefficients are shrunk to zero 

while associated covariates’ coefficients are freely estimated. The p-dimensional inclusion 

indicators γ = (γ1, γ2, …, γp), γj ∈ {0, 1}, are treated as missing. When the inclusion 

indicators are considered exchangeable, or there is no known relation between them, π(γ|θ) 

is given the iid Bernoulli prior

π(γ |θ) = θ|γ|(1 − θ)p −|γ|, (4)
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where |γ | = ∑ j = 1
p γ j, and γj = 1 indicates a covariate’s inclusion in the model. The sparsity 

θ ∈ [0, 1] completes the model’s formulation. Small values of θ favour sparser models. For 

illustration, its prior distribution is set to an uninformative, conjugate beta(a, b), where a = b 
= 1.

To perform EMVS, we iteratively determine the conditional expectation of the log posterior 

distribution, termed the Q-function, with respect to the missing γ |α0
(k), β(k), θ(k), y (E-step), 

and then maximize with respect to the parameters α0, β, and θ (M-step) until convergence.

The Q-function, for iteration k+1, is defined as

Q α0, β, θ |α0
(k), β(k), θ(k) = Eγ | ⋅ log(π(α0, β, θ, γ |y) |α0

(k), β(k), θ(k), y)

= ∑
γ

log π(α0, β, θ, γ |y) × π(γ | β(k), θ(k)),

(5)

where E
γ |α0

(k), β(k), θ(k), y
= E

γ | β(k), θ(k), which we denote as Eγ|·. Here, π(γ | β(k), θ(k)) is the 

posterior probability distribution for inclusion. Equation (5) simplifies into three 

components,

Q α0, β, θ |α0
(k), β(k), θ(k) = C + Q1 α0, β, |α0

(k), β(k), θ(k) + Q2 θ | β(k), θ(k) , (6)

where C is a constant term,

Q1 α0, β |α0
(k), β(k), θ(k) = ∑

i = 1

n
yilog(ω(xi))

+ ∑
i = 1

n
(1 − yi)log(1 − ω(xi)) − 1

2v1
α0

2 − 1
2 ∑

j = 1

p
β j

2Eγ | ⋅
1

v0(1 − γ j) + v1γ j
,

(7)

and

Q2 θ | β(k), θ(k) = ∑
j = 1

p
Eγ| ⋅ γ j log θ

1 − θ + (a − 1)log(θ) + (b + p − 1)log(1 − θ) . (8)

For the E-step, we evaluate the conditional expectations within the Q-function at the current 

iteration, k. The conditional expectation of the inclusion parameter, Eγ|·[γj], is computed as

Eγ| ⋅ γ j = P(γ j = 1| β(k), θ(k)) =
a j

a j + b j
= p j

∗, (9)
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where a j = π(β j
(k) |γ j = 1)P(γ j = 1|θ(k)), b j = π(β j

(k) |γ j = 0)P(γ j = 0|θ(k)), and P(γj = 1|θ(k)) = 

θ(k). The other conditional expectation is the average of the precisions, 1/v0 and 1/v1, 

weighted by p j
∗, the expected probability of inclusion,

Eγ | ⋅
1

v0(1 − γ j) + v1γ j
= (1 − p j

∗) 1
v0

+ p j
∗ 1

v1
. (10)

For the M-step, note that we can maximize Q1 and Q2 separately. The maximization of Q1 

does not have a closed-form solution. So, we use the EM gradient method to approximate 

the M-step of the EM algorithm with one iteration of the Newton–Raphson algorithm [29]. 

See Appendix 1 for derivations. The closed-form solution of Q2 remains the same as the 

original formulation [12]

θ(k + 1)∑ j = 1
p p j

∗ + a − 1
a + b + p − 2 . (11)

The algorithm iteratively progresses between the E-step and M-step until convergence. 

Following [30], convergence is determined when the absolute value of the difference 

between the log-likelihood distribution evaluated at the current and next step of the EM 

algorithm is less than a set threshold. See Appendix 2 for the convergence stopping rule. 

Once the EM algorithm has converged, the final estimates, α0
∗, β∗, and θ∗, maximize 

Equation (5). Ročková and George [12] suggest that inclusion in the model is determined if 

Eγ | β ∗ , θ ∗[γ j] ≥ 0.5.

2.2. Deterministic annealing variant

In practice, the EM algorithm is not guaranteed to converge to the global mode and may 

therefore get stuck at a local mode. As a result, the performance of the algorithm is sensitive 

to initial parameter values. One approach that reduces its dependence on those values is 

applying a deterministic annealing variant [31]. The deterministic annealing EM algorithm 

(DAEM) redefines the EM algorithm’s objective based on maximum entropy. Thus, the new 

objective is to minimize the free-energy function at gradually cooler temperatures. For 

EMVS, this corresponds to maximizing the negative free-energy function

−ℱt(α0, β, θ) = − 𝒰t(α0, β, θ) + 1
t 𝒮t(α0, β, θ) = 1

t ∑
γ

π(α0, β, θ, γ |y) t, (12)

where 𝒰t(α0, β, θ) is the internal energy, 𝒮t(α0, β, θ) is the entropy, and 1/t, where 0 < t < 1, is 

interpreted as the temperature of the annealing process. Following Ueda and Nakano [31], if 

α0
(k + 1), β(k + 1), and θ(k+1) maximize
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−𝒰t α0, β, θ |α0
(k), β(k), θ(k) = ∑

γ
log π(α0, β, θ, γ |y) × π(γ | β(k), θ(k))t, (13)

then −ℱt(α0
(k), β(k), θ(k)) ≤ − ℱt(α0

(k + 1), β(k + 1), θ(k + 1)). Thus, the DAEM algorithm is 

viewed as iteratively maximizing the negative internal energy at cooling temperatures.

In application, the annealing process starts with a high temperature (i.e. t close to 0). When 

the temperature is high, the landscape of −ℱt(α0, β, θ) is smooth, which prevents the EM 

algorithm from getting stuck in a local mode early in its iterations. As the temperature cools 

(i.e. t close to 1), the effect of the inclusion posterior is strengthened. As a result, local 

modes begin to appear and the landscape of −ℱt(α0, β, θ) progressively approaches the true, 

incomplete posterior.

To formulate EMVS with a deterministic annealing variant, we introduce into EMVS an 

annealing loop, which regulates the influence of the inclusion posterior, and replace 

Equation (5) with (13) in the E-step. The algorithm for this method is

Step 1. Set the initial α0
(0), β(0), θ(0), and t.

Step 2. Carry out the EM steps at the current temperature, t, until convergence:

a. E-Step: Evaluate 𝒰t(α0, β, θ|α(k), β(k), θ(k))

b. M-Step: α(k + 1), β(k + 1), θ(k + 1) = arg max
α0, β, θ

− 𝒰t(α0, β, θ |α0
(k), β(k), θ(k))

c. Set k ← k + 1

Step 3. Increase t.

Step 4. Stop, unless t < 1. Then return to step 2 and use the final estimates given the 

previous t to initiate at the current t.

Here, the conditional expectation is taken with respect to a tempered inclusion posterior 

distribution. The tempered probabilities of inclusion are calculated as

p j, t
∗ =

a j
t

a j
t + b j

t , (14)

where a j = π(β j
(k) |γ j = 1)P(γ j = 1|θ(k)), b j = π(β j

(k) |γ j = 0)P(γ j = 0|θ(k))and P(γj = 1 | θ(k) = 

θ(k), each raised to the power t.

At each cooling step, t, we find a global mode that is used to initiate the algorithm at the 

next temperature thereby finding a new global mode. Assuming that the new global mode is 

close to the previous, the probability of converging at the true global mode is increased. 
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Note that on the final iteration of the annealing loop (t = 1), Equation (13) matches Equation 

(5). Thus, the parameter estimates that maximize the negative free-energy function are 

equivalent to the posterior mode estimates that maximize the log-incomplete posterior.

While convergence at the global mode is still not guaranteed, the variant removes the 

algorithm’s dependence on initial parameter values and finds the global mode more often 

than the conventional EM algorithm [31]. Following, we explain our handling of related 

covariates under the notation of EMVS for clarity of discussion. In practice, it is 

generalizable to EMVS with a deterministic annealing variant.

2.3. Qualitative covariates

Suppose we are tasked with determining inclusion for an m+1-level qualitative covariate that 

had been reparameterized with m indicator variables, Dl, l = 1,…,m. Researchers typically 

assume that an associated indicator variable justifies the other levels’ inclusion [13]. So 

instead of assigning each indicator variable an inclusion parameter, γDl, we model the 

group’s inclusion as γG. If we ignore this grouping, the inclusion probabilities are no longer 

considered exchangeable. The conditional expectation of the group’s inclusion is set to

pG
∗ =

aG
aG + bG

, (15)

where aG = π(βG
(k) |γG = 1)P(γG = 1|θ(k)), bG = π(βG

(k) |γG = 0)P(γG = 0|θ(k)), and P(γG = 1 | 

θ(k)) = θ(k). βG is the m-dimensional vector of regression coefficients associated with the 

indicator variables. The indicator variables’ parameters are independent by design, so we 

replace their joint distribution with the product of their univariate normal distributions.

Since a group is selected when at least one of its indicator variables is selected, there is an 

increased chance of including the group due to random noise [13]. Suppose an 

epidemiologist claims that any covariate whose odds ratio falls within a specific range (e.g. 

[0.95, 1.05]) is clinically irrelevant. To incorporate this intuition into EMVS, the exclusion 

variance for the prior distribution of βG is set so that the 95% prior probability of exclusion 

for the odds ratio covers that range (i.e. υ0 = 0.00062). If we use this exclusion variance for 

an indicator variable group, size m = 3, we only achieve an 95%*95%*95% ≈ 85% prior 

probability that all of the coefficients within βG exist in the predetermined range. In order to 

control the false positive rate and achieve the same interpretation for the group’s prior, we 

suggest adjusting the exclusion variance for the indicator variable group. For this example, 

we would simply adjust the prior for each of the coefficients within βG so that the 95% prior 

probability of exclusion for the odds ratio ranges between [0.942, 1.061]; υ0,G = 0.00092. 

This correction is motivated by Bonferroni’s multiple testing probability theory [32]. We 

conjecture that the loss in power typically associated with this correction is tolerable for a 

relatively small number of levels and worth the reduction of false positives. See Appendix 3 

for derivations.
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2.4. Interaction terms

Suppose for a model similar to Equation (1), we aim to identify associated main effects or 

parents as well as their pairwise interactions with EMVS. We call an interaction term and its 

parents a covariate family and assume inclusion indicators between families are 

independent. To accommodate the inheritance principle within each family, we set their joint 

prior probability of inclusion similar to [13]

P γA, γB, γAB = P γA P γB P γAB |γA, γB . (16)

Here, we assume that conditioning an interaction term’s probability of inclusion, γAB, on its 

parents, γA and γB, achieves independence between family members. Therefore, we can 

still use an exchangeable inclusion prior (e.g. beta-binomial distribution) in this setting, if 

we condition interaction terms’ inclusion probabilities accordingly.

The conditional probability of inclusion for an interaction term is parameterized given the 

values of γA and γB. Bingham and Chipman [33] suggest a flexible parameterization that 

uses tuning parameters to impose a specific heredity constraint

P γAB = 1|γA, γB =

π00 = π ∗ a0 if(γA, γB) = (0, 0);

π10 = π ∗ a1 if(γA, γB) = (1, 0);

π01 = π ∗ a2 if(γA, γB) = (0, 1);

π11 = π ∗ a3 if(γA, γB) = (1, 1),

where γj ∈ {0, 1} indicates a term’s exclusion or inclusion, ∏= (π00, π10, π01, π11) denote 

inclusion probabilities, π∗ ∈ [0, 1] is chosen objectively, and a = (a0, a1, a2, a3) represent 

tuning parameters. This parameterization supports various research goals [24,34]. For 

example, an interaction’s inclusion probability is naturally constrained to π00 ≤ π10, π01 ≤ 

π11, which follows Cox’s intuition that stronger main effects are more likely to suggest 

associated interactions [35]. Two constraints that characterize this intuition are strong, a = 

(0, 0, 0, 1), and weak, a = (0, 1, 1, 1), heredities.

Here, we embed into EMVS a heredity constraint that affects the calculation of γAB’s 

conditional expected value in the E-step:

Eγ | · γAB = Eγ | · Eγ | · γAB |γA, γB = pab
∗ = π∗a3pa

∗pb
∗ + π∗a2pa

∗(1 − pb
∗) + π∗a1(1 − pa

∗

)pb
∗ + π∗a0(1 − pa

∗)(1 − pb
∗),

(17)
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where π∗ = aAB/(aAB + bAB), similar to Equation (9). Note that pab
∗  is simply the product of 

the parent terms’ and the constrained interaction term’s inclusion probabilities summed over 

all possible combinations of the parent terms’ inclusion.

We extend this theory to handle a quadratic term, which can be treated as an interaction term 

from a single parent. We assume that the prior probability of inclusion for a quadratic term, 

γAA, follows

P γAA = 1|γA =
π ∗ ∗q0 if(γA) = (0);

π ∗ ∗q1 if(γA) = (1),

where q = (q0, q1) are tuning parameters and π∗∗ ∈ [0, 1]. The quadratic term’s conditional 

expectation, pAA
∗ , is then formulated as

paa
∗ = π ∗ ∗q1pa

∗ + π ∗ ∗q0(1 − pa
∗), (18)

with π∗∗ = aAA/(aAA + bAA), similar to Equation (9).

In practice, we recommend following the hierarchical structure when estimating the 

expected values of inclusion in the E-step. By estimating the parent terms’ inclusion first, 

their updated values are available to evaluate the conditional expectation of their interaction 

term’s inclusion. By reformulating an interaction’s expectation, we constrain the model 

space to interpretable models that are flexible to different heredity constraints and uphold 

the assumptions needed to use exchangeable priors.

3. Simulations

We conduct a simulation study in R [36] to evaluate the performance of EMVS with a 

deterministic annealing variant for logistic regression models with qualitative covariates and 

interaction terms. See Supplement A for simulated data and R code. We simulate multiple 

exploratory research scenarios motivated by epidemiological data and compare the results to 

the grouped LASSO and the LASSO with heredity constraints. Multiple models are 

postulated with true effects set to represent relatively weak effects found in epidemiological 

research. We restrict our analysis to weaker effects, under the assumption that performance 

will only improve with larger effects. Our algorithm is initiated at the maximum likelihood 

estimate for α0 and β using a logistic regression model, and 0.5 for θ. The inverse 

temperature is initially set to t = .2 and is increased by .1 until t = 1. Convergence at each 

temperature level is determined with ε < 0.000001, following A.5.

To assess performance for each simulation, we calculated the average false positive rate 

(FPR), average false negative rate (FNR), and marginal accuracies (i.e. the percentage of 

correct inclusion (exclusion) for each covariate over all simulated data sets). We calculate 

the average false positive and negative rates with
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FPR = FP/(FP + TN)

and

FNR = FN/(FN + TP),

where TP(TN) and FP(FN) are the number of true positives(negatives) and false 

positives(negatives), respectively. To measure the overall performance, we calculate the 

weighted average correct association percentage [37] with

1
2

∑associatedP(selected |associated)
Total number of associated covariates +

∑unassociated1 − P(selected |unassociated)
Total number of unassociated covariates ,

which is the average of the marginal accuracies, weighted by the true number of associated 

and unassociated covariates.

Before evaluating the performance of our method to select qualitative covariates and 

interaction terms simultaneously, we examined its ability to handle them separately. In 

Supplement B and Supplement C, we compared the ability of EMVS to select qualitative 

covariates that have various combinations of associated levels with and without the grouping 

strategy and tested EMVS over multiple simulated models that are not hierarchically well 

formulated or follow strong(weak) heredity structures with varying heredity constraints 

assumed. Additionally, we tested the performance of our proposed variance adjustment to 

reduce the false positive rate in Supplement B, and we applied two different tuning 

procedures for EMVS (i.e. regularization plots in Supplement B and an intuition-based 

approach in Supplement C). EMVS’s performance handling quantitative covariates and 

interaction terms separately in these simulation studies is encouraging for its use to handle 

them simultaneously.

Then, we examined the ability of our proposed method to select associated covariates in 

scenarios structured akin to our application in Section 4, which encounters both qualitative 

covariates and interaction terms. For each model, we simulated 500 data sets with n = 1000 

observations from a full model containing, 10 parent terms; 4 two-level qualitative (xb,1,

…,xb,4), 4 continuous (xc,5,…,xc,8), and 1 three-level qualitative (xd,9, xd,10). Additionally, 

the model incorporated all pairwise interactions, including squared terms for continuous 

covariates, making a total of 58 terms in the full model. Continuous covariates followed a 

multivariate normal distribution with mean zero, variance one, and an exchangeable 

covariance structure, parameterized with ρ. We set ρ ∈ {0, 0.4, 0.8}. Qualitative covariates 

came from a multinomial distribution with equal probabilities set for each of the m+1-levels 

which sum to one. Qualitative covariates were reparameterized with m indicator variables, 

Dl, l = 1,…,m. Each indicator variable was set to one if their corresponding covariate was 

the l+1-level of the qualitative covariate and zero otherwise. For instance a two-level 

qualitative covariate was reparameterized with one indicator variable D1 that equals one if 

the qualitative covariate was equal to the second level and zero otherwise. Interaction terms 
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were equal to their parents’ product. In application, we suggest a tuning procedure that is a 

compromise between the two methods described in Supplement B and Supplement C. Here, 

we claimed an odds ratio between [0.95, 1.05] to be clinically irrelevant, and we evaluated 

the local stability of the regularization plots around our intuition with a 95% prior 

probability of inclusion for the odds ratio that covers [1/4, 4]. Using this tuning procedure, 

we set the 95% prior probability of exclusion equivalent to an odds ratio between [0.939, 

1.065], υ0 = 0.001. We applied the variance adjustment to indicator variables, as in Section 

2.3. We assumed a strong heredity constraint, a = (0, 0, 0, 1), a weak heredity constraint, a = 

(0, 1, 1, 1), and no heredity constraint, effectively a = (1, 1, 1, 1). In Supplement D, we also 

evaluate our method’s performance in the exact same settings, except with n = 120 ≈ p ∗ 2.

We compared the results of our method to the LASSO [38], a popular tool for variable 

selection, which is extended to model logistic regression [15], handles qualitative covariates 

[17], and imposes heredity constraints [19]. The grouped LASSO [17] allows researchers to 

perform LASSO regression on qualitative covariates, similar to our methods in Section 2.3. 

We compared our method with no heredity constraints to the grouped LASSO for logistic 

regression models with the gglasso package in R [39]. We chose this package because of its 

computational efficiency [39]. To compare our method under heredity constraints, we chose 

the R package hiernet used by [19]. This package allows users to impose a strong or weak 

heredity constraint and follows the inheritance principle (i.e. only considers interactions if 

the parents are associated with the outcome). An alternative package, glinternet [22], can 

handle heredity constraints for qualitative covariates but is only developed for strong 

heredity constraints and does not follow the inheritance principle. Thus, we find the 

characteristics of hiernet better for comparison with our method’s approach. Additionally, 

the hiernet’s inability to accommodate qualitative covariates only affects the inclusion of 

the non-associated indicator variable, xd,10, since xd,9 is associated. We accounted for this in 

our comparisons. For heirnet and gglasso, we used fivefold cross validation to identify the 

largest penalty value, λ, that is within one standard error of the minimum [40]. Variable 

selection was performed on each of the simulated data sets using this penalty on the 

appropriate models for comparison. We simulated three models from the pool of covariates 

to evaluate our method’s performance against the LASSO in the following mock research 

settings:

Model 3.3.1

The true model followed a strong heredity constraint:

logit(ω(xi)) = − 0.65xb, 1 + 0.5xb, 2 + 0.65xc, 5 − 0.5xc, 6 + 0.6xd, 9 + 0.6xb, 1xb, 2 − 0.6xb, 1xc, 5
+ 0.6xc, 5xc, 6 + 0.5xc, 6

2 − 0.6xd, 9xb, 1 + 0.5xd, 10xb, 1 − 0.6xd, 9xc, 5 + 0.5xd, 10xc, 5 .

Model 3.3.2

The true model followed a weak heredity constraint:
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logit(ω(xi)) = 0.5xb, 2 + 0.65xc, 5 − 0.5xc, 6 + 0.6xd, 9 + 0.6xb, 1xb, 2 − 0.6xb, 1xc, 5 + 0.6xc, 5xc, 6 + 0.5xc, 6
2

− 0.6xd, 9xb, 1 + 0.5xd, 10xb, 1 − 0.6xd, 9xc, 5 + 0.5xd, 10xc, 5 .

Model 3.3.3

The true model was not hierarchically well formulated:

logit(ω(xi)) = 0.5xb, 2 + 0.6xd, 9 + 0.6xb, 1xb, 2 − 0.6xb, 1xc, 5 + 0.6xc, 5xc, 6 + 0.5xc, 6
2 − 0.6xd, 9xb, 1

+ 0.5xd, 10xb, 1 − 0.6xd, 9xc, 5 + 0.5xd, 10xc, 5 .

Table 1 presents our method’s overall performance in scenarios that include qualitative 

covariates and interaction terms. We found that all performance measures were sensitive to 

correlation structure and that the method detected stronger effects better than weaker effects. 

Additionally, models under the strong heredity constraint showed a lower average FPR 

compare to models under a weak heredity constraint or no heredity constraint. As a result, 

models under the strong heredity constraint experienced a higher average FNR, with the 

lowest average FNR achieved by models with no heredity constraint. In Figures 1–3, we find 

that qualitative covariates have higher rates of incorrect association and as result, interaction 

terms including qualitative covariates had the highest rates of incorrect association. This was 

expected following the results in Supplement B.

Overall, our method outperformed the LASSO under a weak heredity constraint and the 

grouped LASSO for all models (3.3.1–3.3.3), as well as the LASSO under a strong heredity 

constraint for two of the three correlation structures when the true model followed strong 

heredity (Table 1). Additionally, our method maintained a lower average FPR under a strong 

heredity constraint. We found that EMVS was marginally more sensitive to the type of 

covariate, (e.g. continuous or qualitative), whereas the LASSO was more sensitive to 

whether or not the covariate is a parent or interaction term (Figures 4–6). The LASSO under 

heredity constraints showed more false positives for main effects compared with EMVS. 

Additionally, EMVS performed better in selecting grouped covariates. In results not shown, 

we also found that EMVS outperformed both the regular LASSO [38] and forward stepwise 

selection for all performance measures, and the LASSO using a λ that was within one 

standard error of the minimum performed better than the λ that minimized the cross-

validation error for our simulations.

When the true model followed weak heredity (3.3.2) or the model was not well formulated 

(3.3.3), the LASSO under a strong heredity constraint outperformed our method overall, 

with respect to the weighted average correct association percentage. We attest this to the 

LASSO’s tendency to select a majority of parent terms, regardless of their true influence, 

and neglect interaction terms, which make up a majority of the full model (Figures 4–6). 

Additionally, under no heredity constraint, the LASSO had a lower average FPR. This 

corresponds to EMVS’s tendency to select unassociated interactions involving grouped 

indicator variables. We find that all LASSO methods were sensitive to correlation structure, 

similar to EMVS. However, sometimes the LASSO performed better with higher 
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correlations (e.g. average false positives in model 3.3.3). Choi et al. [18] also show that 

LASSO performed better with correlated data. However, it is worth noting that even though 

the LASSO outperformed EMVS in some of the simulated scenarios, the two methods are 

not truly comparable under the strong and weak heredity constraints since the LASSO is 

unable to simultaneously account for qualitative covariates.

4. Application

In this section, we apply our proposed method to the MATCh data from [41–43] to examine 

the relation between smoking experimentation and non-genetic (i.e. behavioural, 

psychosocial, demographic, and contextual) as well as genetic risk factors. Details of the 

study design are found in [42], and the data collection procedure is described in [41]. Our 

aim in this exploratory study was to identify which risk factors remained associated when 

the results of three previously published analyses [41–43] on this cohort are combined to 

form an aggregated pool of risk factors, while simultaneously evaluating interaction terms. 

In our analysis, our outcome of interest is ever-experimentation as defined by [41]. They 

used stepwise logistic regression to determine ever-experimentation’s association with age 

(continuous), gender (two-level qualitative), social influence of friends (two-level 

qualitative), social influence of family (two-level qualitative), detentions (two-level 

qualitative), risk-taking tendencies (continuous), anxiety score (continuous), and exposure to 

smoking in movies (continuous), while controlling for parental education attainment (three-

level qualitative). Country of birth (two-level qualitative) and acculturation (two-level 

qualitative) were evaluated separately in the model as potential moderators. In a subsequent 

analysis, Wilkinson et al. [43] also identified the following single nucleotide polymorphisms 

from the opioid receptor serotonin and dopamine pathways associated with new-

experimentation: rs9322451 on OPRM1 (dominant), rs6297 on HTR1B (dominant), on 

rs8119844 on SNAP25 (recessive), rs9567732 on HTR2A (dominant), rs10052016 on 

SLC6A3 (dominant), and rs12422191 on DRD2 (dominant) and the psychological factor 

outcome expectations (continuous). Using our proposed approach, we pooled the risk factors 

from these two studies and added subjective social status (continuous) [41] to see which 

remained associated with ever-experimentation. We simultaneously evaluated interactions 

between exposure to smoking in movies and peers who smoke, as well as between 2 single 

nucleotide polymorphisms along the dopamine pathway and detention, risk-taking 

tendencies, and expected positive outcomes. After dropping observations with missing data, 

this analysis considered 1231 individuals and a pool of potential risk factors that includes 6 

continuous, 12 two-level qualitative covariates, 1 three-level qualitative covariate, and 7 

interaction terms. For this application, we used the same tuning procedure described in 

Section 3, with v1 = 0.5. Using this tuning procedure, we set the 95% prior probability of 

exclusion equivalent to an odds ratio between [0.956, 1.045], v0 ≈ 0.0005. We use our 

proposed variance adjustment for the indicator variables and imposed a strong, weak and no 

heredity constraint.

Our method identified all of the parent effects in the aggregated pool, excluding anxiety 

score, subjective social status, country of birth, acculturation, and parental education 

attainment as associated with ever-experimentation in this cohort. In a previous analysis 

[42], parental education was forced into the model to control for socioeconomic status. 
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While we allowed for it to be selected in this analysis, its prior could have been adjusted to 

force it in. Since acculturation and country of birth were highly correlated, their relation, as 

potential direct effects and moderators on new-experimentation, was examined separately 

[42]. In that analysis, only country of birth was identified as a moderator for new-

experimentation. Additionally, anxiety score was identified as one of the weaker effects 

associated with ever-experimentation [42]. Among adolescents, ever smoking includes a 

wide range of smoking levels, from having tried only a puff to daily smoking. This might 

mask the true relation between anxiety and smoking behaviour, as the experimenter may be 

qualitatively different than those who increase their level of smoking. Its exclusion could 

also be the result of parental education attainment neither being forced into the model nor 

being selected by our method. Only two interaction terms were identified: rs12422191 on 

DRD2 × detention and rs10052016 on SLC6A3 × detention under a strong, weak, and no 

heredity constraint.

To our knowledge, no other methods exist that can search through specific interaction terms 

and impose heredity constraints. Therefore, we compared our results to forward and 

backward stepwise selection and the LASSO and grouped LASSO. The stepwise methods 

selected the same parent effects as our method, except they included anxiety score. However, 

neither identified the two interactions but instead identified a peer and exposure to smoking 

in movies interaction. The LASSO and grouped LASSO did not select any interaction terms 

and excluded the same parent terms as the stepwise methods as well as some genetic risk 

factors. The LASSO only selected rs8119844 on SNAP25 and the grouped LASSO selected 

rs12422191 on DRD2, rs6297 on HTR1B, as well as rs8119844 on SNAP25. Based on our 

simulations, it is not surprising that the LASSO methods favoured a more parsimonious 

model.

5. Discussion

We developed a variable selection method to simultaneously accommodate qualitative 

covariates and interaction terms using deterministic annealing EMVS for binary outcomes. 

We offer a variance adjustment for qualitative covariates that controlled the groupwise, false 

positive rate, and a flexible parameterization for introducing various heredity constraints on 

interactions. While we did not show it, our method can also apply unique heredity 

constraints on each family of covariates, similar to [21]. In the majority of our simulations 

motivated by the application data, we showed that our method tended to outperform the 

grouped LASSO and the LASSO with heredity constraints in exploratory research settings 

with the objective of identifying risk factors for an outcome. Particularly, our method was 

superior overall when the assumption of the model’s heredity structure matched the true 

model. Unfortunately, we never know the true model in practice. Based on our simulations, 

we suggest relaxing any heredity constraints or imposing a weak constraint to identify 

potential risk factors in hypothesis-generating research. We found that our method, under the 

strong heredity constraint, encouraged effect sparsity, similar to that of [18]. Bien and 

Tibshirani [19] and Liu et al. [24] also found that implementing strong heredity constraints 

reduces false positives but consequently limits methods’ ability to detect associated terms. 

Our method shared this pitfall, which could be marginalized through appropriate tuning. To 

our knowledge, most of the research on selection methods that accommodate heredity 
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constraints evaluated methods on prediction performance [19,24]. Choi et al. [18] evaluated 

variable selection, but not marginally. By looking at the performance of the method 

marginally, we were able to identify underlying strengths and weaknesses of the method that 

an evaluation of its predictive ability would overlook.

The usefulness of our method is sensitive to tuning parameterization and initialization. 

While the deterministic annealing variant reduced the method’s sensitivity to initialization, 

the method still does not guarantee a global mode. Fortunately, the model’s performance 

could be increased with effective tuning. Sole use of regularization plots for tuning (i.e. 

without intuition) is useful when the objective of the researcher is to identify large effects, or 

a prespecified reduction in the size of the full model is sought. For instance, we were 

interested in identifying the 10 largest effects from a pool of covariates. We found that in 

application settings, relying solely on regularization plots for tuning can be misleading. 

Theoretically, as the variance of exclusion increases, more covariates will fall out of the 

model, ultimately stabilizing at the null model. Since the variance of exclusion could be 

interpreted as a threshold for clinically meaningful odds ratios, we suggest using this 

intuition to target local stability in the regularization plots. In practice, the clinical threshold 

is set a priori, next regularization plots are employed, and then the variance of exclusion is 

chosen within the range of local stability around the targeted threshold. While this is our 

suggested tuning method based on our experiences, a more validated approach is justified.

Due to the formation of the likelihood and limitations of the software, our method was 

sensitive to boundary conditions (i.e. it fails to converge when the null model or full model 

is selected). For our simulations, if θ, the overall inclusion probability, gets stuck at zero or 

one (i.e. θ < 1 × 10−6 or θ > 0.9999), we stopped the method and recorded a null or 

saturated model. In practice, this limitation is easily circumvented with retuning.

We chose the logit link to model binary data for its familiarity to the field of epidemiology 

and its interpretability, which we prioritized over any computational difficulties. Within the 

context of a logit link, future work could improve upon the numerical methods (i.e. EM 

gradient method) used to remediate these issues in our simulation study. Additionally, 

researchers could integrate our methods for handling related covariates into other EMVS 

frameworks [12,27,28]. This would allow researchers to compare our methods for handling 

related covariates using a logistic regression model to a probit regression model [27]. While 

the roots of deterministic annealing EMVS are found in p ≫ n research settings, we have 

shown its usefulness in various other exploratory research scenarios. However, it is of 

interest to evaluate the performance of our method in p ≫ n settings, as they often arise in 

epidemiological research, (i.e. genomics, proteomic, and metabolomics). Currently, EMVS 

has only been evaluated in high dimensional settings with continuous covariates [12,27]. 

Based on EMVS’s sensitivity to both qualitative covariates and relatively small sample sizes 

(n ≈ p ∗ 2), extensions of our method to p ≫ n settings may require more efficient 

optimization methods to facilitate tuning procedures. In some settings, researchers are 

interested in identifying associated interaction terms and thereafter force in non-associated 

parent effects to uphold heredity constraints in the model. Our methods could easily be 

modified to impose this dependency. Lastly, EMVS currently lacks a formal method for 

estimating parameters’ variance that accommodates estimation as well as selection 
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uncertainty. This addition would prevent researchers from needing to fit a secondary model, 

including the covariates EMVS selected, that would underestimate parameters’ variances 

and bias interpretation of the model.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The authors would like to thank Dr Aubree Shay, UT School of Public Health-San Antonio Regional Campus, for 
her editorial support throughout the writing of this manuscript.

Funding

This work was supported by the University of Texas School Health Science at Houston Center School of Public 
Health, Cancer Education and Career Development Program National Cancer Institute/NIH under Grant R25 
CA57712; University of Texas Health Science Center at Houston School of Public Health, Training Program in 
Biostatistics National Institute of General Medical Sciences under Grant T32GM074902; and National Institute of 
Child Health and Human Development under Grant 1R03HD083674. Additionally, this work was supported by the 
Michael & Susan Dell Foundation, Michael & Susan Dell Center for Healthy Living. The content is solely the 
responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute or 
the National Institutes of Health.

Appendix 1. Newton–Raphson derivations

Note, we can equivalently maximize Q1 by letting ψ′(1 × p + 1) = (α0, β′), xi′ = (xi0, xi1, …, xip)

where xi0 = 1, and p∗ = (p0
∗, p1

∗, …, pp
∗) where α0 is forced into the model by fixing its 

probability of inclusion, p0
∗, to 1. Then, the next iteration of Ψ is estimated by

Ψ(k + 1) = Ψ(k) −
∂2Q1

∂Ψ′∂Ψ
Ψ = Ψ(k)

−1 ∂Q1
∂Ψ Ψ = Ψ(k)

, (A1)

where the first derivative of the Q1 function with respect to Ψ is a p+1-dimensional vector 

with:

∂Q1
∂Ψ j

= ∑
i = 1

n
(yixi j − ω(xi)xi j) − Ψ j (1 − p j

∗) 1
υ0

+ p j
∗ 1

υ1
. (A2)

The diagonal elements of the (p + 1) × (p + 1)-dimensional Hessian matrix, [∂2Q1/∂Ψ′∂Ψ] 

are formulated as

∂2Q1
∂Ψ2 = − ∑

i = 1

n
xi j

2 ω(xi)(1 − ω(xi)) − (1 − p j
∗) 1

υ0
+ p j

∗ 1
υ1

, (A3)
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and the off-diagonals are:

∂2Q1
∂Ψ j ∂Ψk

= − ∑
i = 1

n
xi jω(xi)(1 − ω(xi))xik . (A4)

Appendix 2. Convergence stopping rule of the EM Algorithm

To determine convergence of this method, we set a stopping rule for the absolute value of the 

difference between the log-likelihood distribution evaluated at the current and next step of 

the EM algorithm [30]. Formally, the algorithm stops if:

logL α0
(k + 1), β(k + 1), θ(k + 1) |y − logL α0

(k), β(k), θ(k) |y
= Q α0

(k + 1), β(k + 1), θ(k + 1) |α0
(k), β(k), θ(k) − Q α0

(k), β(k), θ(k) |α0
(k), β(k), θ(k)

− R β(k + 1), θ(k + 1) | β(k), θ(k) − R β(k), θ(k) | β(k), θ(k) ≤ ε,

(A5)

where ε is the stopping rule threshold. The Q function is described in Equation (5) and

R β, θ | β(k), θ(k) = ∑
γ

log π(γ | β, θ, y) × π(γ | β(k), θ(k), y) = Eγ | · log π(γ | β, θ, y) . (A6)

Due to the hierarchical structure of this model, we assume that:

π(γ | β, θ, y) = π(γ | β, θ) = θ|γ|(1 − θ)p − |γ|, (A7)

where |γ | = ∑ j = 1
p γ j and θ ∈ [0, 1], (Similar to 4). Taking the log and conditional 

expectation, we show:

Eγ | · log(π(γ | β, θ)) = ∑
j = 1

p
Eγ | ·[γ j]log(θ) + p − ∑

j = 1

p
Eγ | ·[γ j] log(1 − θ) . (A8)

Appendix 3. Variance correction for grouped covariates

Determine the variance that places a 95% prior coverage probability (α = 5%, where α = 1 − 

coverage probability) for βj between [0.95, 1.05],

var95% = (log(1.05)/1.96)2 = 0.00062 . (A9)

Use var95% to determine the exclusion threshold for the odds ratio of the grouped covariates, 

given the adjustment:

Koslovsky et al. Page 18

J Stat Comput Simul. Author manuscript; available in PMC 2018 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ORupper = exp Z1 − αadj
var95% = 1.0614 ORlower = exp −Z1 − αadj

var95% = 0.9421,

(A10)

where Z is a z-score, αadj = 100(1 − α/(2m)) is the new type I error rate, and m represents 

the number of indicator variable for the group. In this case,

1 − αadj = 1 − 0.05/(2 ∗ 3) = 99.16% . (A11)

Then, solve for an adjusted variance that places a 95% prior coverage probability between 

the new tolerable range for exclusion, [0.942, 1.061],

varadj = (log(1.061)/1.96)2 = 0.00092 . (A12)
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Figure 1. 
Each box represents the correct association percentage for a covariate. The lighter the box, 

the better the model performed for that variable, averaged over all simulations. Whether or 

not a covariate should be included depends on the heredity constraint given. For example: if 

covariate c1 is associated with the outcome, but c2 is not, a strong constraint would exclude 

their interaction but a weak or no heredity constraint should include it. ∗Covariates existing 

in the true model.
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Figure 2. 
Each box represents the correct association percentage for a covariate. The lighter the box, 

the better the model performed for that variable, averaged over all simulations. Whether or 

not a covariate should be included depends on the heredity constraint given. For example: if 

covariate c1 is associated with the outcome, but c2 is not, a strong constraint would exclude 

their interaction but a weak or no heredity constraint should include it. ∗Covariates existing 

in the true model.

Koslovsky et al. Page 23

J Stat Comput Simul. Author manuscript; available in PMC 2018 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Each box represents the correct association percentage for a covariate. The lighter the box, 

the better the model performed for that variable, averaged over all simulations. Whether or 

not a covariate should be included depends on the heredity constraint given. For example: if 

covariate c1 is associated with the outcome, but c2 is not, a strong constraint would exclude 

their interaction but a weak or no heredity constraint should include it. ∗Covariates existing 

in the true model.
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Figure 4. 
Each box represents the correct association percentage for a covariate. The lighter the box, 

the better the model performed for that variable, averaged over all simulations. Whether or 

not a covariate should be included depends on the heredity constraint given. For example: if 

covariate c1 is associated with the outcome, but c2 is not, a strong constraint would exclude 

their interaction but a weak or no heredity constraint should include it. ∗Covariates existing 

in the true model.
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Figure 5. 
Each box represents the correct association percentage for a covariate. The lighter the box, 

the better the model performed for that variable, averaged over all simulations. Whether or 

not a covariate should be included depends on the heredity constraint given. For example: if 

covariate c1 is associated with the outcome, but c2 is not, a strong constraint would exclude 

their interaction but a weak or no heredity constraint should include it. ∗Covariates existing 

in the true model.
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Figure 6. 
Each box represents the correct association percentage for a covariate. The lighter the box, 

the better the model performed for that variable, averaged over all simulations. Whether or 

not a covariate should be included depends on the heredity constraint given. For example: if 

covariate c1 is associated with the outcome, but c2 is not, a strong constraint would exclude 

their interaction but a weak or no heredity constraint should include it. ∗Covariates existing 

in the true model.
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