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Attosecond-resolution Hong-Ou-Mandel interferometry
Ashley Lyons,1,2 George C. Knee,3 Eliot Bolduc,1 Thomas Roger,1 Jonathan Leach,1

Erik M. Gauger,1 Daniele Faccio1,2*

When two indistinguishable photons are each incident on separate input ports of a beamsplitter, they “bunch”
deterministically, exiting via the same port as a direct consequence of their bosonic nature. This two-photon
interference effect has long-held the potential for application in precision measurement of time delays, such as
those induced by transparent specimens with unknown thickness profiles. However, the technique has never
achieved resolutions significantly better than the few-femtosecond (micrometer) scale other than in a common-path
geometry that severely limits applications. We develop the precision of Hong-Ou-Mandel interferometry toward the
ultimate limits dictated by statistical estimation theory, achieving few-attosecond (or nanometer path length) scale
resolutions in a dual-arm geometry, thus providing access to length scales pertinent to cell biology and monoatomic
layer two-dimensional materials.
INTRODUCTION
Since its discovery, Hong-Ou-Mandel (HOM) interferometry (1) has
found a wide variety of applications within quantum optics (2–7). For
example, it is commonly exploited as ameasure of the distinguishability
of photons produced by quantum dots (8, 9). It can be used as a source
of two-photon N00N states: a class of states widely studied in quantum
metrology owing to their ability to reach the Heisenberg limit in phase-
sensitive measurements (10–14). HOM interferometry is impervious to
changes in the relative phase between the twophotons, a propertywhich
implies that a HOM-based sensor does not require potentially im-
practical or expensive stabilization, as is typically required in classical
interferometry. Furthermore, typical phase-dependent techniques suffer
from a limited dynamic range equal to half of the wavelength due to the
fact that multiple possible phases can correspond to the same signal.
HOM interferometry, on the other hand, allows optical delays to be dis-
tinguished unambiguously over a range of a few micrometers owing to
the relatively wide interference pattern (or HOM dip).

To date, the highest-precision time-delay measurements using the
HOM effect make use of orthogonally polarized photon pairs to mea-
sure polarizationmode dispersion (15, 16). These studies have produced
measurements of the group delay between pairs propagating along a
commonpath towithin a 0.1-fs uncertainty. The common-path geometry
significantly aids the stability of the interferometer but can only be applied
to (and thus is only relevant for) birefringent samples.Amuchwider range
of applications is possible if the same or better precision can be achieved
with a dual-arm geometry, which places no such restriction on how a
sample might cause the relative delay.

Closely related to HOM interferometry, quantum optical coherence
tomography (QOCT) is a method for extracting depth profiles of re-
flective interfaces, also via a HOMmeasurement of the relative delay
between photon pairs, often implemented in a dual-arm geometry. In
this context, features on the order of a micrometer have been detected,
including those introduced by biological specimens (17–20). The
limited depth resolutionmakes these approaches inadequate for smaller
biological samples such as cell membranes, DNA samples, or protein
monolayers, which have thicknesses on the order of 1 to 10 nm.
,

BothQOCT and standard HOMmeasurements have, to date, relied
on detecting the shift in the interference minimum in the coincidence
counts between the output ports of the interferometer.

Here, we devise and implement a completely newmeasurement and
estimation strategy based on a Fisher information analysis. By tuning
the interferometer to the delay that contains the maximum information
content, and then by using a maximum-likelihood estimation (MLE)
procedure, we achieve an improvement in precision and accuracy
by two orders ofmagnitude over previousHOMapproaches including
QOCT. Throughout this work, we define the measurement precision
as the SD of the final estimated photon delay, whereas the accuracy is
defined as the difference between the final estimate and the known
actual value. When both accuracy and resolution are good enough, it
is possible to resolve small time delays (here on the order of a few atto-
seconds). We conducted measurements of the change in relative arrival
time between two photons, dt, with an average accuracy of 6 as (1.7 nm)
and an average precision of 16 as (4.8 nm). Our best achieved accuracy
was 0.5 as (0.15 nm) and best achieved precision was 4.7 as (0.9 nm).
HOM interferometry can therefore enable single-photon characteriza-
tion of optically transparent samples with thicknesses and length scales
relevant, for example, to cell biology.
RESULTS
If two photons are incident on the input ports of a balanced beam-
splitter (BS), the probability of a coincident detection at the output
ports depends on the inner product of the quantum states of each
photon and is influenced by the difference in arrival times of the two
photons t. HOM interference is characterized by the coincidence rate
falling to zero as all distinguishing information is erased: the so-called
“HOM dip” (see Fig. 1).

As Hong, Ou, and Mandel showed in their original work, if t is
scanned, the minimum position of the interference pattern can be
measured with at least subpicosecond precision. Similar techniques
were used in later works (15, 21) and typically involve a simple least-
squares fitting procedure for a scan over t. By contrast, here, we use
Fisher information analysis as the key theoretical tool for unlocking a
peak-performance HOM interferometer. This allows us to introduce
measurement and estimation protocols that are optimized to give a
higher precision for a set amount of time invested or, equivalently, a
greater information gain per photon.
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The ultimate limit on the precision of estimation is known as the
Cramér-Rao bound (22), which states that the variance of any unbiased
estimator (that is, one whose expectation is equal to the true value of the
parameter; see “Bias” section in Materials and Methods) must be
bounded by

Varð~tÞ ≥ 1
NF

ð1Þ

where ~t denotes an estimator for the parameter t. The Fisher in-
formation F measures the amount of information about t that can be
extracted from a particular experiment.

The HOM interferometer is characterized by many desirable
features: for example, the large dynamic range (see the Supplementary
Materials). Here, however, we are primarily concernedwithminimizing
Varð~tÞ. We achieve attosecond precision by accomplishing a combina-
tion of three goals: (i) maximizing F, (ii) saturating inequality (1), and
(iii) increasing N (that is, the number of repetitions of the experiment)
as much as possible within the confines of slow drift in the setup.

To achieve the first of our goals, we need to consider the dependence
of F on t and other parameters. Our statistical model is defined by a set
of probabilities Pi, where i = 0, 1, and 2 denotes the number of detectors
that click in each run. The probabilities depend on the following param-
eters: thewave packet duration s, which is proportional to the full width
at half maximum of the temporal mode function of each photon (here
taken to be Gaussian functions); the maximum indistinguishability a
(which sets the visibility of the interference); and the photon loss rate
g (see Materials and Methods for the full model). The Fisher informa-
tion evaluates to

F ¼ 1
s2

2a2t2e�2t2=s2

1 � ae�t2=s2ð Þ
ð1 � gÞ2 � 1

2 1� ae�t2=s2
� �2

0
B@

1
CA ð2Þ

The distribution of information in Eq. 2 is doubly peaked and sym-
metric around t = 0 (see red dashed curves in Figs. 1 and 2). We note
that when a → 1 (perfect visibility), the peaks asymptotically merge at
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the origin. Because the visibility is reduced (as it is in all experiments),
the maximum information decreases and the peaks move outward. A
similar phenomenon was observed in the study of Jachura et al. (23),
where nonunit visibility caused a marked qualitative change in the
distribution of Fisher information for a phase-sensitive interferometer.
Here, the changing distribution reflects the competition between (i) the
derivative of the inverted Gaussian dip (which is optimized at t ¼
s=

ffiffiffi
2

p
) and (ii) the variance of Pi (which is optimized at t = 0). This

suggests that using prior knowledge of t and a enables the interfer-
ometer to be tuned to operate at the optimum point between these
extremes. InMaterials andMethods, we discuss howwe found this point.

To achieve our second goal of saturating the Cramèr-Rao bound, we
use the MLE

~t ¼ ±s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

aðN1 þ N2Þ
N1 � N2

1þ3g
1�g

� �
0
@

1
A

vuuut ð3Þ

where N1 (respectively N2) is the number of times only one (both) de-
tector(s) clicked (seeMaterials andMethods). This estimator is efficient,
that is, it saturates Eq. 1 when the number of trials is large enough (24).
When the argument of the logarithm is negative, the likelihood is max-
imized at t→ ±1. To account for this situation (which arises when the
data set is very noisy), we use a Bayesian analysis (see Materials and
Methods). The estimator is nonlinear but analytically calculable and
thus suitable for real-time estimation with the data. Note that due to
the symmetry of the HOM dip, there is a twofold ambiguity in the
estimate—we can only obtain itsmagnitude and not its sign. Aswe shall
see later, this issue will be resolved through our measurement protocol.
Note that the estimation involves observable quantities Ni, as well as g,
s, and a. The latter need to be separately estimated before the measure-
ments begin (see Materials and Methods).

To test our theory and demonstrate our protocol, a noncommon-
pathHOM interferometer was constructed using spontaneous parametric
down-conversion (SPDC) from a type II nonlinear crystal as a source of
orthogonally polarizedphotonpairs (see Fig. 1 andMaterials andMethods).
The photons are deterministically separated via their polarization, and
Fig. 1. Dual-arm HOM interferometer. A pumped type II BBO crystal is used as a source of SPDC photon pairs, which are separated by a polarizing BS (PBS) before
being subject to a differential time delay and recombination on separate input ports (1 and 2) of a fiber-coupled 50:50 BS (HOM BS). Coarse control of the optical delay
is achieved by a motorized translation stage (HOM stage, controlling tHOM), whereas fine control is achieved using a piezo actuator (controlling tsample and representing
a transparent sample). From a scan of the HOM dip (bottom left, blue), a peak in the Fisher information (red) is identified to be used in the sensing procedure (green).
The difference in temporal delay between the two photons (t: = tsample − tHOM) is quantified through MLE. Typical measured photon pair rates were on the order of
30,000 counts s−1 with an estimated loss rate of 87%. SPAD, single-photon avalanche photodiodes.
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each is collected by a single-mode fiber coupled to a BS (HOMBS, Fig. 1).
The relative path-length difference between the photon pair was con-
trolled with a coarse stage.

The HOM dip was scanned using a 10-nm bandpass filter posi-
tioned before the PBS to ensure spectral indistinguishability and
therefore high-visibility two-photon interference. As a first step, a total
of 50 scans of the HOM dip were acquired to ascertain the variance of
the estimates and compare with the predicted Fisher information
(which acts as an upper bound on the inverse variance). To test the the-
oretical model further, the polarization of one of the arms of the inter-
ferometer is rotated so as to reduce the visibility of the interference to
approximately 50%. The inverse variance of our estimates follows the
predicted Fisher information distribution, as shown in Fig. 2.

These data therefore constitute a good confirmation of Eqs. 1 and 2.
By replacing the interference filter, it was observed that both the mea-
surement accuracy and precision were improved for wider bandwidth
photons: This is despite of the reduction in a and due to the decrease in
s and increase in N. For this reason, the bandpass filter was removed
and replaced with a long-pass edge filter to block the pump field of the
SPDC without altering the spectrum of signal and idler.
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For subsequent measurements, we introduced attosecond-scale
temporal delays, tsample (see Fig. 1), with an additional piezo actuator
(thus playing the role of a transparent sample that can be inserted in
and out of the photon path). The HOM interferometer delay (tHOM)
was first tuned with a coarse control stage to a maximum in the Fisher
information (see Fig. 2) and was kept there while a large amount of data
[O(109) counts] was collected.

To achieve our third goal (increasing the number of measurements
within the limits of experimental drift), the piezo actuator was period-
ically switched (every 100ms) between the two positions (which we label
“in” and “out”), andwe collected a set of countsNi corresponding to each.
We then use this data (in combination with the parameters Ni, g, s, and
a) to estimate tin and tout. Finally, we extract the difference in differential
time delay dt :¼ tin � tout ¼ ðtinsample � tHOMÞ � ðtoutsample � tHOMÞ ¼
tinsample � toutsample. From prior knowledge of the system, we make the as-
sumption that the sign of tinsample and toutsample are the same such that the
value of dt is unambiguous.

Figure 3 shows data for a sample position separation (cdt) of 10 nm.
Each individual integration window yields a relatively poor precisionffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Varð~dtÞ
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varð~tinÞ þ Varð~toutÞ

q
≈ 600 as (180 nm) estimate of
µ

Fig. 2. Experimental HOM dips (left axis) are shown for various visibilities, introduced by a differential polarization change. The estimated total Fisher information NF
(Eq. 2; right axis, red) along with the inverse variance of our experimental estimates are shown (gray crosses, right axis). The rightmost panel includes theoretical curves for
perfect visibility, where the two peaks in the Fisher information have asymptotically merged. The open circle denotes a point where the Fisher information is undefined.
Fig. 3. Example of an acquired experimental data set. (A) Individual estimates of tin (blue) and tout (red) for two piezo positions separated by 10 nm (33.3 as). A
relatively large drift can be seen in the data, which is dealt with by switching between piezo positions as discussed above. (B) The histogram shows two almost perfectly
overlapping distributions. Classical interferometry would be limited to a distribution no larger than the yellow area. The distributions are generally nonunimodal, which
is indicative of significant drift (or slowly varying noise). (C) Cumulative estimates are plotted. The drift in each estimate is considerable, being approximately 2 fs (600
nm). The red curve has been shifted down by 2 fs for clarity (arrows). The drift for each sample position is very well correlated because we switch the sample position
much faster than the drift. (D) Because of this correlation, the difference in cumulative estimates dt is very stable and converges on the true value.
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the optical delay. Figure 3 also shows cumulative estimates, which cor-
respond to a single data set which is gradually incremented, accumulat-
ing all the counts of individual data sets (which are assumed
independent). Initially, a cumulative data set (and estimate) will change
rapidly before settling down later on. By assuming that each experiment
is independent, we can combineM =O(104) such data sets to achieve a
O(100)-fold improvement in precision, that is, toward a few attosec-
onds (few nanometers). The precision obtained using the entire data
set is estimated as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðd~tÞ=Mp

. Figure 3B shows that the distribu-
tion of the individual measurements in our approach falls well
outside the l/2 (404 nm, highlighted in yellow) range that is acceptable
for phase-dependent interference methods. Despite this, our approach
still recovers accurate estimates, and its dynamic range is determined
by the size of the HOM dip (see Fig. 2): Up to an ambiguity in the
sign of t, there is a clear one-to-one mapping between t (which we
estimate) and the coincidences (which wemeasure) over a range of at
least 25 mm.

Next, a series of target piezo displacements (tsample) were set to
test the capabilities of our protocol. Figure 4 shows the final esti-
mated shifts compared to the ground truth displacements recorded
by the internal capacitive sensor of the piezo actuator. The measure-
ment procedure consistently returns a high degree of accuracy even
down to the smallest set displacements of 1.5 as (0.5 nm): Typical
values of the measurement precision are within the ±6 to 15–as
(±2 to 5 nm) range.

We performed a final experiment to demonstrate the potential
for our scheme to measure samples scanned transversely across
the photon path and thus perform full imaging tasks. We intro-
duce a controlled delay using a pair of transparent wedges positioned
in one of the interferometer arms resulting in an asymmetric loss of
around 30%. The wedges are arranged such that translating one of
the wedges changes the length of propagation through the glass while
maintaining the alignment of the system (as shown in Fig. 1). A tar-
get delay of 57 as, resulting from an estimated 11 nm of additional
glass, was introduced using the wedge pair (taking the refractive index
of glass to be 1.5). Our measurement procedure returned a measured
Lyons et al., Sci. Adv. 2018;4 : eaap9416 4 May 2018
delay of 69 ± 5 as, giving an estimate of 14 ± 1 nm for the additional
glass length. We attribute the difference between the measured and
expected values to an imperfect calibration of the wedge system.
DISCUSSION
If we compare our results to the literature, the best HOMmeasurement
performed to date had an accuracy of 200 as (60 nm) and a precision of
100 as (30 nm) (15) using a common-path interferometer geometry.
We show an accuracy improvement of approximately 31× with neither
the benefit of the inherent stability nor the limitation to birefringent
samples. If compared to noncommon-path HOM interferometers, pre-
vious work showed resolutions on the order of a few femtoseconds (ap-
proximately micrometers), with respect to which we have a more than
100× improvement (17–21). Our technique opens for the first time the
possibility of using HOM interference to perform measurements of
transparent samples in the single-attosecond delay (that is, subnano-
meter path length) regime. Scan-free imaging capability could also be
potentially introduced by resorting to wide-field lensless approaches re-
cently demonstrated with a classical interferometer (25). With a small
modification, the technique can also be applied to reflective samples
such as those used in QOCT experiments providing the same en-
hancement to the precision. Furthermore, there is a significant scope
to increase the precision of our experiment yet further through the
use of shorter down-conversion crystals (lower s) and/or higher-
efficiency photodetectors (lower g) (16). For example, combining
our method with the engineered source of photon pairs from the work
of Okano et al. (26) has the potential to yield another 30-fold improve-
ment in precision arising from the increased bandwidth of the photon
pairs. The HOMdip can also be specifically tailored to further optimize
the amount of Fisher information obtainable. By using the best available
photodetectors with upward of 95% efficiency (g = 0.05) (27) and using
Eq. 2, we estimate that (holding a constant at 0.9) one could achieve an
approximate 50× improvement in the Fisher information or around
7× improvement in precision. Equally, an increase in the Fisher infor-
mation allows the total acquisition time for each measurement to be
reduced while maintaining the same precision. With a 50× improve-
ment in the Fisher information, the longest duration measurement
presented here could be reduced to < 20 min.

Finally, we note that our interferometer is capable of producing
phase-sensitive fringes (as shown in the Supplementary Materials)
by rotating the PBS away from being perfectly aligned with the signal
and idler polarization reference frame (28). Here, these fringes that are
due to N = 2 N00N state interference have been suppressed to investi-
gate the attainable precision using two-photon interference alone. In the
future, however, it would be possible to further increase the Fisher
information by simply rotating the input photon polarization (see
Fig. 4. Experimentally measured photon delays induced by the piezo shown
against the set values on the piezo actuator. Number of individual measurements
and integrations times vary as indicated in the plot (labels denote billions of incident
biphotons). Total acquisition times for eachdata point rangedbetween1.4 and15.6 hours.
Error bars represent an interval of length 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Varð~tÞ

p
. The data point corresponding to

the glass wedges should only be read on the top and right axes (because of the non-
unit refractive index).
Fig. 5. Optimal sensitivity point as a function of visibility. The three curves
correspond to different values of the photon loss rate g.
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the Supplementary Materials for details). As is also the case for classical
interferometry, such an approach would require the use of active phase
stabilization, or switching between sample positions 100× faster thanwe
did above in our inherently phase-insensitive approach. This would
nevertheless allow for a further 150-fold improvement in precision,
allowing measurements to reach into the picometer length scale.
MATERIALS AND METHODS
Theory
Quantum mechanical derivation of the HOM effect
Assume that we have a source that can produce two-photon states
of the form

jy〉 ¼ h a†1a
†
2

� �þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jhj2

q
b†1a

†
2

� �� �
jvac〉 ð4Þ

where the operator a†i creates a photon with certain properties (fre-
quency distribution, polarization, and so on) in mode i = 1 and 2
corresponding to the two input modes of a balanced BS (see Fig. 1), b†i
creates a photon in an orthogonal mode (say with orthogonal polariza-
tion) and |vac〉 is the vacuum. h is a real parameter describing the degree
of overlap of the quantum states in modes 1 and 2. Because reflection at
the BS requires a phase shift of 90°, we represented the BS transforma-
tion using the conventions

a†1→ðia†3 þ a†4Þ=
ffiffiffi
2

p

a†2→ða†3 þ ia†4Þ=
ffiffiffi
2

p
ð5Þ

and similarly for the b modes. The indices 3 and 4 denote the output
ports of the BS. Then, one has

jy〉→ 1
2

¼ 0f

ðh ia†3a
†
3 þ a†4a

†
3 � a†3a

†
4 þ ia†4a

†
4

� �þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jhj2

q
ib†3a

†
3 þ b†4a

†
3 � b†3a

†
4 þ ib†4a

†
4

� �Þjvac〉 ð6Þ

The cancellation above is a consequence of the bosonic commuta-
tion relation ½a†3; a†4� ¼ 0. Now assuming that we have detectors that
indiscriminately register coincidences (one photon in mode 3 and
Lyons et al., Sci. Adv. 2018;4 : eaap9416 4 May 2018
one photon in mode 4), the probability of this occurring is

Pc ¼ 1
2
ð1� jhj2Þ ð7Þ

Expanding the signal and idler photons into an orthonormal time-
bin basis 〈tjt′〉 ¼ dtt′

hðtÞ ¼ 〈vacjðha1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jhj2

q
b1Þa†2jvac〉 ¼ 〈signaljidler〉

¼ ffiffiffi
a

p
〈tj∫∫f �1ðt � tsampleÞf2ðt′� tHOMÞdtdt′jt′〉

¼ ffiffiffi
a

p ∫f �1ðt � tsampleÞf2ðt � tHOMÞdt
¼ ffiffiffi

a
p ∫f �1ðt � tÞf2ðtÞdt

ð8Þ

where we defined t = tsample − tHOM. Here, fi is the temporal mode
function of the photon in each input port of the BS. The time-delay t
(which transforms a1 toward b1) was introduced either through a con-
trollable translation stage or a transparent sample of unknown refractive
properties. a is a positive phenomenological parameter representing
residual distinguishability for perfectly synchronized modes, contributed
to by polarization, spatialmode, or othermismatches, as well as any im-
balance in the BS. The temporal mode functions were set by the longi-
tudinal uncertainty in the location of the down-conversion event. When
this is limited by the length of the crystal, the mode functions are top-hat
functions, leading to a triangular dip. Here, we assumed that the photons
have Gaussian temporalmode functions [in our case, they do so natively:
Otherwise, commonly used spectral filters can be used to broaden and
reshape the temporal distribution, leading once again to a Gaussian dip
(16)]. If f1 = f2 and are both Gaussians with SD s=

ffiffiffi
8

p
, then we obtain

Pc ¼ 1
2

1� ae�s2
� �

ð9Þ

where we defined the normalized temporal delay s = t/s, which is a di-
mensionless quantity.
Loss model
Real experiments are subject to losses—in our case, they were domi-
nated by the inefficiency of our photodetectors. We therefore modeled
this by allowing for a photon to be lost with probability g immediately
before detection. The full model is thus given by

P0

P1

P2

0
@

1
A ¼

g2 g2

2gð1� gÞ 1� g2

1� 2gð1� gÞ � g2 0

0
@

1
A Pc

Pb

� �
ð10Þ

with Pb = 1 − Pc implied by normalization. By transforming Eq. 9, the
resultant model is

P2 ¼ 1
2
ð1� gÞ2 1� ae�s2

� �
ð11Þ

P1 ¼ 1
2
ð1� gÞ2 1þ 3g

1� g
þ ae�s2

� �
ð12Þ

P0 ¼ g2 ð13Þ
Fig. 6. Representative example of our fitting procedure to extract s during
the calibration of the HOM dip. Inset: Enlarged view of the region of interest for
the sensing procedure.
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We have used the label i = 0, 1, and 2 to denote the number of
detectors that click—that is, a total loss, bunch, and coincidence,
respectively. The total number of incident photon pairs is given by
N = N0 + N1 + N2. Note that N0 is a purely theoretical quantity
used to define our model and need not (and in fact cannot) be mea-
sured at all.
Fisher information
The Fisher information Fs is defined as a functional of a statisticalmodel
P(i|s), which is a normalized set of probabilities for outcomes i
conditioned on the value of our target parameter s (such as those above).
The Fisher information in the main text may be calculated as

Ft ¼ 1
s2

Fs ¼ 1
s2
∑
i

ð∂sPðijsÞÞ2
PðijsÞ ð14Þ

Maximum-likelihood estimator
The likelihood is amultinomial distributionLðN1;N2jtÞºPN0

0 PN1
1 PN2

2
(where the constant of proportionality does not depend on s). We ex-
tremized the likelihood as follows

0 ¼: ð∂slogLÞ~sMLE

¼ ∂sðN0logðP0ÞÞ
þ∂sðN1logðP1ÞÞ~sMLE

þ ∂sðN2logðP2ÞÞ~sMLE

¼ N1P′
1

P1
j
~sMLE

þ N2P′
2

P2
j
~sMLE

¼ N1P′
1 j � N2P′

1 j

P1 ~sMLE P2 ~sMLE

N1P2j~sMLE
¼ N2P1j~sMLE

ð15Þ

This equation is then solved for~sMLE. We discarded the minimum-
likelihood solution at s = 0. The solution, which corresponds to a max-
imum, was described in the main text.
Peak information point
When a = 1, the Fisher information given in the main text was max-
imized near s = 0, although it is undefined there. We have

lim
s→0

Fsja¼1 ¼ 2

As a is lowered, two true peaks appeared, moving outward and be-
coming broader. When g = 0, we have

Fs ¼ 4a2s2

e2s2 � a2

with maximum

s* ¼
±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W � a2

e

	 
þ 1
q

ffiffiffi
2

p

for W the Lambert W function. When g ≠ 0, s* can be found nu-
merically (it has a rather weak dependence on g). For a→ 0, the op-
timummoves to the inflection point of the Gaussian,s*→±1=

ffiffiffi
2

p
(see

Fig. 5).
Lyons et al., Sci. Adv. 2018;4 : eaap9416 4 May 2018
Bayesian analysis
To avoid infinities, we used a prior distribution p(s) uniform on
[−smax, smax]. Instead of directly maximizing the likelihood, we in-
stead used it to multiplicatively update the prior distribution before
maximizing the resultant posterior distribution. This is an application
of the Bayes rule

pðsjN1;N2ÞºLðN1;N2jsÞpðsÞ ð16Þ

(again, the proportionality constant does not depend on s). The max-
imum of this posterior is unchanged (with respect to the likelihood)
when the argument of the logarithm in Eq. 3 is positive. When the
argument is not positive, the maximum posterior is at s = ±smax. So
our full, maximum a posteriori estimator is

~sMAP ¼
~s for N1 � N2

1þ 3g
1� g

� �
> 0

±smax for N1 � N2
1þ 3g
1� g

� �
≤ 0

8>><
>>:

ð17Þ

We set smax = 10. We also have ~t ¼ s~s where estimators are de-
noted with a ~.
Calibration stage
Our measurement protocol comprises several steps beginning with a
full calibration of the parametersN, g, s, and a. First, the interferometer
was tuned far outside the dip, and we calculated the photon loss
parameter g

~g ¼ N1 � N2

N1 þ 3N2
j
s→∞

ð18Þ

Next, to allow us to estimate the precision of our experiment, we also
estimated the total number of incident photon pairs

~N ¼ N1 þ N2

1� g2
ð19Þ

Now, we varied tHOM to perform a partial scan of the dip that covers
both the s = 0 and s = s* points.

Then, we have

~a ¼ 1� 2minðN2Þ
Nðg� 1Þ2 ð20Þ

Finally, we applied~s to the partial scan of the dip. This irons out
the bell-shaped dip to a roughly linear V-shape (see the Supple-
mentary Materials). We then performed a linear fit near the target
region, and s was taken as the inverse of the gradient. We chose the
size of the fitting window to be approximately 7 fs (see the Supple-
mentary Materials).
Procedure for the local fitting of the HOM dip
The width of the HOMdip is the final fit parameter to be estimated. To
construct an estimate, we performed a partial scan of the HOM dip,
which results in a list of triples (t, N1, and N2), where t is the “ground
truth” optical delay inferred from electronic readout of the piezo stage.
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Using the already estimated values of a and g, we reduced each triple
using the estimator~s (which is nothing other than~t=s; see Eq. 3). This
estimator is a function ofN1 andN2 andmaps the list of triples into a list
of pairs (t and s). This has the effect of straightening the Gaussian dip
into a “vee,” as seen in Fig. 6. Because t = ss, we can perform a linear fit
of these data. We chose to perform the fit in a restricted region about
7 fs wide, centered on the point of maximum Fisher information.
Our estimate of s is simply the inverse of the gradient: ~s ¼ Dt=Ds.
Bias
Because the dominant sources of imperfection were accounted for in
our model, we expected the measured precision (related to the inverse
root of the Fisher information) andmeasured accuracy to closelymatch
the theoretical quantities, although small discrepancies were to be
expected because of uncontrollable sources of random and systematic
errors. The full Cramér–Rao bound is

Varð~tÞ ≥
1þ ∂bðtÞ

∂t

� �2

NF
≈

1
NF

ð21Þ

withbðtÞ ¼ Eð~t � tÞbeing the bias (E is the expected value). TheMLE
is consistent, meaning that the bias is zero in the limit of N→1 (29).
Because we have a very large N, the bias should therefore be negligible.

Experiments
A frequency-doubled Ti:sapphire oscillator (Coherent Chameleon
Ultra II) with a 130-fs duration at a repetition rate of 80 MHz was used
to pump a 0.5-mm-long type II BBO crystal for wavelength-degenerate
SPDC. The 808-nm signal and idler photons were spatially separated
using a PBS and then coupled into polarization-maintaining fibers
where they were guided to a fiber-coupled 50:50 cube BS (HOM BS),
as shown in Fig. 1. Coarse control of the interferometer delay, tHOM,was
controlled by adjusting the on-axis position of one of the fiber couplers
using a translation stage (HOM stage). In this manner, the HOM dip
can be characterized by counting coincident events between two single-
photon avalanche photodiode detectors, which were positioned at the
output arms of theHOMBS because the delay was changed. Timing for
the coincident event detection wasmanaged by an event timingmodule
(Picoquant HydraHarp 400). Fine control of the delay was achieved by
moving the other fiber coupler with a piezo actuator controlled
translation stage (piezo actuator, PI P-753.1CD). This configuration
allowed for precise control of the optical path lengthwith a subnanometer
resolution.

The translating wedge system was calibrated by removing the spec-
tral filters prohibiting the second harmonic generation pump beam
from reaching the BBO used for down-conversion and allowing the co-
herent state of the laser at 808 nm to pass through the setup as aMach-
Zehnder interferometer. The beamwas attenuated to the single-photon
level and a half waveplate before the PBS was rotated to balance the
photon count level in each interferometer arm to yield high-visibility
interference. The period of the resulting interference fringes allows us
to define a conversion factor of a 1-mm translation of the wedges result
in an effective path length change of approximately 17 nm.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/5/eaap9416/DC1
Dynamic range of the measurement procedure
Activating phase fringes
Lyons et al., Sci. Adv. 2018;4 : eaap9416 4 May 2018
List of fitting parameters and results
fig. S1. Predicted Fisher information for a HOM with added phase-dependent fringes.
table S1. Summary of all measurements and parameters used in the fitting procedure.
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