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Attosecond-resolution Hong-Ou-Mandel interferometry

Ashley Lyons,"?> George C. Knee,? Eliot Bolduc," Thomas Roger," Jonathan Leach,’
Erik M. Gauger,’ Daniele Faccio'**

When two indistinguishable photons are each incident on separate input ports of a beamsplitter, they “bunch”
deterministically, exiting via the same port as a direct consequence of their bosonic nature. This two-photon
interference effect has long-held the potential for application in precision measurement of time delays, such as
those induced by transparent specimens with unknown thickness profiles. However, the technique has never
achieved resolutions significantly better than the few-femtosecond (micrometer) scale other than in a common-path
geometry that severely limits applications. We develop the precision of Hong-Ou-Mandel interferometry toward the
ultimate limits dictated by statistical estimation theory, achieving few-attosecond (or nanometer path length) scale
resolutions in a dual-arm geometry, thus providing access to length scales pertinent to cell biology and monoatomic

Copyright © 2018

The Authors, some
rights reserved;
exclusive licensee
American Association
for the Advancement
of Science. No claim to
original U.S. Government
Works. Distributed
under a Creative
Commons Attribution
License 4.0 (CC BY).

layer two-dimensional materials.

INTRODUCTION

Since its discovery, Hong-Ou-Mandel (HOM) interferometry (1) has
found a wide variety of applications within quantum optics (2-7). For
example, it is commonly exploited as a measure of the distinguishability
of photons produced by quantum dots (8, 9). It can be used as a source
of two-photon NOON states: a class of states widely studied in quantum
metrology owing to their ability to reach the Heisenberg limit in phase-
sensitive measurements (10-14). HOM interferometry is impervious to
changes in the relative phase between the two photons, a property which
implies that a HOM-based sensor does not require potentially im-
practical or expensive stabilization, as is typically required in classical
interferometry. Furthermore, typical phase-dependent techniques suffer
from a limited dynamic range equal to half of the wavelength due to the
fact that multiple possible phases can correspond to the same signal.
HOM interferometry, on the other hand, allows optical delays to be dis-
tinguished unambiguously over a range of a few micrometers owing to
the relatively wide interference pattern (or HOM dip).

To date, the highest-precision time-delay measurements using the
HOM effect make use of orthogonally polarized photon pairs to mea-
sure polarization mode dispersion (15, 16). These studies have produced
measurements of the group delay between pairs propagating along a
common path to within a 0.1-fs uncertainty. The common-path geometry
significantly aids the stability of the interferometer but can only be applied
to (and thus is only relevant for) birefringent samples. A much wider range
of applications is possible if the same or better precision can be achieved
with a dual-arm geometry, which places no such restriction on how a
sample might cause the relative delay.

Closely related to HOM interferometry, quantum optical coherence
tomography (QOCT) is a method for extracting depth profiles of re-
flective interfaces, also via a HOM measurement of the relative delay
between photon pairs, often implemented in a dual-arm geometry. In
this context, features on the order of a micrometer have been detected,
including those introduced by biological specimens (17-20). The
limited depth resolution makes these approaches inadequate for smaller
biological samples such as cell membranes, DNA samples, or protein
monolayers, which have thicknesses on the order of 1 to 10 nm.
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Both QOCT and standard HOM measurements have, to date, relied
on detecting the shift in the interference minimum in the coincidence
counts between the output ports of the interferometer.

Here, we devise and implement a completely new measurement and
estimation strategy based on a Fisher information analysis. By tuning
the interferometer to the delay that contains the maximum information
content, and then by using a maximum-likelihood estimation (MLE)
procedure, we achieve an improvement in precision and accuracy
by two orders of magnitude over previous HOM approaches including
QOCT. Throughout this work, we define the measurement precision
as the SD of the final estimated photon delay, whereas the accuracy is
defined as the difference between the final estimate and the known
actual value. When both accuracy and resolution are good enough, it
is possible to resolve small time delays (here on the order of a few atto-
seconds). We conducted measurements of the change in relative arrival
time between two photons, 87, with an average accuracy of 6 as (1.7 nm)
and an average precision of 16 as (4.8 nm). Our best achieved accuracy
was 0.5 as (0.15 nm) and best achieved precision was 4.7 as (0.9 nm).
HOM interferometry can therefore enable single-photon characteriza-
tion of optically transparent samples with thicknesses and length scales
relevant, for example, to cell biology.

RESULTS

If two photons are incident on the input ports of a balanced beam-
splitter (BS), the probability of a coincident detection at the output
ports depends on the inner product of the quantum states of each
photon and is influenced by the difference in arrival times of the two
photons t. HOM interference is characterized by the coincidence rate
falling to zero as all distinguishing information is erased: the so-called
“HOM dip” (see Fig. 1).

As Hong, Ou, and Mandel showed in their original work, if t is
scanned, the minimum position of the interference pattern can be
measured with at least subpicosecond precision. Similar techniques
were used in later works (15, 21) and typically involve a simple least-
squares fitting procedure for a scan over t. By contrast, here, we use
Fisher information analysis as the key theoretical tool for unlocking a
peak-performance HOM interferometer. This allows us to introduce
measurement and estimation protocols that are optimized to give a
higher precision for a set amount of time invested or, equivalently, a
greater information gain per photon.
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Fig. 1. Dual-arm HOM interferometer. A pumped type Il BBO crystal is used as a source of SPDC photon pairs, which are separated by a polarizing BS (PBS) before
being subject to a differential time delay and recombination on separate input ports (1 and 2) of a fiber-coupled 50:50 BS (HOM BS). Coarse control of the optical delay
is achieved by a motorized translation stage (HOM stage, controlling t0m), whereas fine control is achieved using a piezo actuator (controlling Tsampie and representing
a transparent sample). From a scan of the HOM dip (bottom left, blue), a peak in the Fisher information (red) is identified to be used in the sensing procedure (green).
The difference in temporal delay between the two photons (t: = Tampie — THom) is quantified through MLE. Typical measured photon pair rates were on the order of
30,000 counts s~ with an estimated loss rate of 87%. SPAD, single-photon avalanche photodiodes.

The ultimate limit on the precision of estimation is known as the
Cramér-Rao bound (22), which states that the variance of any unbiased
estimator (that is, one whose expectation is equal to the true value of the
parameter; see “Bias” section in Materials and Methods) must be
bounded by

N 1

Var(%) = ﬁ

(1)

where T denotes an estimator for the parameter t. The Fisher in-
formation F measures the amount of information about t that can be
extracted from a particular experiment.

The HOM interferometer is characterized by many desirable
features: for example, the large dynamic range (see the Supplementary
Materials). Here, however, we are primarily concerned with minimizing
Var(t). We achieve attosecond precision by accomplishing a combina-
tion of three goals: (i) maximizing F, (ii) saturating inequality (1), and
(iii) increasing N (that is, the number of repetitions of the experiment)
as much as possible within the confines of slow drift in the setup.

To achieve the first of our goals, we need to consider the dependence
of F on 1 and other parameters. Our statistical model is defined by a set
of probabilities P;, where i = 0, 1, and 2 denotes the number of detectors
that click in each run. The probabilities depend on the following param-
eters: the wave packet duration o, which is proportional to the full width
at half maximum of the temporal mode function of each photon (here
taken to be Gaussian functions); the maximum indistinguishability o
(which sets the visibility of the interference); and the photon loss rate
vy (see Materials and Methods for the full model). The Fisher informa-
tion evaluates to

2027220/
(1 _ ae—zZ,/Gz) B %(1 B ae*TZ/GZ)Z

(1-v°
The distribution of information in Eq. 2 is doubly peaked and sym-
metric around t = 0 (see red dashed curves in Figs. 1 and 2). We note
that when o — 1 (perfect visibility), the peaks asymptotically merge at

1
ez

(2)
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the origin. Because the visibility is reduced (as it is in all experiments),
the maximum information decreases and the peaks move outward. A
similar phenomenon was observed in the study of Jachura et al. (23),
where nonunit visibility caused a marked qualitative change in the
distribution of Fisher information for a phase-sensitive interferometer.
Here, the changing distribution reflects the competition between (i) the
derivative of the inverted Gaussian dip (which is optimized at © =
c/ v/2) and (ii) the variance of P; (which is optimized at t = 0). This
suggests that using prior knowledge of T and o enables the interfer-
ometer to be tuned to operate at the optimum point between these
extremes. In Materials and Methods, we discuss how we found this point.

To achieve our second goal of saturating the Crameér-Rao bound, we
use the MLE

T=4+0c |In M (3)
n- s (22)

where N; (respectively N,) is the number of times only one (both) de-
tector(s) clicked (see Materials and Methods). This estimator is efficient,
that is, it saturates Eq. 1 when the number of trials is large enough (24).
When the argument of the logarithm is negative, the likelihood is max-
imized at T — *00. To account for this situation (which arises when the
data set is very noisy), we use a Bayesian analysis (see Materials and
Methods). The estimator is nonlinear but analytically calculable and
thus suitable for real-time estimation with the data. Note that due to
the symmetry of the HOM dip, there is a twofold ambiguity in the
estimate—we can only obtain its magnitude and not its sign. As we shall
see later, this issue will be resolved through our measurement protocol.
Note that the estimation involves observable quantities N}, as well as v,
o, and o. The latter need to be separately estimated before the measure-
ments begin (see Materials and Methods).

To test our theory and demonstrate our protocol, a noncommon-
path HOM interferometer was constructed using spontaneous parametric
down-conversion (SPDC) from a type II nonlinear crystal as a source of
orthogonally polarized photon pairs (see Fig. 1 and Materials and Methods).
The photons are deterministically separated via their polarization, and

20of 8



SCIENCE ADVANCES | RESEARCH ARTICLE

each is collected by a single-mode fiber coupled to a BS (HOM BS, Fig. 1).
The relative path-length difference between the photon pair was con-
trolled with a coarse stage.

The HOM dip was scanned using a 10-nm bandpass filter posi-
tioned before the PBS to ensure spectral indistinguishability and
therefore high-visibility two-photon interference. As a first step, a total
of 50 scans of the HOM dip were acquired to ascertain the variance of
the estimates and compare with the predicted Fisher information
(which acts as an upper bound on the inverse variance). To test the the-
oretical model further, the polarization of one of the arms of the inter-
ferometer is rotated so as to reduce the visibility of the interference to
approximately 50%. The inverse variance of our estimates follows the
predicted Fisher information distribution, as shown in Fig. 2.

These data therefore constitute a good confirmation of Egs. 1 and 2.
By replacing the interference filter, it was observed that both the mea-
surement accuracy and precision were improved for wider bandwidth
photons: This is despite of the reduction in o and due to the decrease in
o and increase in N. For this reason, the bandpass filter was removed
and replaced with a long-pass edge filter to block the pump field of the
SPDC without altering the spectrum of signal and idler.

For subsequent measurements, we introduced attosecond-scale
temporal delays, Teampie (see Fig. 1), with an additional piezo actuator
(thus playing the role of a transparent sample that can be inserted in
and out of the photon path). The HOM interferometer delay (tom)
was first tuned with a coarse control stage to a maximum in the Fisher
information (see Fig. 2) and was kept there while a large amount of data
[0(10°) counts] was collected.

To achieve our third goal (increasing the number of measurements
within the limits of experimental drift), the piezo actuator was period-
ically switched (every 100 ms) between the two positions (which we label
“in” and “out”), and we collected a set of counts N; corresponding to each.
We then use this data (in combination with the parameters N; v, 6, and
@) to estimate 7™ and t°*. Finally, we extract the difference in differential
time delay &t := T — ot = (¢ — THom) — (ré’;‘r;ple — THoM) =

in out :
Tample ~ TSample- Frqm prior knowledge of the system, we make the as-
sumption that the sign of 13, ;. and 10, . are the same such that the

value of 8t is unambiguous.
Figure 3 shows data for a sample position separation (c57) of 10 nm.
Each individual integration window yields a relatively poor precision

\/ Var(31) = \/ Var(i™) + Var(i") ~ 600 as (180 nm) estimate of
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Fig. 2. Experimental HOM dips (left axis) are shown for various visibilities, introduced by a differential polarization change. The estimated total Fisher information NF
(Eq. 2; right axis, red) along with the inverse variance of our experimental estimates are shown (gray crosses, right axis). The rightmost panel includes theoretical curves for
perfect visibility, where the two peaks in the Fisher information have asymptotically merged. The open circle denotes a point where the Fisher information is undefined.
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Fig. 3. Example of an acquired experimental data set. (A) Individual estimates of " (blue) and t°“ (red) for two piezo positions separated by 10 nm (33.3 as). A
relatively large drift can be seen in the data, which is dealt with by switching between piezo positions as discussed above. (B) The histogram shows two almost perfectly
overlapping distributions. Classical interferometry would be limited to a distribution no larger than the yellow area. The distributions are generally nonunimodal, which
is indicative of significant drift (or slowly varying noise). (C) Cumulative estimates are plotted. The drift in each estimate is considerable, being approximately 2 fs (600
nm). The red curve has been shifted down by 2 fs for clarity (arrows). The drift for each sample position is very well correlated because we switch the sample position
much faster than the drift. (D) Because of this correlation, the difference in cumulative estimates 8t is very stable and converges on the true value.
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the optical delay. Figure 3 also shows cumulative estimates, which cor-
respond to a single data set which is gradually incremented, accumulat-
ing all the counts of individual data sets (which are assumed
independent). Initially, a cumulative data set (and estimate) will change
rapidly before settling down later on. By assuming that each experiment
is independent, we can combine M = 0(10% such data sets to achieve a
0(100)-fold improvement in precision, that is, toward a few attosec-
onds (few nanometers). The precision obtained using the entire data
set is estimated as \/Var(8%)/M. Figure 3B shows that the distribu-
tion of the individual measurements in our approach falls well
outside the A/2 (404 nm, highlighted in yellow) range that is acceptable
for phase-dependent interference methods. Despite this, our approach
still recovers accurate estimates, and its dynamic range is determined
by the size of the HOM dip (see Fig. 2): Up to an ambiguity in the
sign of 1, there is a clear one-to-one mapping between t (which we
estimate) and the coincidences (which we measure) over a range of at
least 25 pm.

Next, a series of target piezo displacements (Tsampie) Were set to
test the capabilities of our protocol. Figure 4 shows the final esti-
mated shifts compared to the ground truth displacements recorded
by the internal capacitive sensor of the piezo actuator. The measure-
ment procedure consistently returns a high degree of accuracy even
down to the smallest set displacements of 1.5 as (0.5 nm): Typical
values of the measurement precision are within the +6 to 15-as
(+2 to 5 nm) range.

We performed a final experiment to demonstrate the potential
for our scheme to measure samples scanned transversely across
the photon path and thus perform full imaging tasks. We intro-
duce a controlled delay using a pair of transparent wedges positioned
in one of the interferometer arms resulting in an asymmetric loss of
around 30%. The wedges are arranged such that translating one of
the wedges changes the length of propagation through the glass while
maintaining the alignment of the system (as shown in Fig. 1). A tar-
get delay of 57 as, resulting from an estimated 11 nm of additional
glass, was introduced using the wedge pair (taking the refractive index
of glass to be 1.5). Our measurement procedure returned a measured
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Fig. 4. Experimentally measured photon delays induced by the piezo shown
against the set values on the piezo actuator. Number of individual measurements
and integrations times vary as indicated in the plot (labels denote billions of incident
biphotons). Total acquisition times for each data point ranged between 1.4 and 15.6 hours.
Error bars represent an interval of length 21/Var(t). The data point corresponding to
the glass wedges should only be read on the top and right axes (because of the non-
unit refractive index).
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delay of 69 + 5 as, giving an estimate of 14 + 1 nm for the additional
glass length. We attribute the difference between the measured and
expected values to an imperfect calibration of the wedge system.

DISCUSSION

If we compare our results to the literature, the best HOM measurement
performed to date had an accuracy of 200 as (60 nm) and a precision of
100 as (30 nm) (15) using a common-path interferometer geometry.
We show an accuracy improvement of approximately 31x with neither
the benefit of the inherent stability nor the limitation to birefringent
samples. If compared to noncommon-path HOM interferometers, pre-
vious work showed resolutions on the order of a few femtoseconds (ap-
proximately micrometers), with respect to which we have a more than
100x improvement (17-21). Our technique opens for the first time the
possibility of using HOM interference to perform measurements of
transparent samples in the single-attosecond delay (that is, subnano-
meter path length) regime. Scan-free imaging capability could also be
potentially introduced by resorting to wide-field lensless approaches re-
cently demonstrated with a classical interferometer (25). With a small
modification, the technique can also be applied to reflective samples
such as those used in QOCT experiments providing the same en-
hancement to the precision. Furthermore, there is a significant scope
to increase the precision of our experiment yet further through the
use of shorter down-conversion crystals (lower ¢) and/or higher-
efficiency photodetectors (lower y) (16). For example, combining
our method with the engineered source of photon pairs from the work
of Okano et al. (26) has the potential to yield another 30-fold improve-
ment in precision arising from the increased bandwidth of the photon
pairs. The HOM dip can also be specifically tailored to further optimize
the amount of Fisher information obtainable. By using the best available
photodetectors with upward of 95% efficiency (y = 0.05) (27) and using
Eq. 2, we estimate that (holding o constant at 0.9) one could achieve an
approximate 50x improvement in the Fisher information or around
7x improvement in precision. Equally, an increase in the Fisher infor-
mation allows the total acquisition time for each measurement to be
reduced while maintaining the same precision. With a 50x improve-
ment in the Fisher information, the longest duration measurement
presented here could be reduced to < 20 min.

Finally, we note that our interferometer is capable of producing
phase-sensitive fringes (as shown in the Supplementary Materials)
by rotating the PBS away from being perfectly aligned with the signal
and idler polarization reference frame (28). Here, these fringes that are
due to N =2 NOON state interference have been suppressed to investi-
gate the attainable precision using two-photon interference alone. In the
future, however, it would be possible to further increase the Fisher
information by simply rotating the input photon polarization (see

0.7] oo

0.2 0.4 06 08

Fig. 5. Optimal sensitivity point as a function of visibility. The three curves
correspond to different values of the photon loss rate 7.
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Fig. 6. Representative example of our fitting procedure to extract o during
the calibration of the HOM dip. Inset: Enlarged view of the region of interest for
the sensing procedure.

the Supplementary Materials for details). As is also the case for classical
interferometry, such an approach would require the use of active phase
stabilization, or switching between sample positions 100x faster than we
did above in our inherently phase-insensitive approach. This would
nevertheless allow for a further 150-fold improvement in precision,
allowing measurements to reach into the picometer length scale.

MATERIALS AND METHODS

Theory

Quantum mechanical derivation of the HOM effect

Assume that we have a source that can produce two-photon states
of the form

) = (n[a;a;] /e |n|2[b1az]) vac) @)

where the operator a] creates a photon with certain properties (fre-
quency distribution, polarization, and so on) in mode i = 1 and 2
corresponding to the two input modes of a balanced BS (see Fig. 1), b}
creates a photon in an orthogonal mode (say with orthogonal polariza-
tion) and |vac) is the vacuum. 1 is a real parameter describing the degree
of overlap of the quantum states in modes 1 and 2. Because reflection at
the BS requires a phase shift of 90°, we represented the BS transforma-
tion using the conventions

aj—(ia} + a}) /V2
a}—(a} + ia})/V2 (5)
and similarly for the b modes. The indices 3 and 4 denote the output
ports of the BS. Then, one has
=0

1 bt ot Tt st
|\If>—>5 (n[za3a3 + ayay — aza; + za4a4]+

\/1—nf [ibgag + blal — blal + ina];])|vac) (6)

The cancellation above is a consequence of the bosonic commuta-
tion relation [a}, a}] = 0. Now assuming that we have detectors that
indiscriminately register coincidences (one photon in mode 3 and
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one photon in mode 4), the probability of this occurring is

Pe=2 (1~ InP) (7)

Expanding the signal and idler photons into an orthonormal time-
bin basis (¢[t') = &

n(t) = (vac|(na; + mbl)aﬂvac) = (signal|idler)
= Vat][f} (¢~ ampe (0 — mon)dedr |1 ®)
— alfi(t - Tample )y (£ — THOM ) dt
= Valfi(t = fy ()t

where we defined T = Temple — THoM- Here, f; is the temporal mode
function of the photon in each input port of the BS. The time-delay t
(which transforms a; toward b;) was introduced either through a con-
trollable translation stage or a transparent sample of unknown refractive
properties. o is a positive phenomenological parameter representing
residual distinguishability for perfectly synchronized modes, contributed
to by polarization, spatial mode, or other mismatches, as well as any im-
balance in the BS. The temporal mode functions were set by the longi-
tudinal uncertainty in the location of the down-conversion event. When
this is limited by the length of the crystal, the mode functions are top-hat
functions, leading to a triangular dip. Here, we assumed that the photons
have Gaussian temporal mode functions [in our case, they do so natively:
Otherwise, commonly used spectral filters can be used to broaden and
reshape the temporal distribution, leading once again to a Gaussian dip
(16)]. If f; = f and are both Gaussians with SD ¢/ /8, then we obtain

P, — % (1-0e) (9)

where we defined the normalized temporal delay s = t/c, which is a di-
mensionless quantity.

Loss model

Real experiments are subject to losses—in our case, they were domi-
nated by the inefficiency of our photodetectors. We therefore modeled
this by allowing for a photon to be lost with probability y immediately
before detection. The full model is thus given by

PO Y2 ,YZ
- 2 | [ P
Py | = 2v(1 ) 1—y (m)
P, 1-2y(1—-79)—y* 0

(10)

with P, = 1 — P, implied by normalization. By transforming Eq. 9, the
resultant model is

1
Pzzz(l—y)z(l—aeﬂz) (11)
1 2 1+3Y 2
Pi=-(1- ; 12
=50 (e (12
Py =v (13)
50f 8
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We have used the label i = 0, 1, and 2 to denote the number of
detectors that click—that is, a total loss, bunch, and coincidence,
respectively. The total number of incident photon pairs is given by
N = Ny + N; + N,. Note that Nj is a purely theoretical quantity
used to define our model and need not (and in fact cannot) be mea-
sured at all.

Fisher information

The Fisher information F; is defined as a functional of a statistical model
P(i|s), which is a normalized set of probabilities for outcomes i
conditioned on the value of our target parameter s (such as those above).
The Fisher information in the main text may be calculated as

_1 _1
F=3h=54

(0.2(1ls))"
B(ils) (e)

Maximum-likelihood estimator
The likelihood is a multinomial distribution £(N, N, |t) o P PY' P)»
(where the constant of proportionality does not depend on s). We ex-
tremized the likelihood as follows

0 =: (dslogl); .
= aS(N()lOg(P()))
+05(N1log(P1));,,, + 0s(N2log(P2));,, .
_N/P, NP,
- Py S Py swie
_ N/P, N,P,
- Py s P, 5w
N1P2|3MI.E = NaPy |§MI.E (15)

This equation is then solved for sy . We discarded the minimum-
likelihood solution at s = 0. The solution, which corresponds to a max-
imum, was described in the main text.

Peak information point
When o = 1, the Fisher information given in the main text was max-
imized near s = 0, although it is undefined there. We have

lim £, =2

As o is lowered, two true peaks appeared, moving outward and be-
coming broader. When y = 0, we have

_ 40’s
Fy= 28 — o2
with maximum
2
+/W(=%) +1

V2

for W the Lambert W function. When y # 0, s* can be found nu-
merically (it has a rather weak dependence on ). For o — 0, the op-
timum moves to the inflection point of the Gaussian, s*—+1/1/2 (see
Fig. 5).
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Bayesian analysis
To avoid infinities, we used a prior distribution p(s) uniform on
[~Smax Smax]. Instead of directly maximizing the likelihood, we in-
stead used it to multiplicatively update the prior distribution before
maximizing the resultant posterior distribution. This is an application
of the Bayes rule

Pp(sIN1, N2) o< L(N1, Nas)p(s) (16)
(again, the proportionality constant does not depend on s). The max-
imum of this posterior is unchanged (with respect to the likelihood)
when the argument of the logarithm in Eq. 3 is positive. When the
argument is not positive, the maximum posterior is at s = ;... So
our full, maximum a posteriori estimator is

143
5 forN17N2<1+ J) >0

143
+smax for Ny —N2< lt Yy)ﬁ 0

(17)

SMAP =

We set sp.x = 10. We also have T = o5 where estimators are de-
noted with a ~.
Calibration stage
Our measurement protocol comprises several steps beginning with a
full calibration of the parameters N, v, o, and a. First, the interferometer
was tuned far outside the dip, and we calculated the photon loss
parameter y

Ny — N,

Ao (18)
N+ 3Ny |, ...

vy =

Next, to allow us to estimate the precision of our experiment, we also
estimated the total number of incident photon pairs

N; + N,

N:
1—y?

(19)

Now, we varied Tronm to perform a partial scan of the dip that covers
both the s = 0 and s = s* points.
Then, we have

2min(N,)

N(y-1)° (20)

oa=1

Finally, we applied 5 to the partial scan of the dip. This irons out
the bell-shaped dip to a roughly linear V-shape (see the Supple-
mentary Materials). We then performed a linear fit near the target
region, and ¢ was taken as the inverse of the gradient. We chose the
size of the fitting window to be approximately 7 fs (see the Supple-
mentary Materials).

Procedure for the local fitting of the HOM dip

The width of the HOM dip is the final fit parameter to be estimated. To
construct an estimate, we performed a partial scan of the HOM dip,
which results in a list of triples (1, Nj, and N,), where 7 is the “ground
truth” optical delay inferred from electronic readout of the piezo stage.
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Using the already estimated values of o and vy, we reduced each triple
using the estimator § (which is nothing other than 7/c; see Eq. 3). This
estimator is a function of N} and N, and maps the list of triples into a list
of pairs (t and s). This has the effect of straightening the Gaussian dip
into a “vee,” as seen in Fig. 6. Because T = o5, we can perform a linear fit
of these data. We chose to perform the fit in a restricted region about
7 fs wide, centered on the point of maximum Fisher information.
Our estimate of ¢ is simply the inverse of the gradient: 6 = At/As.
Bias

Because the dominant sources of imperfection were accounted for in
our model, we expected the measured precision (related to the inverse
root of the Fisher information) and measured accuracy to closely match
the theoretical quantities, although small discrepancies were to be
expected because of uncontrollable sources of random and systematic
errors. The full Cramér-Rao bound is

2

Var(t) > OJF%(:)) (1)
ar(t) > ~———~r—
NF NF

with b(t) = E(T — 1) being the bias (I is the expected value). The MLE

is consistent, meaning that the bias is zero in the limit of N — oo (29).

Because we have a very large N, the bias should therefore be negligible.

Experiments

A frequency-doubled Ti:sapphire oscillator (Coherent Chameleon
Ultra IT) with a 130-fs duration at a repetition rate of 80 MHz was used
to pump a 0.5-mm-long type II BBO crystal for wavelength-degenerate
SPDC. The 808-nm signal and idler photons were spatially separated
using a PBS and then coupled into polarization-maintaining fibers
where they were guided to a fiber-coupled 50:50 cube BS (HOM BS),
as shown in Fig. 1. Coarse control of the interferometer delay, T, Was
controlled by adjusting the on-axis position of one of the fiber couplers
using a translation stage (HOM stage). In this manner, the HOM dip
can be characterized by counting coincident events between two single-
photon avalanche photodiode detectors, which were positioned at the
output arms of the HOM BS because the delay was changed. Timing for
the coincident event detection was managed by an event timing module
(Picoquant HydraHarp 400). Fine control of the delay was achieved by
moving the other fiber coupler with a piezo actuator controlled
translation stage (piezo actuator, PI P-753.1CD). This configuration
allowed for precise control of the optical path length with a subnanometer
resolution.

The translating wedge system was calibrated by removing the spec-
tral filters prohibiting the second harmonic generation pump beam
from reaching the BBO used for down-conversion and allowing the co-
herent state of the laser at 808 nm to pass through the setup as a Mach-
Zehnder interferometer. The beam was attenuated to the single-photon
level and a half waveplate before the PBS was rotated to balance the
photon count level in each interferometer arm to yield high-visibility
interference. The period of the resulting interference fringes allows us
to define a conversion factor of a 1-um translation of the wedges result
in an effective path length change of approximately 17 nm.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/5/eaap9416/DC1

Dynamic range of the measurement procedure

Activating phase fringes
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List of fitting parameters and results
fig. S1. Predicted Fisher information for a HOM with added phase-dependent fringes.
table S1. Summary of all measurements and parameters used in the fitting procedure.
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