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Abstract

When investigating Mendelian disease using exome or genome sequencing, distinguishing 

disease-causing genetic variants from the multitude of candidate variants is a complex, 

multidimensional task. Many prioritization tools and online interpretation resources exist, and 

professional organizations have offered clinical guidelines for review and return of prioritization 

results. In this Review, we describe the strengths and weaknesses of widely used computational 

approaches, explain their roles in the diagnostic and discovery process and discuss how they can 

inform (and misinform) expert reviewers. We place variant prioritization in the wider context of 

gene prioritization, burden testing and genotype–phenotype association, and we discuss 

opportunities and challenges introduced by whole-genome sequencing.

Despite the power of DNA sequencing for genetic discovery1 and the many computational 

tools and online resources available, fewer than 50% of Mendelian disorders are resolved 

after sequencing affected families2. The reasons are manifold: there are new disease 

phenotypes, new genes for known diseases and many unknown disease-causing variants still 

await discovery. To understand the scope of the challenge, consider that the genetic causes 

underlying more than 3,000 known Mendelian disorders remain unknown2. Variant 

prioritization is central to every Mendelian disease discovery and diagnosis effort. Put 

simply, it is the process of determining which variants identified in the course of genetic 

testing, whole-exome sequencing (WES) and whole-genome sequencing (WGS) are most 

likely to damage gene function and underlie the disease phenotype.

With the advent of WES and WGS, variant prioritization has grown ever more critical to 

discovery and diagnosis. It has also grown more complicated because of the sheer number of 

variants. Every individual’s genome contains millions of variants, many of which will never 

have been seen before3,4. The identification of the one or two variants responsible for a 

patient’s Mendelian disease is a classic ‘needle in the haystack’ problem5. Whereas early 

tools addressed this complexity by using the scant means at their disposal for prioritization 

— phylogenetic conservation and protein structures — the latest tools combine these data 
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with other information such as population allele frequencies, functional genomics data and 

other genome annotations. Some even use the predictions of other tools to inform their own. 

The scope of prioritization has also been widened. Some tools have expanded their scope 

beyond single nucleotide variants (SNVs) to prioritize more complex forms of variation such 

as insertions, deletions and structural variants, and others provide the means to prioritize 

variants in non-coding regions. These approaches lead to greater accuracy, but they can also 

complicate interpretation; therefore, understanding how these approaches work is essential 

for those engaged in genome-based diagnostic activities.

Although variant prioritization is central to Mendelian disease discovery and diagnosis, it is 

only part of a bigger picture that includes gene prioritization. Gene prioritization tools use 

information such as variant allele frequencies, genotype frequencies, inheritance models, 

family histories and patient phenotypes to identify and prioritize likely damaged genes 

associated with a phenotype, as opposed to simply identifying potentially damaging variants. 

Although this may seem a subtle distinction, it is, in fact, a fundamental difference from the 

perspective of the underlying algorithms. Many gene prioritization tools use an approach 

called burden testing — a key concept that is increasingly central to WES- and WGS-driven 

discovery and diagnostic efforts6–11.

The manner in which the results of variant and gene prioritization tools are delivered to users 

is also changing. The last several years have seen a proliferation of decision support 

frameworks for variant interpretation12–15. These interactive, often web-based, platforms are 

a big step forwards from simple command line-based analyses. Within these interactive 

environments, variant and gene prioritization scores are only one component of a dynamic, 

multifactorial approach to discovery and diagnosis that uses population-scale variation 

resources, such as the Exome Aggregation Consortium (ExAC)4, the genome Aggregation 

Database (gnomAD; see Further information), the 1000 Genomes Project3, disease 

genotype–phenotype associations such as Online Mendelian Inheritance in Man (OMIM)16 

and ClinVar17, and workflows based on guidelines established by the American College of 

Medical Genetics and the Association for Clinical Genetic Science of the United 

Kingdom15.

Despite all of these advances, attributing disease causation to prioritized variants remains an 

inexact process. No phrase better summarizes the current state of affairs than ‘variant of 

uncertain significance’ (VUS). The key to understanding this phrase is to grasp that a variant 

that damages a gene is not necessarily damaging to an individual’s health (BOX 1). 

Understanding the cascading steps underlying variant and gene prioritization, how 

prioritization scores are combined with adjunct information such as phenotype and family 

history, and how they are judged to be medically significant are the subjects of this Review.

Box 1

Damaging does not mean pathogenic

Variant prioritization tools such as SIFT (Sorts Intolerant From Tolerant) and PolyPhen2 

(polymorphism phenotyping version 2) use the terms ‘damaging’ and ‘tolerated’ to 

describe whether a variant is predicted to affect protein function or be functionally 
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neutral, respectively. We emphasize that the term damaging should never be logically 

equated with causal for a disease phenotype, because a variant that damages a gene is not 

necessary damaging to an individual’s health.

The term ‘pathogenic’ has become widely used to describe a damaging variant that is 

(potentially) disease-causing. This is straightforward for dominant Mendelian disorders 

for which pathogenic variants typically cause the disease phenotype but more complex 

for recessive disorders for which both copies of the gene must harbour variants for 

pathogenicity (see the figure). Consider a variant producing a stop codon, p.Arg510Ter, 

in hexosaminidase subunit-α (HEXA), which is a gene that is implicated in Tay–Sachs 

disease. Obviously, this variant changes the transcript in which it resides: the resulting 

protein is probably nonfunctional due to truncation and may be subject to nonsense-

mediated decay. However, this does not mean that it will necessarily be pathogenic to the 

individual, as many Mendelian diseases such as Tay–Sachs disease, are recessive. Cystic 

fibrosis is another well-known example, for which the genomes of approximately 1 in 20 

healthy Western Europeans contain a damaging variant in the cystic fibrosis 

transmembrane conductance regulator (CFTR) gene. As the disease is recessive, there are 

no negative health consequences to carriers of damaging variants. For recessive diseases, 

two copies of the pathogenic variant must be present, or it must be in trans to another 

pathogenic variant, as a so-called compound heterozygote (see the figure).

The association of damaging variants with pathogenicity has other pitfalls as well. A 

variant elsewhere in the genome may introduce a seemingly minor and conservative 

amino acid substitution that may nonetheless damage the patient’s health, thereby 

causing a dominant Mendelian disease. For example, the semi-conservative amino acid-

changing variant p.Arg143Gln in the gap junction protein-β2 (GJB2) gene is implicated 

with non-syndromic hearing loss. This variant has been shown in functional studies to 

encode a protein with impaired function and curated by multiple laboratories in the 

ClinVar database to be pathogenic.

In a study from 2010, variants implicated in cystic fibrosis and related disorders were 

assessed using three prediction tools107. This study shed light on the differences between 

predictions and causative alleles. For example, the CFTR variant p.Arg75Gln is predicted 

to be damaging because it alters a highly conserved position in the protein, but the 

phenotypic effect is mild. The converse was shown by p.Val520Phe, a deleterious 

mutation at a non-conserved position in the CFTR protein. In another example, the 

truncating breast cancer type 2 susceptibility protein (BRCA2) variant p.Tyr791Phe is 

seemingly damaging — it causes the loss of the 93 C-terminal amino acids of the protein 

implicated in hereditary breast cancer, but does not cause the disease phenotype (see 

ClinVar database where it is curated as benign by multiple laboratories and an expert 

panel). BRCA2 provides another example of the complex relationship between damaging 

and pathogenic variants. Damaging BRCA2 alleles are typically classified as pathogenic, 

but they are not immediately disease-causing; instead, they increase cancer risk over a 

lifetime.
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Describing variants

Variant annotation

We define a genetic variant (or, for brevity, ‘variant’) as a specific allele at a particular locus. 

Although variant discovery is outside the scope of this article, reviews are available 

elsewhere18–21. The first step of variant prioritization is annotation, which is the process of 

describing the nature and the effect of the DNA alterations produced by a variant. With this 

goal in mind, the variant call format (VCF)22 has standardized the reporting of genetic 

variation observed in a cohort and formalized a syntax with which to describe annotations 

that are vital to variant prioritization. Variant annotation tools such as the Variant Effect 

Predictor (VEP)23, the Variant Annotation, Analysis and Search Tool (VAAST) suite’s 

Variant Annotation Tool (VAT)24 and single nucleotide polymorphism effect (SnpEff)25 

relate variants to annotated gene models in order to determine their location and effect on a 

transcript. For example, an SNV may result in a missense codon that alters the translated 

amino acid or it may result in a stop codon that terminates translation prematurely. Most 

variant prioritization tools use controlled vocabularies for variant annotation because of the 

scale of the data and to maximize reproducibility and interoper-ability between tools. The 

Sequence Ontology26 (SO) provides a widely used terminology for variant annotation, 

describing a variant in terms of the ‘sequence alteration’ it causes. Examples of sequence 

alterations include insertions, deletions and substitutions. Once the variant alteration has 

been described, the next step is to describe its effect.

Variant effects

A variant’s effect describes how it changes the annotated reference sequence features that 

contain it. Examples include a missense variant (SO:0001583), which induces an amino acid 

change, or a splice donor variant (SO:0001575), in which the alteration disrupts the 

dinucleotide at the 5 end of an intron27. The Sequence Ontology can also describe changes 

caused by more exotic forms of alterations, including structural variants that may introduce 

effects such as transcript ablation (that is, a deletion of a sequence encoding a transcript) and 

transcript amplification (that is, a duplication of a sequence encoding a transcript). The 

Sequence Ontology variant effect terms have been created in collaboration with Ensembl, 

and many variant annotation tools23,24,25 have adopted them. The common terminology that 

the Sequence Ontology provides for describing variant effects enables the comparison of 

annotations across tools, and Sequence Ontology terms are used by most genetic variant 

databases, such as ClinVar, dbVar, dbSNP and Ensembl Variation17,28–30.
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Complications

Gene models describe the intron–exon structure of a gene’s transcripts and, for protein-

coding genes, their start and stop codons. Variant annotations are wholly dependent on the 

gene models within which they reside. However, gene models are often incomplete and 

change over time31. Moreover, the number of human genes is still unknown32,33, and the 

precise structure of many genes is still being debated. GenBank and Ensembl both provide 

reference gene models for the human genome. In general, Ensembl tries to be inclusive, 

whereas GenBank is more conservative, requiring more peer-reviewed evidence for its gene 

models. At the time of writing, Ensembl contains 26,998 protein-coding genes and 81,787 

mRNA transcripts, whereas GenBank’s RefSeq collection has 21,104 protein-coding genes 

and 34,799 mRNA transcripts. Even when both data sets have a model for a gene, its exon 

coordinates, transcript numbers, and start and stop codons often vary. Thus, a variant may lie 

in a coding exon in one provider’s gene model but reside in the intron or even an intergenic 

region in the other model.

Alternative splicing further complicates variant annotation, because the effect of a variant 

can vary on a transcript-by-transcript basis. For example, it may occur in an intron of one 

transcript but within an exon of another (FIG. 1). A common strategy to deal with this 

complication is to annotate the variant based on the transcript (or transcripts) with the most 

severe effect. The rationale for this approach is to avoid missing potentially causal variants 

(false negatives) at the expense of enriching for false positives that could be eliminated 

through other means of prioritization (for example, population allele frequency) and manual 

inspection.

Prioritizing variants

Identifying the genetic cause of a Mendelian disease requires the systematic prioritization of 

the one or two causative variants from among the thousands or millions of variants identified 

in a typical exome or genome, respectively. The simplest imaginable approach is to use 

Sequence Ontology terms to quickly prioritize variants in an ad hoc manner under the 

assumption that, for example, a variant creating a premature stop codon is typically more 

damaging than a missense variant. However, this is a poor approach because the average 

human harbours hundreds of putative loss-of-function alleles in both heterozygous and 

homozygous states4,22,34,35 (TABLE 1). Such a simplistic filtering approach is also ill-

advised because a stop codon in a poorly conserved gene may be more tolerated than a 

missense variant in another highly conserved gene. Furthermore, synonymous changes 

(those that do not alter the amino acid encoded) have been implicated in human diseases by 

affecting splicing36 and mRNA stability37, and by altering protein conformation38.

Identifying pathogenic variants given the vast candidate pool of benign variants in a human 

exome or genome is a fundamentally challenging problem that has given rise to diverse 

variant prioritization tools. Traditional approaches use conservation and protein structure to 

predict the consequence of a missense change on protein function. More powerful 

techniques39,40 have recently been developed that widen the scope of prioritization (that is, 

not just missense changes) and improve accuracy. These performance gains are achieved by 

integrating population allele frequency, and gene conservation and constraint into 
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prioritization calculations. In the following paragraphs, we explain how these data are used 

for variant prioritization. TABLE 2 provides an overview of the tools that use them, their 

scope of application and which information sources they use.

Conservation

As missense variants are the most commonly observed non-synonymous alteration in a 

typical exome (TABLE 1), a long-standing variant prioritization strategy is to use 

phylogenetic conservation to distinguish damaging from tolerated missense variants. The 

degree of conservation is ascertained by aligning human protein sequences to homologous 

protein sequences from other organisms. The rationale behind this is simple: the more 

conserved a column is within the multiple alignment, the more damaging an amino acid-

changing variant at that position will be. The corollary is that the less conserved the column, 

the more likely it will be tolerated. These assumptions are generally correct but not always. 

Just because a variant is predicted to be damaging by tools, such as Sorts Intolerant From 

Tolerant (SIFT)41, does not mean that it is pathogenic (BOX 1).

Users should also bear in mind that conservation-based approaches to prioritization suffer 

from two systematic limitations. First, although most human proteins are at least partially 

conserved across vertebrates, they frequently contain one or more poorly or non-conserved 

regions. Although many known disease-causing alleles reside in such regions, conservation-

based approaches often fail to identify them as deleterious. An alternative approach used by 

polymorphism phenotyping version 2 (PolyPhen2) is to use protein structure information for 

improved accuracy, especially in less well-conserved regions, but the gains are modest42. A 

second major limitation is that phylogenetic conservation provides poor means for 

determining the impact of stop codons and frameshift-inducing variants. This is because the 

protein sequences from other organisms used to make the multiple alignments do not contain 

them. Instead, stop codon and frameshift-inducing variants are either not prioritized at all or 

assigned maximally damaging scores by default. One might be tempted to assume that such 

variants are necessarily damaging, but the truth is much more complex. It is now recognized 

that some proteins are tolerant to stop codons and frameshifts (especially when they occur 

near the protein’s carboxyl terminus)34. Moreover, in loci such as the ABO blood group 

gene43, a significant proportion of the human population has inherited at least one 

frameshifting variant. In many cases, even though these highly damaging alleles destroy 

protein function, they seem to have little (if any) impact on health, even when 

homozygous44. Obviously, other approaches beyond sequence conservation are needed for 

prioritization of stop codons and frameshifts. The advent of WES and WGS has also placed 

additional demands on prioritization tools regarding accuracy. High false-positive rates can 

dramatically lengthen the time required for manual review of potential disease-causing 

variants. SIFT and PolyPhen2, for example, predict on average between 154 and 219 

deleterious changes, respectively, in a typical human exome from a healthy individual 

(TABLE 1); hence, the majority of these ‘deleterious’ changes are unlikely to be pathogenic. 

Given these facts, it is no wonder that variant prioritization tools have sought to improve 

accuracy by incorporating additional sources of information such as population allele 

frequency and gene constraint.
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Population allele frequency

Although inter-species conservation has proved to be a useful, though imperfect, tool for 

variant prioritization, recent catalogues of genetic variation within the human population 

provide powerful and complementary means for prioritization (BOX 2). Large-scale genome 

and exome sequencing efforts such as the 1000 Genomes Project3,45–47, the US National 

Heart, Lung and Blood Institute (NHLBI) Exome Sequencing Project48 and, more recently, 

the ExAC4 and gnomAD (see Further Information) projects, have catalogued protein-coding 

variation observed among the exomes of more than 60,000 individuals. The use of these 

resources cannot be overstated, as they provide an exquisitely detailed map of the landscape 

of human genetic variation from the common to the incredibly rare. Indeed, the ExAC 

consortium showed the extent of coding variation that exists in the human exome, observing 

an average of 1 coding variant every 8 base pairs. Further still, more than half of the 9 

million variants uncovered were so rare that they were observed only once, as a heterozygote 

in a single individual (that is, an allele frequency of 1 out of 121,412 chromosomes on 

average among all subpopulations measured). Recognizing the power of these resources to 

establish an a priori expectation for a variant’s relevance to disease, variant prioritization 

tools such as VAAST24 and ANNOVAR49 use these allele frequencies to prioritize rare 

variants.

Box 2

Variant interpretation resources

Genomic data repositories

Multiple catalogues of observed variants assembled from cohorts of thousands of 

genomes and/or exomes are now available. These resources are absolutely crucial 

adjuncts to the variant interpretation process.

The 1000 Genomes Project

The 1000 Genomes Project3 sequenced 2,504 individuals using whole-genome 

sequencing (WGS) to catalogue variants and their frequencies genome-wide in 26 

different population groups. The individuals in this study are self-declared as healthy and 

no further phenotype data were collected.

The NHLBI Exome Sequencing Project

The US National Heart, Lung and Blood Institute (NHLBI) Exome Sequencing Project 

sequenced the exomes of ~6,500 individuals with phenotypes pertinent to heart, lung and 

blood disorders and provided the first glimpse into the extent of extremely rare protein-

coding variation that exists in the human population.

ExAC

The Exome Aggregation Consortium (ExAC)4 is an aggregation of 60,706 exomes, the 

goal of which is to provide a deep catalogue of protein-coding variation for both 

population studies and for the clinical interpretation of variants. ExAC represents 6 broad 

populations and 14 disease cohorts, although individuals with severe paediatric 

phenotypes were removed.
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gnomAD

The genome Aggregation Database (gnomAD) is the successor to ExAC and, at the time 

of writing, comprises genetic variation observed from 123,136 whole-exome sequencing 

(WES) and 15,496 WGS data sets collected from unrelated individuals.

Data-sharing initiatives

Aside from centralized repositories of genomic data, there are also many efforts 

underway to address the urgent need for data sharing across institutions and borders. Data 

sharing can range from the simple (for example, discovery of a previously observed 

variant) to the more complex, in which parties endeavour to match patient genotypes, 

phenotypes and ancestries in an effort to corroborate a potential Mendelian disease 

discovery.

The GA4GH Beacon Project

The Global Alliance for Genomics and Health (GA4GH) Beacon Project108 allows 

researchers to search for a particular variant across a host of individual hospital and 

research facilities using the same interface.

Geno2MP and MyGene2

Similarly to the GA4GH Beacon Project, Genotype to Mendelian Phenotype (Geno2MP) 

is a service that houses anonymized and aggregated data that enable phenotypic querying. 

MyGene2 allows researchers and clinicians to identify and contact other researchers, 

clinicians or families who have shared both raw data and summary information about the 

same rare condition or candidate.

Databases of variant–disease and gene–disease associations

Comprehensive variant–phenotype databases

ClinVar17 and the Human Gene Mutation Database (HGMD)109,110 catalogue ever-

increasing connections between variants and disease. ClinVar, as part of the larger 

ClinGen Resource88, is an open archive of variants, with clinical phenotypes, evidence 

and the interpreted clinical significance. Submitted variants are classified by type of 

submitter, number of agreeing submissions and the variant interpretation guidelines used. 

A key strength of this archive is the aggregation of data from multiple clinical 

laboratories, providing a growing record of support for each interpretation, in which the 

provenance for each interpretation is maintained. A benefit of this aggregation process is 

that disagreements about the significance of variants are collated and reported17. This is 

the first time such conflicts have been openly used as a tool to improve global 

understanding of the clinical significance of genetic variants.

Locus-specific databases

Many genes have established historical connections to disease and interpreting a variant 

that falls into one of these genes may be supported by evidence collected in genetic 

databases. The most established of these resources is Online Mendelian Inheritance in 

Man (OMIM)16, which covers more than 15,000 genes with literature-based curation. It 

also provides phenotypic terminology in the form of more than 5,000 condition names. 

Eilbeck et al. Page 8

Nat Rev Genet. Author manuscript; available in PMC 2018 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Similarly, Orphanet111, a European rare disease network, also distributes sets of rare 

conditions and lists of associated genes.

Genes of uncertain significance

Genes that have not previously been associated with a disease or have limited evidence 

for association are often termed ‘genes of uncertain significance’ (GUS). Variants in this 

class of gene are assigned research status according to the American College of Medical 

Genetics (ACMG) and Association for Clinical Genetic Science (ACGS) guidelines and 

they are not often reported back to patients. PanelApp is a crowdsourcing tool that has 

been developed via the Genomics England project that supports the development of 

evidence-based gene panels to encourage standardization across genetic tests offered by 

different sites. It is hoped that through curation of evidence (currently unreportable) GUS 

will transition to clinical grade.

Population stratification

Although allele frequencies are a powerful tool for variant prioritization, population 

stratification can confound the fundamental assumption that rare variants are, a priori, more 

likely to be damaging than common ones. In many cases, the average frequency of a variant 

allele across populations is markedly lower than the maximum allele frequencies observed 

within individual subpopulations. For example, a variant that is very rare in individuals of 

European ancestry may be far more common in those of African ancestry, or vice versa 

(FIG. 2a). Further complicating interpretation, many ethnicities are still underrepresented in 

publicly available genetic variation resources. Indeed, population stratification is a particular 

problem for Central American individuals of mixed ancestry50, whose genomes often 

contain rare variants of presumably Native American origin. These alleles superficially meet 

the requirement of being rare in all populations sampled so far and are therefore often 

predicted to be relevant to a rare disease phenotype. However, the fact that genomes of 

admixed Central Americans have not been sequenced as extensively as individuals of 

European ancestry increases the likelihood that the allele is, in fact, relatively common in 

Central Americans.

An established maxim of human genetics is that alleles causing Mendelian diseases do not 

discriminate: they should be rare in all ancestries. Therefore, allele frequencies among 

diverse ancestries should always be examined when prioritizing candidate variants for 

Mendelian disease. It is important to note that diseases such as cystic fibrosis and sickle cell 

anaemia represent well-known exceptions to this maxim and reflect situations in which the 

causal polymorphisms are under balancing selection, which keeps these alleles at higher 

frequency, because they confer protection (when in a heterozygous state) from illnesses such 

as cholera51 and malaria52, respectively.

Population-scale variant catalogues from diverse ancestries enable increased scrutiny of 

variants for which rare disease association was ascertained from small sample sizes or from 

single-ancestry cohorts (for example, European descent). A recent analysis showed that 

many reportedly pathogenic variants in ClinVar have markedly higher allele frequencies than 

predicted by the disease prevalence, suggesting that they may reflect spurious associations53. 
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The majority of these discrepancies are observed for ClinVar ‘zero star submissions’, 

emphasizing the need for ClinVar users to understand submission guidelines and 

classification procedures (BOX 2). Similarly, resources such as ExAC have been used to 

refute the implication of new variants in rare diseases on the basis of the overly high 

frequency of the implicated allele in healthy individuals53,54.

Gene constraint

Using population-scale measurements of variant density and allele frequencies, multiple 

groups have developed statistical models of gene-wide constraint that model the tolerance of 

a gene to amino acid-changing or loss-of-function (LOF) variation relative to all other genes 

in the human genome. Such tools are essentially ranking genes on the strength of purifying 

selection. For example, the Residual Variation Intolerance Score (RVIS) uses ~6,500 exomes 

from the NHLBI Exome Sequencing Project and a linear model comparing the number of 

common functional variants observed in a gene against the total number of variants observed 

in the gene55. Genes with significantly more common functional variants than expected are 

inferred to have low constraint, whereas constrained genes have less common functional 

variation than expected. More recently, ExAC used 60,706 exomes to measure the 

probability of loss-of-function intolerance (pLI) for each gene in the human genome. 

Building on previous work56, modelling the expected number of de novo mutations per 

gene, pLI compares the observed and expected numbers of LOF variants to derive a 

probability that each gene is intolerant of LOF mutations4. The closer the pLI is to 1, the 

more intolerant to variation the gene is predicted to be. Gene-wide measures of constraint 

are effectively assuming a dominant model of inheritance; for example, the most LOF-

intolerant genes (that is, pLI >0.9) encompass the majority of known severe 

haploinsufficient human disease genes. However, such measures have limited use for 

recessive disease genes and pLI is by no means a perfect predictor of the disease association 

of a gene4. This is especially true for adult-onset hereditary cancer, in which the disease 

often manifests after reproduction (for example, the pLI for BRCA1, BRCA2 and ATM is 

0.0, despite the occurrence of well-known pathogenic variants in these genes).

A logical improvement on gene-wide constraint measures is the calculation of regional 

constraint along the gene. The rationale for regional measures is simple: genic ‘regions’ (that 

is, exons or portions of an exon) that encode crucial domains or subunits of a protein will be 

under stronger purifying selection than other regions of the protein. For example, the ExAC 

data set shows high constraint within the ion transport domain of sodium and potassium 

channel genes underlying both seizure and heart disorders (for example, early infantile 

epileptic encephalopathy and long QT syndrome), whereas other regions in these genes 

show far less constraint (FIG. 2b). Therefore, although gene-wide constraint measures are 

informative, prioritizing candidate variants on the basis of regional constraint is more 

nuanced and reduces both false-negative and false-positive predictions.

Caveats

Those engaged in variant and gene prioritization should also bear in mind that no two genes 

are alike. Large genes (for example, titin (TTN), filaggrin (FLG) and usherin (USH2A)) are 

more likely to harbour a possibly deleterious variant by chance, simply because they are 
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comprised of more nucleotides. Furthermore, genes that are members of large, paralogous 

gene families (for example, mucins, keratins and olfactory receptors) are also likely to 

harbour false-positive variants that are unrelated to a disease phenotype owing to problems 

with the exome capture and sequence mapping57 process. However, simply ignoring variants 

in such genes is ill-advised: some TTN mutations, for example, cause autosomal recessive 

and dominant cardiomyopathies58, as well as various muscular dystrophies59,60. Similarly, 

mutations in keratins underlie several disorders of the skin and appendages61,62. For these 

problematic genes, burden test-based approaches (see below) can prove especially 

efficacious.

Burden testing

A critical distinguishing feature of gene prioritization tools is whether or not they use a 

burden test. Burden tests aggregate the variants observed at a given locus within one or more 

probands to calculate a sum or burden score. These scores are then used to prioritize genes 

rather than variants: the greater the burden, the more likely the gene is to be damaged. Many 

different scoring methods exist, but one commonality is the use of variant frequency 

information, so that common variants contribute less burden than rare ones. Most burden 

testing software tools also evaluate potentially damaging genotypes in the context of other 

genotypes observed at the same locus in a control population. This controls for gene-specific 

effects, so that the burden scores of larger, highly variable genes, such as TTN, do not 

always rise to the top of the candidate list.

Burden tests were originally proposed as a means to identify common rather than rare 

diseases, but the efficacy of the approach for Mendelian disease discovery is now making it 

popular for these applications as well63. There are several types of burden test64 and many 

tools are available for carrying out these analyses; examples include KBAC9, SKAT-O65, 

VT8 and VAAST6.

The burden-testing process is easiest to understand for dominant diseases. Consider, for 

example, a proband with a dominant Mendelian disease who has a de novo missense variant 

located in a particular gene. The effect of the variant is to change a tryptophan to a cysteine: 

a non-conservative amino acid change. Imagine that the variant is predicted to be maximally 

damaging by SIFT because it lies at a highly conserved position on the protein. Moreover, 

the de novo variant is novel; that is, it has never been observed in population-scale variant 

catalogues (BOX 2). All things considered, this variant would seem to be an excellent 

candidate for disease causation. Now imagine that 50% of all healthy individuals have some 

other equally damaging missense variant or even a more severe frameshifting variant at 

some other location in the gene; does it still seem so certain that the de novo variant is 

pathogenic? Logically, the hypothesis that the proband’s highly damaging de novo variant is 

disease-causing is now far less certain in light of these facts. Burden-testing tools automate 

this interpretive process.

One key feature of burden tests is their ability to score the diverse combinations of different 

types of variants that comprise genotypes using a single scoring scheme. VAAST, for 

example, can score and rank recessive genotypes that are combinations of missense, 

frameshifting and splice site-damaging variants using a single scoring scheme that also 
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includes amino acid substitution scores, variant population frequencies and phylogenic 

conservation24,66. This means that the burden score for a proband with a damaging splice 

variant on one chromosome and a missense variant on the other can be compared with 

another individual whose genotype is comprised of a frameshift-inducing variant in trans to 

a missense variant. This is a computationally complex task, but it has considerable utility, as 

burden tests provide a means to rank genotypes for gene prioritization purposes and to 

explore the distribution of burden at a given locus for a population. One can then speak of a 

proband having a burden at a candidate disease locus that exceeds 95% or 99.9% of all 

observed genotypes at that locus in the general population.

Burden tests are also well suited to large case– control and family-based studies. Traditional 

genome-wide association study (GWAS) tests, which proceed variant by variant, lose power 

as more and more variants are included in the analysis because ever-increasing multiple 

testing corrections are required. By contrast, burden tests scale much better to large WES 

and WGS data sets because the multiple test correction is the number of genes (a constant), 

no matter how many variants and individuals are included in the study.

Burden testing is also extensible to family-based analyses. Parent–child trios, for example, 

can be used to ‘Mendelize’ variants and to phase the data to ensure that only combinations 

of variants that are consistently inherited are considered in the calculations, thereby 

improving accuracy. Pedigree-VAAST (pVAAST)67, for example, can use multigenerational 

pedigrees in its calculations so that the final burden scores reflect co-segregation of variants 

and phenotypes across the pedigree.

Burden tests open new vistas for gene-based prioritization as well as diagnostic and 

discovery applications, especially for large case–control analyses, recessive diseases and 

family-based studies for which data complexity exceeds human interpretive capacities. 

Moreover, the tests can also be embedded into larger software frameworks to allow inclusion 

of important adjunct data in the calculations, such as the penetrance of the variant or 

genotype, disease prevalence and mode of inheritance (see below). For these reasons, burden 

tests are becoming widely used for gene prioritization, especially within decision support 

frameworks.

Relevance to disease

Clinical interpretation of variants and genotypes necessitates integration of diverse data 

types. For example, variants are often interpreted in the context of disease prevalence and 

mode of inheritance (see also BOX 2). The culmination of this aggregation of information is 

manual assessment of prioritized variants and genes using community-agreed-upon 

guidelines. Some of the data modalities most relevant to this assessment process are 

described below.

Penetrance, prevalence and mode of inheritance

Penetrance refers to the probability that having a pathogenic variant or genotype will result 

in disease. Penetrance is easiest to understand in the context of dominant and de novo 
variants. A dominant variant is said to be completely penetrant when every individual with 
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the variant has the disease and every individual without the variant is unaffected. Reality is 

of course more complex. The impact of a variant may be delayed. Individuals with 

Huntington disease who have a completely penetrant variant are phenotypically normal as 

children, but develop the disease in their adult life68. A variant may also be incompletely 

penetrant: this term is less precise and is often used to describe variants that only produce 

disease in, for example, half of carriers. Such an allele is said to be 50% penetrant. Many of 

the variants responsible for familial cancers show incomplete penetrance. The term variable 

expressivity is used to describe variants that cause mild symptoms in some carriers and more 

severe ones in others. Neurofibromatosis type 1 has multiple variably expressed phenotypes. 

Incomplete penetrance and variable expressivity complicate interpretation because observing 

the variant in an unaffected individual does not necessarily mean it is not pathogenic.

Knowledge of the population prevalence of a disease provides a powerful means to exclude 

some candidate disease-causing variants from further consideration. A useful rule of thumb 

is that, for a dominant disease, the product of its population prevalence and its fractional 

penetrance is an upper bound for the population frequency of any candidate disease-causing 

variant. Consider the case for a dominant Mendelian disease that occurs with a population 

prevalence of 1 in 10,000 individuals. If we assume 50% penetrance, then by this rule of 

thumb, any variant (population stratification issues aside) having a frequency greater than 1 

in 5,000 in the general population is a poor candidate. For recessive diseases, the situation is 

more complex. In this case, it is the population genotype frequency, rather than individual 

variant frequencies, that must be less than the population disease prevalence. In the case of 

simple recessive diseases, the population genotype frequency is the square of variant 

frequency. This means that a recessive disease-causing variant can be relatively frequent in 

the population, which greatly increases the number of potential candidates.

A further complication for prioritization is that many recessive disease cases result from 

compound heterozygous genotypes. These are recessive genotypes in which both the 

maternal and paternal copies of a gene harbour a damaging variant, but these variants are 

distinct and occur at different positions in the maternal and paternal copies of the gene (BOX 

1). In this case, the population genotype frequency is obtained by multiplying the constituent 

variant frequencies and, all things being equal, this value should be less than the observed 

incidence of the Mendelian disease. The complication in this case is that once the scope of 

prioritization has been extended to include compound heterozygous genotypes, every 

possible combination of rare variants in every locus must be considered in burden 

calculations. This requirement greatly increases the complexity of prioritization tasks, 

requiring specialized algorithms, as discussed below. Another complication is that the 

variants need to be in trans to one another, one located on the maternal chromosome, the 

other on the paternal. One easy way to determine this is to sequence the proband’s parents: 

doing so makes it possible to restrict the search to combinations of variants in which one is 

inherited from the mother and the other from the father. Family studies can further reduce 

the search space by focusing on heterozygote pairs that are observed in affected siblings but 

absent in unaffected siblings.

Taking all of these factors into account — conservation, constraint, mode of inheritance, 

variant and genotype population frequencies and penetrance — the task of assessing the 
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thousands or even millions of variants in a typical WES or WGS requires an automated 

process. Variant prioritization tools that make a prediction in isolation for each variant are 

ill-suited to this problem. This is the domain of integrative gene prioritization tools. Existing 

tools use a variety of strategies. Genome Mining (GEMINI)69, seqr (see Further 

Information), Variant Association Tools70 and ANNOVAR49, for example, use filtering 

approaches that prioritize variants only if they follow a specified mode of inheritance, are 

predicted to affect protein sequence or function and have a population frequency below a 

specified threshold. By contrast, tools such as VAAST and SKAT-O use a probabilistic 

approach that uses background population frequencies to determine genotype frequencies 

and combines these with mode of inheritance and penetrance to identify damaged genes and 

disease-causing alleles using a burden test. Some go even further: pVAAST67, for example, 

can use multigenerational pedigrees of sequenced relatives, following the segregation of 

every variant in the family and correlating it with disease status. This results in greater 

power for family-based studies.

Phenotype

Intuitively, a proband’s phenotype has a crucial role in every gene and variant prioritization 

analysis. Mendelian diseases characteristically manifest themselves as recurring collections 

of stereotypical symptoms that together define a disease phenotype or condition. 

Unfortunately, many different conditions produce overlapping constellations of symptoms, 

hence the need for genome-sequence-based precision medicine.

If the disease were known, diagnosis would be simple; however, what are available before 

diagnosis are clinical symptoms and the results of diagnostic tests. Consider the case for a 

patient with medium-chain acyl co-enzyme A dehydrogenase (ACADM) deficiency 

(MCADD; see FIG. 3). Pre-diagnostic symptoms might include qualitative descriptions such 

as lethargy, seizures and hepatomegaly. Quantitative diagnostic results (that is, clinical 

measurements) might include controlled vocabulary-based descriptions of clinical tests and 

observed values such as those provided by Logical Observation Identifiers Names and Codes 

(LOINC), for example, an abnormal serum acylcarnitine profile. A genetic test yielding 

variant in the ACADM medium-chain-specific acyl-CoA dehydrogenase gene, with these 

clinical features, would make it possible to distinguish the disorder as MCADD from a 

series of related metabolic conditions.

The Human Phenotype Ontology (HPO)71 provides hierarchical sets of disease names and 

clinical features (symptoms) for describing medical conditions and, crucially, the HPO also 

provides associations between symptoms and known disease genes. The disease–gene 

catalogue OMIM16 associates conditions and genes. Machine-readable phenotype 

descriptions, such as those produced using the online resources Phenotips72 and PhenoDB73, 

use HPO and OMIM terminology to produce standardized phenotype descriptions. Several 

tools exist for combining phenotype descriptions with variant and gene prioritization results 

(see REF. 74 for a review) to elevate rankings of potential candidates in variant 

prioritization. These tools vary from ontology-based semantic similarity methods to more 

complex machine-learning techniques75–80.
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Phenotype analysis tools such as the Phenotype-Driven Variant Ontological Re-ranking tool 

(Phevor)80 and Phenolyzer78 can evaluate qualitative HPO-based phenotype descriptions 

such as ‘lethargy, seizures and hepatomegaly’ and use the broader structure of the HPO and 

its gene–symptom linkages in order to associate genes with proband phenotypes. They then 

combine this information with variant and gene prioritization results. They can even discover 

new gene–disease associations80. Another tool, Phenotypic Interpretation of Variants in 

Exomes (PHIVE)81, uses a different approach: it is a variant filtering tool that uses a 

combination of variant frequency, predicted deleteriousness of the allele and a semantic 

similarity-based phenotypic relevance score that uses model organism annotation to rank 

exonic variants.

Phenotype reprioritization tools straddle both realms of clinical application and disease–

gene discovery. To simplify clinical analysis, Phenotypic Interpretation of Exomes 

(PhenIX)74 solely reports on known disease genes. Other tools can be used in both 

situations. For example, Phevor80 uses the knowledge collected in related ontologies such as 

the Gene Ontology (GO) to suggest new gene–disease associations.

Variant interpretation

Variant interpretation refers to the process of drawing direct connections from individual 

variants to disease phenotypes, and this process is central to both clinical reporting of results 

and incidental findings, and to research endeavours that include variant discovery and return 

of results. As a variant can be damaging to gene function but not disease-causing (BOX 1), 

candidates identified by variant or gene prioritization tools must be evaluated for causation. 

As a result of its complexity and impact on patient diagnosis and treatment, this process 

remains largely one of expert interpretation and literature review. As the complexity and 

amount of available genetic data have increased, interpretation has faced new challenges, 

and the need for standardized guidelines has become apparent. This fact is demonstrated by 

the 2012 CLARITY Challenge82, in which multiple groups interpreted the exomes of three 

parent–child trios, yielding inconsistent findings among the resulting variant reports.

As a result of these challenges, interpretation guidelines have been developed in Europe and 

the United States to standardize interpretation workflows so that decisions are made in a 

consistent manner. The UK Association for Clinical Genetic Science (ACGS)83 updated 

guidelines in 2013 that described a narrative list of the lines of evidence and necessity of this 

evidence to be used in variant interpretation. The American College of Medical Genetics 

(ACMG) has issued consensus guidelines distilled from community input. The ACMG 

guidelines provide a terminology to define clinical significance, a scheme for ranking 

evidence used to make variant–disease assertions and a set of rules for combining the 

evidence for a case84. In a recent announcement, the ACGS and British Society for Medical 

Genetics have recommended following the ACMG consensus guidelines, further 

consolidating a standardized clinical approach83,85.

The scope of these guidelines is strictly for the interpretation of variants suspected to be 

implicated in Mendelian disorders, and both organizations agreed on the need to standardize 

the description of variants using: Human Genome Variation Society (HGVS) 
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nomenclature86, Human Genome Organisation (HUGO) gene identifiers87, named reference 

sequences with versioning, and five grades of clinical significance. Evidence is ranked into 

four classes: supporting, moderate, strong and very strong. The outcome is an assertion of 

either benign, likely benign, VUS, likely pathogenic or pathogenic. Many of the criteria are 

subjective; for example, quantification of co-segregation of the variant with the phenotype 

ranges from ‘supporting’ to ‘strong’ evidence, and there is a criterion for a variant being 

previously reported by a ‘reputable source’. Moreover, both guidelines acknowledge the 

many caveats involved in interpretation, such as variants that fall in the last exon and null 

variants that prove to be benign in heterozygous form.

It is widely acknowledged that these guidelines are general and that there is a pressing need 

to establish specific procedures for different genes and diseases. In response, clinical-domain 

working groups have been established, such as those administered via the ClinGen Resource 

from the US National Human Genome Research Institute (NHGRI)88. Their purpose is to 

extend these recommendations per gene or gene panel to accommodate any specific caveats 

that may exist84 (see also ClinGen Clinical Domains in Further information).

Clinical and research interpretation diverge whenever a variant of interest falls in a gene of 

uncertain significance (GUS)84. These are the genes for which there is no documented 

association with the disease or the phenotype. The guidelines are clear that these variants 

may only be clinically reported as VUS until further evidence is collected; for example, the 

discovery of additional individuals with similar phenotype and deleterious variants in the 

gene89. Research evidence is then collated in collaborative resources such as ClinVar and 

PanelApp (BOX 2).

Current challenges and emerging solutions

Mendelian disease research and diagnosis have been greatly empowered by the sequencing 

of exomes and targeted gene panels. Despite being effective, research laboratories are slowly 

transitioning to WGS because of its greater power to discover all forms of potentially causal 

variation. Clinical diagnostic laboratories are likely to follow this trend once costs decline 

sufficiently for insurance providers to reimburse WES- and WGS-based tests. However, 

aside from cost barriers, there are substantial analytical barriers to the systematic 

prioritization of the millions of genetic variants that are uncovered via WGS.

Non-coding variants

As the protein-coding exome represents less than 2% of the genome, most additional 

variants revealed through WGS lie in non-coding regions. The Encyclopedia of DNA 

Elements (ENCODE) project has emphasized that as much as 80%90 of the non-protein-

coding portion of the genome is associated with biochemical ‘function’. Although the 

precise percentage and the definition of ‘function’ is debated91, it is clear that many non-

coding regions, such as promoters, enhancers and splice sites, are crucial to gene function. 

More generally, non-coding nucleotide conservation can be used to prioritize non-coding 

variants in much the same way that SIFT uses protein-based alignments. Several such tools 

exist: some use conservation information directly, whereas others use conservation scores 

provided by third-party tools, such as phyloP92 and Genomic Evolutionary Rate Profiling 
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(GERP)++93 (see TABLE 2 for details). However, it should be noted that non-coding variant 

prioritization tools are less accurate than their protein-coding counterparts. Although many 

new approaches are being developed39,94,95, there is simply insufficient understanding of the 

regulatory machinery encrypted in non-coding DNA to prioritize non-coding variants with 

similar accuracy to that of coding variants94.

Synonymous exonic variants

Synonymous exonic variations are scored and prioritized by several existing tools (TABLE 

2). There are multiple mechanisms whereby these variants can cause disease, such as 

altering the fidelity of splicing or microRNA (miRNA) binding, affecting mRNA stability or 

altering translation dynamics. Software and other validation strategies are reviewed by Hunt 

et al.96.

Structural variants

Structural variants encompass both copy number variants (CNVs), such as deletions and 

duplications, and balanced rearrangements, such as inversions and reciprocal translocations. 

Although there are far fewer structural variants (that is, between ~5,000 and ~10,000) in a 

typical human genome47 than SNVs and small insertions and deletions (indels), their 

potential for phenotypic impact is disproportionately large because they can disrupt multiple 

genes, create gene fusions, ablate regulatory elements and alter gene dosage. Owing to a 

variety of technical reasons, structural variants remain the most difficult form of variation to 

detect, and WGS — as opposed to WES — is preferred for these analyses because of the 

greatly increased discovery power and resolution71. Despite the cost and complexity of 

WGS data, structural variant detection clearly improves the diagnostic yield for Mendelian 

disorders compared with WES97. For example, Wu et al. recently found that 11% of 

congenital scoliosis cases are explained by compound heterozygotes comprised of SNVs and 

large deletions in T box 6 (TBX6)98. Furthermore, Burn–McKeown syndrome was also 

found to be caused by compound heterozygous inheritance (see BOX 1) of a promoter 

deletion and an SNV in thioredoxin-like 4A (TXNL4A)99. More generally, balanced 

chromosomal abnormalities have been shown to underlie congenital abnormalities by 

disrupting topologically associating domains (TADs) in loci that are known to cause 

developmental disorders100. Long-read sequencing technologies were recently used to 

implicate a deletion of the first exon of protein kinase cAMP-dependent type I regulatory 

subunit-a (PRKAR1A) in autosomal dominant Carney complex101, and WGS studies of 

autism spectrum disorder estimated that between 1 in 5 and 1 in 20 individuals harbour a de 
novo structural mutation, further strengthening the argument for comprehensive WGS-based 

structural variant analysis in Mendelian disorders102.

Unfortunately, interpretation of structural variants observed in a family is complicated by the 

fact that population-scale variant databases such as ExAC are not yet available for structural 

variants. Consequently, it is very difficult to assess whether a structural variant of interest 

(for example, a deletion of multiple coding exons) is likely to be pathogenic on the basis of 

its allele frequency among diverse ancestries. However, it is clear that resources for these 

activities will eventually emerge from large projects such as the Genomics England 100,000 

Genome Project (UK100K), the NHLBI Trans-Omics for Precision Medicine (TOPMed) 
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programme and the NHGRI Centers for Common Disease Genomics, which are each 

focused on WGS of tens of thousands of individuals.

Graph-like genome representations

With the thirty-eighth major release of the human genome, the Genome Reference 

Consortium has transitioned away from traditional linear genome representations that 

represent little sequence or structural diversity. Instead, this and future versions of the human 

genome attempt to represent multiple alternative sequence ‘paths’ for loci that have high 

levels of nucleotide diversity or structural complexity103. Although ‘graph-like’ genome 

representations improve the representation of the true diversity of the human genome, it is 

imperative that SNV, indel and structural variant discovery methods account for these 

changes in order to maximize discovery accuracy by distinguishing truly paralogous loci 

from alternative sequence paths represented in the genome assembly for the same locus. 

Some software advances have been made in this regard104, but widespread adoption of 

current and future genome assemblies will require continued algorithm development.

Better decision support tools

Many analysis pipelines apply ‘linear’ approaches in which the primary goal is to identify a 

subset of variants that meet a series of evermore restrictive, hard-coded filters. Examples 

include enforcing an inheritance model, maximum allele frequency, genotype burden, 

variant effect and so forth. The obvious drawback to such approaches is the potential for 

false negatives when variants fail to meet filtering criteria, with no easy means to recover 

them for further consideration in light of other information. This pitfall of linear approaches 

is driving the creation of more integrative approaches using decision support tools. These 

tools are not so much pipelines as browser-based interpretation environments. Decision 

support tools enable more flexible, interactive analyses and generally provide easier means 

to analyse variant data in the context of external resources such as ExAC, OMIM and 

ClinVar, which greatly empower clinical decision-making. Academic examples include 

iobio14 and Variation Viewer105. Commercial tools increasingly have an important role in 

this domain, partly because of the complexity and cost of developing such software. 

Examples include Congenica’s Sapientia, WuXi’s NextCode, (see Further Information) and 

Fabric Genomics’ Opal platform12. These platforms offer customizable workflows and web-

based user interfaces that facilitate expert review and interpretation of results. They also deal 

with a host of practical issues such as data security and privacy. These features make them 

ideal for clinical diagnosis, but the current generation of these applications still lacks the 

functionality that is necessary for larger case–control analyses for which data aggregation 

across multiple probands is essential for discovery.

Conclusions

Connecting variants to disease is a complex, multistep process. Its early steps are highly 

automated, but the final, most critical aspects are not. Instead, they rely on expert review and 

human interpretation. In this sense, the process resembles many of today’s big-data analysis 

activities, but it is further complicated by its clinical nature. Wrong answers can be 

devastating to patient health and family planning. For example, in a recent example of 
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incorrect variant interpretation, members of a family received a diagnosis of long QT 

syndrome and an inappropriate course of treatment106.

Variant and gene prioritization scores are useful starting points for discovery and diagnosis 

of rare Mendelian diseases, but they are merely that: starting points. Those charged with 

their review and interpretation need to understand the computational workflows and the 

strengths and weaknesses of the many software tools that constitute them.

Prioritization scores should never be naively conflated with pathogenicity (BOX 1). Instead, 

it is crucial that they are considered in the context of genotype, disease prevalence, family 

history and phenotype. Variant interpretation resources such as ClinVar and ExAC are 

proving to be essential to this process. Many tools are now available to help with this 

integration process, and complex decision support environments are increasingly being used. 

Standardization of the interpretation process is also clearly desirable. The guidelines offered 

by the ACMG and ACGS are important steps forward in this regard. These are growing 

more sophisticated, and their granularity is improving to allow ever more gene- and disease-

specific interpretation workflows. Nevertheless, those engaged in precision genomic 

medicine should bear in mind that VUS will remain one of the most frequently used terms in 

the precision medicine diagnostic vocabulary for some time to come.
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Glossary

Mendelian disorders
Diseases or conditions that result from mutation at a genomic locus and are inherited 

according to Mendel’s laws

Variant prioritization
The process of ranking the variants observed in an individual genome on the basis of factors 

such as the predicted consequence of each variant and the observed frequency in a 

population

Population allele frequencies
The proportion of chromosomes within a population that carry a particular change at a given 

locus

Gene prioritization
The process of associating a gene with a disease phenotype; this strategy is often used 

during variant prioritization

Burden testing
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A gene prioritization approach that scores, ranks and prioritizes genes based on genotypes 

rather than on single variants. The observed (or for some methods, the theoretical) 

distribution of burden scores within the wider population is often used to rank a proband’s 

genotype score. Many burden tests can also incorporate adjunct information into their 

calculations such as phylogenetic conservation, mode of inheritance and variant frequency 

data. Unlike variant prioritization tools, burden tests require access to genotype data for their 

calculations

Decision support frameworks
Interactive, dynamic tools to guide medical decision-making by displaying and integrating 

patient data

Nonsense-mediated decay (NMD)
A conserved eukaryotic pathway, the role of which is to detect and eliminate the translation 

of mRNAs that have premature stop codons

Variant of uncertain significance (VUS)
Also known as variant of unknown significance. The canonical definition of a VUS is a 

variant in a disease-associated gene, the specific effect of which is unknown or uncertain. 

More generally, VUS can also be applied to variants in genes that lack direct disease 

association but are plausible given the biological function of the resulting protein

Controlled vocabularies
Sets of agreed upon terms and definitions

Exome
Generally, the portion of the genome that is translated into proteins

Population stratification
The difference in allele frequencies across subpopulations

Balancing selection
Under balancing selection, multiple alleles exist in a population when natural selection 

favours heterozygous genotypes

Disease prevalence
The number of cases of a disease that are present in a population at a given point in time

Purifying selection
Under purifying selection, deleterious alleles are selectively removed from a population

Functional variants
Variants that alter gene function or expression

Probands
The proband is the initial person of study in a genetics investigation. In the case of a family 

trio, the proband is usually the affected child
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De novo variant
A spontaneous mutation in a proband that is missing from the parents

Phase
For a single variant, phase involves the determination of the parental chromosome on which 

a variant allele exists. When a proband and both parents have been sequenced, this can be 

directly determined for ‘informative sites’ where the allele transmission is unambiguous (for 

example, the proband is heterozygous A/G, the father is homozygous A/A, and the mother 

heterozygous A/G; in this case the G allele was clearly transmitted from the mother). More 

generally, phasing refers to the assignment of alleles from multiple variant sites to parental 

haplotypes

Population genotype frequency
The proportion of individuals with a particular genotype at a given locus

Incidental findings
In whole-exome sequencing (WES) or whole-genome sequencing (WGS), pathogenic and 

likely pathogenic variants in genes that are not relevant to the initial reason for sequencing 

may be found and reported back to the patient. These variants may relate to rare disease, 

disease risk, pharmacogenetic response, and status relating to prenatal screening

Return of results
The process of returning findings from a research study, or incidental findings from a genetic 

test, back to the participant or patient

Compound heterozygous inheritance
The situation in which a proband receives a damaging but different allele in the same gene, 

from each parent. Both copies of the gene are affected

Topologically associating domains (TADs)
TADs are genomic regions in which loci have a higher probability of physical interaction

References

1. Bamshad MJ, et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev 
Genet. 2011; 12:745–755. [PubMed: 21946919] 

2. Chong JX, et al. The genetic basis of Mendelian phenotypes: discoveries, challenges, and 
opportunities. Am J Hum Genet. 2015; 97:199–215. This review summarizes findings from the 
study of more than 8,000 families with Mendelian disease phenotypes by the Centers for Mendelian 
Genomics. [PubMed: 26166479] 

3. The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature. 
2015; 526:68–74. By sequencing the genomes of more than 2,500 individuals from diverse world 
ancestries, this study provides the first genome-wide map of both common and rare human genetic 
variation. [PubMed: 26432245] 

4. Lek M, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016; 
536:285–291. The ExAC-integrated exome sequencing data from 60,706 individuals provides an 
invaluable reference data set of genetic variation in protein-coding genes. Assessing variant allele 
frequencies in ExAC facilitates the interpretation of candidate variants observed in Mendelian 
disease families. [PubMed: 27535533] 

Eilbeck et al. Page 21

Nat Rev Genet. Author manuscript; available in PMC 2018 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5. Cooper GM, Shendure J. Needles in stacks of needles: finding disease-causal variants in a wealth of 
genomic data. Nat Rev Genet. 2011; 12:628–640. [PubMed: 21850043] 

6. Kennedy B, et al. Using VAAST to identify disease-associated variants in next-generation 
sequencing data. Curr Protoc Hum Genet. 2014; 81:6.14.1, 6.14.25. [PubMed: 24763993] 

7. Wu MC, et al. Powerful SNP-set analysis for case-control genome-wide association studies. Am J 
Hum Genet. 2010; 86:929–942. [PubMed: 20560208] 

8. Price AL, et al. Pooled association tests for rare variants in exon-resequencing studies. Am J Hum 
Genet. 2010; 86:832–838. [PubMed: 20471002] 

9. Liu DJ, Leal SM. A novel adaptive method for the analysis of next-generation sequencing data to 
detect complex trait associations with rare variants due to gene main effects and interactions. PLoS 
Genet. 2010; 6:e1001156. [PubMed: 20976247] 

10. Li B, Leal SM. Methods for detecting associations with rare variants for common diseases: 
application to analysis of sequence data. Am J Hum Genet. 2008; 83:311–321. [PubMed: 
18691683] 

11. Lee S, Abecasis GR, Boehnke M, Lin X. Rare-variant association analysis: study designs and 
statistical tests. Am J Hum Genet. 2014; 95:5–23. [PubMed: 24995866] 

12. Coonrod EM, Margraf RL, Russell A, Voelkerding KV, Reese MG. Clinical analysis of genome 
next-generation sequencing data using the Omicia platform. Expert Rev Mol Diagn. 2013; 13:529–
540. [PubMed: 23895124] 

13. Doig KD, et al. PathOS: a decision support system for reporting high throughput sequencing of 
cancers in clinical diagnostic laboratories. Genome Med. 2017; 9:38. [PubMed: 28438193] 

14. Miller CA, Qiao Y, DiSera T, D’Astous B, Marth GT. bam.iobio: a web-based, real-time, sequence 
alignment file inspector. Nat Methods. 2014; 11:1189. [PubMed: 25423016] 

15. Vandeweyer G, Van Laer L, Loeys B, Van den Bulcke T, Kooy RF. VariantDB: a flexible 
annotation and filtering portal for next generation sequencing data. Genome Med. 2014; 6:74. 
[PubMed: 25352915] 

16. Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A. OMIM.org: Online Mendelian 
Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic 
Acids Res. 2015; 43:D789–D798. [PubMed: 25428349] 

17. Landrum MJ, et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic 
Acids Res. 2016; 44:D862–D868. ClinVar is an important repository for collating and 
understanding genome variant interpretation. [PubMed: 26582918] 

18. DePristo MA, et al. A framework for variation discovery and genotyping using next-generation 
DNA sequencing data. Nat Genet. 2011; 43:491–498. [PubMed: 21478889] 

19. Alkan C, Coe BP, Eichler EE. Genome structural variation discovery and genotyping. Nat Rev 
Genet. 2011; 12:363–376. [PubMed: 21358748] 

20. Van der Auwera GA, et al. From FastQ data to high confidence variant calls: the Genome Analysis 
Toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013; 43:11.10.1–11.10.33. [PubMed: 
25431634] 

21. Zook JM, et al. Integrating human sequence data sets provides a resource of benchmark SNP and 
indel genotype calls. Nat Biotechnol. 2014; 32:246–251. [PubMed: 24531798] 

22. Danecek P, et al. The variant call format and VCFtools. Bioinformatics. 2011; 27:2156–2158. 
[PubMed: 21653522] 

23. McLaren W, et al. The Ensembl variant effect predictor. Genome Biol. 2016; 17:122. [PubMed: 
27268795] 

24. Yandell M, et al. A probabilistic disease-gene finder for personal genomes. Genome Res. 2011; 
21:1529–1542. [PubMed: 21700766] 

25. Cingolani P, et al. A program for annotating and predicting the effects of single nucleotide 
polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; 
iso-3. Fly. 2012; 6:80–92. [PubMed: 22728672] 

26. Eilbeck K, et al. The Sequence Ontology: a tool for the unification of genome annotations. 
Genome Biol. 2005; 6:R44. The Sequence Ontology is a project that initiated developing 
standardized terminologies for genomic sequence features and became widely used in both 

Eilbeck et al. Page 22

Nat Rev Genet. Author manuscript; available in PMC 2018 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



genome annotation and more recently in variant annotation. It is a key vocabulary used by tools 
that assign consequences to variants. [PubMed: 15892872] 

27. Cunningham F, Moore B, Ruiz-Schultz N, Ritchie GR, Eilbeck K. Improving the Sequence 
Ontology terminology for genomic variant annotation. J Biomed Semantics. 2015; 6:32. [PubMed: 
26229585] 

28. Sherry ST, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001; 
29:308–311. [PubMed: 11125122] 

29. Aken BL, et al. Ensembl 2017. Nucleic Acids Res. 2017; 45:D635–D642. [PubMed: 27899575] 

30. Lappalainen I, et al. DbVar and DGVa: public archives for genomic structural variation. Nucleic 
Acids Res. 2013; 41:D936–D941. [PubMed: 23193291] 

31. Eilbeck K, Moore B, Holt C, Yandell M. Quantitative measures for the management and 
comparison of annotated genomes. BMC Bioinformatics. 2009; 10:67. [PubMed: 19236712] 

32. Pertea M, Salzberg SL. Between a chicken and a grape: estimating the number of human genes. 
Genome Biol. 2010; 11:206. [PubMed: 20441615] 

33. Ezkurdia I, et al. Multiple evidence strands suggest that there may be as few as 19 000 human 
protein-coding genes. Hum Mol Genet. 2014; 23:5866–5878. [PubMed: 24939910] 

34. MacArthur DG, et al. A systematic survey of loss-of-function variants in human protein-coding 
genes. Science. 2012; 335:823–828. Through careful examination of LOF variants in 185 
individuals, this study predicted that a typical human harbours roughly ~100 potential LOF 
variants in their genome, highlighting the challenge of isolating the one or two causal variants 
underlying a Mendelian disease phenotype. [PubMed: 22344438] 

35. Saleheen D, et al. Human knockouts and phenotypic analysis in a cohort with a high rate of 
consanguinity. Nature. 2017; 544:235–239. This manuscript studies individuals harbouring 
homozygous LOF variants in a population with a high rate of consanguinity, revealing more than 
1,000 genes that were predicted to be completely knocked out in at least one individual studied. 
[PubMed: 28406212] 

36. Sheikh TI, Mittal K, Willis MJ, Vincent JB. A synonymous change, p. Gly16Gly in MECP2 Exon 
1, causes a cryptic splice event in a Rett syndrome patient. Orphanet J Rare Dis. 2013; 8:108. 
[PubMed: 23866855] 

37. Nackley AG, et al. Human catechol-O-methyltransferase haplotypes modulate protein expression 
by altering mRNA secondary structure. Science. 2006; 314:1930–1933. [PubMed: 17185601] 

38. Kimchi-Sarfaty C, et al. A ‘silent’ polymorphism in the MDR1 gene changes substrate specificity. 
Science. 2007; 315:525–528. [PubMed: 17185560] 

39. Kircher M, et al. A general framework for estimating the relative pathogenicity of human genetic 
variants. Nat Genet. 2014; 46:310–315. This manuscript describes the Combined Annotation-
Dependent Depletion (CADD) score, which integrates diverse genome annotations into a classifier 
to assess the relative deleteriousness of variants genome-wide. [PubMed: 24487276] 

40. Gulko B, Hubisz MJ, Gronau I, Siepel A. A method for calculating probabilities of fitness 
consequences for point mutations across the human genome. Nat Genet. 2015; 47:276–283. By 
integrating high-throughput functional data from the ENCODE project, the fitCons method 
estimates the probability of whether any genome-wide point mutation will result in a fitness 
consequence. [PubMed: 25599402] 

41. Ng PC, Henikoff S. Predicting deleterious amino acid substitutions. Genome Res. 2001; 11:863–
874. [PubMed: 11337480] 

42. Adzhubei IA, et al. A method and server for predicting damaging missense mutations. Nat 
Methods. 2010; 7:248–249. [PubMed: 20354512] 

43. Yip SP. Sequence variation at the human ABO locus. Ann Hum Genet. 2002; 66:1–27. [PubMed: 
12014997] 

44. Kaiser VB, et al. Homozygous loss-of-function variants in European cosmopolitan and isolate 
populations. Hum Mol Genet. 2015; 24:5464–5474. [PubMed: 26173456] 

45. The 1000 Genomes Project Consortium. A map of human genome variation from population-scale 
sequencing. Nature. 2010; 467:1061–1073. [PubMed: 20981092] 

46. The 1000 Genomes Project Consortium. An integrated map of genetic variation from 1, 092 human 
genomes. Nature. 2012; 491:56–65. [PubMed: 23128226] 

Eilbeck et al. Page 23

Nat Rev Genet. Author manuscript; available in PMC 2018 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



47. Sudmant PH, et al. An integrated map of structural variation in 2,504 human genomes. Nature. 
2015; 526:75–81. This study provides the first genome-wide map of all common forms of 
structural variation from thousands of human genomes. [PubMed: 26432246] 

48. Tennessen JA, et al. Evolution and functional impact of rare coding variation from deep sequencing 
of human exomes. Science. 2012; 337:64–69. [PubMed: 22604720] 

49. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-
throughput sequencing data. Nucleic Acids Res. 2010; 38:e164. [PubMed: 20601685] 

50. Kidd JM, et al. Population genetic inference from personal genome data: impact of ancestry and 
admixture on human genomic variation. Am J Hum Genet. 2012; 91:660–671. [PubMed: 
23040495] 

51. Gabriel SE, Brigman KN, Koller BH, Boucher RC, Stutts MJ. Cystic fibrosis heterozygote 
resistance to cholera toxin in the cystic fibrosis mouse model. Science. 1994; 266:107–109. 
[PubMed: 7524148] 

52. Hedrick PW. Population genetics of malaria resistance in humans. Heredity. 2011; 107:283–304. 
[PubMed: 21427751] 

53. Shah, N., et al. Identification of misclassified ClinVar variants using disease population prevalence. 
2016. Preprint at bioRxivhttp://dx.doi.org/10.1101/075416

54. Minikel EV, MacArthur DG. Publicly available data provide evidence against NR1H3 R415Q 
Causing multiple sclerosis. Neuron. 2016; 92:336–338. [PubMed: 27764668] 

55. Petrovski S, Wang Q, Heinzen EL, Allen AS, Goldstein DB. Genic intolerance to functional 
variation and the interpretation of personal genomes. PLoS Genet. 2013; 9:e1003709. The authors 
use genetic variation from 6,515 exomes in the NHLBI Exome Sequencing Project to develop the 
Residual Variation Intolerance Score (RVIS), which ranks genes by their intolerance to 
‘functional’ (that is, missense or LOF) variation. [PubMed: 23990802] 

56. Samocha KE, et al. A framework for the interpretation of de novo mutation in human disease. Nat 
Genet. 2014; 46:944–950. [PubMed: 25086666] 

57. Shyr C, et al. FLAGS, frequently mutated genes in public exomes. BMC Med Genomics. 2014; 
7:64. [PubMed: 25466818] 

58. Herman DS, et al. Truncations of titin causing dilated cardiomyopathy. N Engl J Med. 2012; 
366:619–628. [PubMed: 22335739] 

59. Nigro V, Savarese M. Genetic basis of limb-girdle muscular dystrophies: the 2014 update. Acta 
Myol. 2014; 33:1–12. [PubMed: 24843229] 

60. Hackman P, et al. Tibial muscular dystrophy is a titinopathy caused by mutations in TTN, the gene 
encoding the giant skeletal-muscle protein titin. Am J Hum Genet. 2002; 71:492–500. [PubMed: 
12145747] 

61. Ang-Tiu CU, Nicolas MEO. Ichthyosis bullosa of Siemens. J Dermatol Case Rep. 2012; 6:78–81. 
[PubMed: 23091584] 

62. Chamcheu JC, et al. Keratin gene mutations in disorders of human skin and its appendages. Arch 
Biochem Biophys. 2011; 508:123–137. [PubMed: 21176769] 

63. Madsen BE, Browning SR. A groupwise association test for rare mutations using a weighted sum 
statistic. PLoS Genet. 2009; 5:e1000384. [PubMed: 19214210] 

64. Auer PL, Lettre G. Rare variant association studies: considerations, challenges and opportunities. 
Genome Med. 2015; 7:16. [PubMed: 25709717] 

65. Lee S, et al. Optimal unified approach for rare-variant association testing with application to small-
sample case-control whole-exome sequencing studies. Am J Hum Genet. 2012; 91:224–237. 
[PubMed: 22863193] 

66. Hu H, et al. VAAST 2.0: improved variant classification and disease-gene identification using a 
conservation-controlled amino acid substitution matrix. Genet Epidemiol. 2013; 37:622–634. 
[PubMed: 23836555] 

67. Hu H, et al. A unified test of linkage analysis and rare-variant association for analysis of pedigree 
sequence data. Nat Biotechnol. 2014; 32:663–669. [PubMed: 24837662] 

68. Ross CA, Tabrizi SJ. Huntington’s disease: from molecular pathogenesis to clinical treatment. 
Lancet Neurol. 2011; 10:83–98. [PubMed: 21163446] 

Eilbeck et al. Page 24

Nat Rev Genet. Author manuscript; available in PMC 2018 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dx.doi.org/10.1101/075416


69. Paila U, Chapman BA, Kirchner R, Quinlan AR. GEMINI: integrative exploration of genetic 
variation and genome annotations. PLoS Comput Biol. 2013; 9:e1003153. [PubMed: 23874191] 

70. Wang GT, Peng B, Leal SM. Variant association tools for quality control and analysis of large-scale 
sequence and genotyping array data. Am J Hum Genet. 2014; 94:770–783. [PubMed: 24791902] 

71. Köhler S, et al. The Human Phenotype Ontology in 2017. Nucleic Acids Res. 2017; 45:D865–
D876. The Human Phenotype Ontology provides a systematic description of clinical features and 
is annotated to both genes and diseases, making it an invaluable resource for variant prioritization. 
[PubMed: 27899602] 

72. Girdea M, et al. PhenoTips: patient phenotyping software for clinical and research use. Hum 
Mutat. 2013; 34:1057–1065. [PubMed: 23636887] 

73. Hamosh A, et al. PhenoDB: a new web-based tool for the collection, storage, and analysis of 
phenotypic features. Hum Mutat. 2013; 34:566–571. [PubMed: 23378291] 

74. Smedley D, Robinson PN. Phenotype-driven strategies for exome prioritization of human 
Mendelian disease genes. Genome Med. 2015; 7:81. [PubMed: 26229552] 

75. Smedley D, et al. Next-generation diagnostics and disease-gene discovery with the Exomiser. Nat 
Protoc. 2015; 10:2004–2015. [PubMed: 26562621] 

76. Javed A, Agrawal S, Ng PC. Phen-Gen: combining phenotype and genotype to analyze rare 
disorders. Nat Methods. 2014; 11:935–937. [PubMed: 25086502] 

77. Sifrim A, et al. eXtasy: variant prioritization by genomic data fusion. Nat Methods. 2013; 
10:1083–1084. [PubMed: 24076761] 

78. Yang H, Robinson PN, Wang K. Phenolyzer: phenotype-based prioritization of candidate genes for 
human diseases. Nat Methods. 2015; 12:841–843. [PubMed: 26192085] 

79. James RA, et al. A visual and curatorial approach to clinical variant prioritization and disease gene 
discovery in genome-wide diagnostics. Genome Med. 2016; 8:13. [PubMed: 26838676] 

80. Singleton MV, et al. Phevor combines multiple biomedical ontologies for accurate identification of 
disease-causing alleles in single individuals and small nuclear families. Am J Hum Genet. 2014; 
94:599–610. [PubMed: 24702956] 

81. Robinson PN, et al. Improved exome prioritization of disease genes through cross-species 
phenotype comparison. Genome Res. 2014; 24:340–348. [PubMed: 24162188] 

82. Brownstein CA, et al. An international effort towards developing standards for best practices in 
analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY 
Challenge. Genome Biol. 2014; 15:R53. [PubMed: 24667040] 

83. Wallis, Y., et al. Practice guidelines for the evaluation of pathogenicity and the reporting of 
sequence variants in clinical molecular genetics. ACGS. 2013. http://www.acgs.uk.com/media/
774853/evaluation_and_reporting_of_sequence_variants_bpgs_june_2013_-_finalpdf.pdf

84. Richards S, et al. Standards and guidelines for the interpretation of sequence variants: a joint 
consensus recommendation of the American College of Medical Genetics and Genomics and the 
Association for Molecular Pathology. Genet Med. 2015; 17:405–424. This paper provides the 
methodology with which to use the various lines of evidence for consistent variant interpretation. 
[PubMed: 25741868] 

85. Association for Clinical Genetic Science. Consensus statement on adoption of American College 
of Medical Genetics and Genomics (ACMG) guidelines for sequence variant classification and 
interpretation. ACGS. 2016. http://www.acgs.uk.com/media/1032817/
acgs_consensus_statement_on_adoption_of_acmg_guidelines__1_.pdf

86. den Dunnen JT, et al. HGVS recommendations for the description of sequence variants: 2016 
update. Hum Mutat. 2016; 37:564–569. [PubMed: 26931183] 

87. Gray KA, Yates B, Seal RL, Wright MW, Bruford EA. Genenames.org: the HGNC resources in 
2015. Nucleic Acids Res. 2015; 43:D1079–D1085. [PubMed: 25361968] 

88. Rehm HL, et al. ClinGen — the Clinical Genome Resource. N Engl J Med. 2015; 372:2235–2242. 
[PubMed: 26014595] 

89. MacArthur DG, et al. Guidelines for investigating causality of sequence variants in human disease. 
Nature. 2014; 508:469–476. [PubMed: 24759409] 

90. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human 
genome. Nature. 2012; 489:57–74. [PubMed: 22955616] 

Eilbeck et al. Page 25

Nat Rev Genet. Author manuscript; available in PMC 2018 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.acgs.uk.com/media/774853/evaluation_and_reporting_of_sequence_variants_bpgs_june_2013_-_finalpdf.pdf
http://www.acgs.uk.com/media/774853/evaluation_and_reporting_of_sequence_variants_bpgs_june_2013_-_finalpdf.pdf
http://www.acgs.uk.com/media/1032817/acgs_consensus_statement_on_adoption_of_acmg_guidelines__1_.pdf
http://www.acgs.uk.com/media/1032817/acgs_consensus_statement_on_adoption_of_acmg_guidelines__1_.pdf


91. Ponting CP, Hardison RC. What fraction of the human genome is functional? Genome Res. 2011; 
21:1769–1776. [PubMed: 21875934] 

92. Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A. Detection of nonneutral substitution rates on 
mammalian phylogenies. Genome Res. 2010; 20:110–121. [PubMed: 19858363] 

93. Davydov EV, et al. Identifying a high fraction of the human genome to be under selective 
constraint using GERP++ PLoS Comput Biol. 2010; 6:e1001025. [PubMed: 21152010] 

94. Smedley D, et al. A whole-genome analysis framework for effective identification of pathogenic 
regulatory variants in Mendelian disease. Am J Hum Genet. 2016; 99:595–606. [PubMed: 
27569544] 

95. Huang YF, Gulko B, Siepel A. Fast, scalable prediction of deleterious noncoding variants from 
functional and population genomic data. Nat Genet. 2017; 49:618–624. [PubMed: 28288115] 

96. Hunt RC, Simhadri VL, Iandoli M, Sauna ZE, Kimchi-Sarfaty C. Exposing synonymous 
mutations. Trends Genet. 2014; 30:308–321. [PubMed: 24954581] 

97. Willig LK, et al. Whole-genome sequencing for identification of Mendelian disorders in critically 
ill infants: a retrospective analysis of diagnostic and clinical findings. Lancet Respir Med. 2015; 
3:377–387. [PubMed: 25937001] 

98. Wu N, et al. TBX6 null variants and a common hypomorphic allele in congenital scoliosis. N Engl 
J Med. 2015; 372:341–350. [PubMed: 25564734] 

99. Wieczorek D, et al. Compound heterozygosity of low-frequency promoter deletions and rare loss-
of-function mutations in TXNL4A causes Burn–McKeown syndrome. Am J Hum Genet. 2014; 
95:698–707. [PubMed: 25434003] 

100. Redin C, et al. The genomic landscape of balanced cytogenetic abnormalities associated with 
human congenital anomalies. Nat Genet. 2017; 49:36–45. [PubMed: 27841880] 

101. Merker, J., et al. Long-read whole genome sequencing identifies causal structural variation in a 
Mendelian disease. Genet Med. 2017. http://dx.doi.org/10.1038/gim.2017.86

102. Brandler WM, et al. Frequency and complexity of de novo structural mutation in autism. Am J 
Hum Genet. 2016; 98:667–679. [PubMed: 27018473] 

103. Church DM, et al. Extending reference assembly models. Genome Biol. 2015; 16:13. [PubMed: 
25651527] 

104. Jäger M, et al. Alternate-locus aware variant calling in whole genome sequencing. Genome Med. 
2016; 8:130. [PubMed: 27964746] 

105. Harrison SM, et al. Using ClinVar as a resource to support variant interpretation. Curr Protoc 
Hum Genet. 2016; 89:8.16.1–8.16.23.

106. Ackerman JP, et al. The promise and peril of precision medicine: phenotyping still matters most. 
Mayo Clin Proc. 2016; 91:1606–1616.

107. Dorfman R, et al. Do common in silico tools predict the clinical consequences of amino-acid 
substitutions in the CFTR gene? Clin Genet. 2010; 77:464–473. [PubMed: 20059485] 

108. Global Alliance for Genomics and Health. GENOMICS. A federated ecosystem for sharing 
genomic clinical data. Science. 2016; 352:1278–1280. [PubMed: 27284183] 

109. Krawczak M, et al. Human gene mutation database-a biomedical information and research 
resource. Hum Mutat. 2000; 15:45–51. [PubMed: 10612821] 

110. Samuels ME, Rouleau GA. The case for locus-specific databases. Nat Rev Genet. 2011; 12:378–
379. [PubMed: 21540879] 

111. Rath A, et al. Representation of rare diseases in health information systems: the Orphanet 
approach to serve a wide range of end users. Hum Mutat. 2012; 33:803–808. [PubMed: 
22422702] 

112. Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on 
protein function using the SIFT algorithm. Nat Protoc. 2009; 4:1073–1081. [PubMed: 19561590] 

113. Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations 
using PolyPhen-2. Curr Protoc Hum Genet. 2013:7.20.1, 7.20.41.

114. Shihab HA, et al. Predicting the functional, molecular, and phenotypic consequences of amino 
acid substitutions using hidden Markov models. Hum Mutat. 2013; 34:57–65. [PubMed: 
23033316] 

Eilbeck et al. Page 26

Nat Rev Genet. Author manuscript; available in PMC 2018 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dx.doi.org/10.1038/gim.2017.86


115. Mistry J, Finn RD, Eddy SR, Bateman A, Punta M. Challenges in homology search: HMMER3 
and convergent evolution of coiled-coil regions. Nucleic Acids Res. 2013; 41:e121. [PubMed: 
23598997] 

116. Choi Y, Chan AP. PROVEAN web server: a tool to predict the functional effect of amino acid 
substitutions and indels. Bioinformatics. 2015; 31:2745–2747. [PubMed: 25851949] 

117. Ioannidis NM, et al. REVEL: an Ensemble method for predicting the pathogenicity of rare 
missense variants. Am J Hum Genet. 2016; 99:877–885. [PubMed: 27666373] 

118. Siepel A, et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. 
Genome Res. 2005; 15:1034–1050. [PubMed: 16024819] 

119. Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the 
deep-sequencing age. Nat Methods. 2014; 11:361–362. [PubMed: 24681721] 

Eilbeck et al. Page 27

Nat Rev Genet. Author manuscript; available in PMC 2018 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. A demonstration of the multiple possible effects of a single variant across transcripts 
and genes
The complexity of genomic annotation adds to the complexity of variant annotation. In this 

example, two genes, coiled-coil domain-containing 113 (CCDC113) and protease serine 54 

(PRSS54) overlap on different strands of the genome, and both have multiple observed 

transcripts. Variants intersecting this extent of the genome show different effects depending 

on the gene and the transcript inspected. For example, the rs780162055 variant from the 

single nucleotide polymorphism database (dbSNP) is a missense variant with a protein effect 

for PRSS54 and a 3′ untranslated region (3′ UTR) variant for CCDC113. This proliferation 

of effects has data management implications for variant interpretation.
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Figure 2. Population stratification and regional constraint within a gene are critical to variant 
interpretation
a | For a particular variant, although the overall allele frequency may be low enough to be a 

plausible candidate with respect to a disease phenotype, the allele frequency is often 

substantially higher in specific subpopulations, thereby casting doubt on its relevance to rare 

disease phenotypes. In the example shown (source: http://gnomad.broadinstitute.org/variant/

1-216172299-C-G), the rs79444516 variant of usherin (USH2A) is low in European 

populations but considerably higher in African populations. b | Constraint (that is, tolerance 

to genetic variation) can vary dramatically from region to region in a given gene. In this 

example, potassium voltage-gated channel subfamily Q member 2 (KCNQ2) shows higher 

constraint in the functionally important ion transport domain, as indicated by the scarcity of 

missense and loss-of-function (LOF) variants, relative to regions of lower functional 

importance in the same gene.
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Figure 3. Phenotypes are described across a spectrum of granularity, and different terminologies 
are used to define these features
In this example, medium-chain acyl co-enzyme A dehydrogenase (ACADM) is used to show 

this granularity. At the broadest level, it is associated with the condition medium-chain acyl 

co-enzyme A dehydrogenase deficiency (MCADD), a metabolic disorder that is classified in 

databases such as Online Mendelian Inheritance in Man (OMIM) and Orphanet. Clinical 

terminologies such as Snomed and MedGen may also be used to categorize the condition. A 

condition is generally composed of multiple clinical features (such as lethargy) that describe 

the observable phenotypes. The Human Phenotype Ontology (HPO) is a widely used 

terminology that describes these features organized by the body system they manifest in. A 

key product of the HPO is the annotation of phenotype-to-gene and phenotype-to-condition 

files that are used in many downstream prioritization tools. At the most fine-grained level, 

the molecular phenotype of the patient is defined by the clinical measurements such as the 

concentration of urine organic acids. The most widely used terminology for these 

measurements are provided by Logical Observation Identifiers Names and Codes (LOINC), 

a universal code system for clinical data. A patient may be identified early in life as a result 

of newborn screening — by detecting unusual ratios of metabolites — or may be detected 

later in life as a result of experiencing one or more clinical features. These different levels of 
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phenotypes are used to guide the patient towards the most appropriate test and to guide the 

prioritization of the genes and associated variants in the genetic analysis.
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