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Summary

Diversity in the genetic lesions that cause cancer is extreme. In consequence, a pressing challenge 

is the development of drugs that target patient-specific disease mechanisms. To address this 

challenge, we employed a chemistry-first discovery paradigm for de-novo identification of 

druggable targets linked to robust patient selection hypotheses. In particular, a 200,000 compound 

diversity-oriented chemical library was profiled across a heavily annotated test-bed of >100 

cellular models representative of the diverse and characteristic somatic lesions for lung cancer. 

This approach led to the delineation of 171 chemical-genetic associations, shedding light on the 

targetability of mechanistic vulnerabilities corresponding to a range of oncogenotypes present in 

patient populations lacking effective therapy. Chemically addressable addictions to ciliogenesis in 

TTC21B-mutants and GLUT8-dependent serine biosynthesis in KRAS/KEAP1 double mutants 

are prominent examples. These observations indicate a wealth of actionable opportunities within 

the complex molecular etiology of cancer.

ITI

Application of a chemistry-first approach matches chemicals with targetable, diverse genetic 

lesions and cancer promoting mechanisms in human lung cancer, providing guidance for 

development of personalized cancer treatment.
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Introduction

The future of cancer treatment lies in a personalization of medicine, where each patient’s 

treatment regime is tailored to the genetic diversity of their tumors. Accomplishing this 

requires a “therapeutic triad”, where appropriate context-specific intervention targets, tightly 

linked to response biomarkers, are coupled to agents to engage these targets. To date, this 

has been best realized in disease harboring a druggable oncogenic driver. However, many of 

the more prevalent and most lethal cancers do not present with this opportunity. Non-small 

cell lung cancer (NSCLC) is a leading cause of cancer related death in the United States and 

is a highly heterogeneous disease. A clinically relevant contributor to this disease 

heterogeneity is the diversity of molecular etiology associated with individual NSCLC 

tumors. Specifically, lung squamous carcinoma (LUSC) and lung adenocarcinoma (LUAD) 

represent the second and the third most highly mutated tissue subtypes in The Cancer 

Genome Atlas (TCGA), with a mean non-synonymous mutation burden of ~250 mutations/ 

tumor. This greatly increases the challenge of understanding the molecular drivers 

underpinning a patient’s disease; knowledge that is usually the starting point for hypothesis 

driven design of new therapeutic approaches. However, a large mutational burden also 

increases the probability that NSCLCs will contain vulnerabilities, not found in normal cells, 

which might be exploited therapeutically. The problem is how to identify and engage such 

vulnerabilities. Here, we employ a chemistry-driven de novo discovery strategy tailored for 

coincident delivery of preclinical therapeutic triads.

Results

A tiered screening and analytic strategy for chemistry-first target discovery

To generate an experimental testbed reflective of the molecular and mechanistic 

heterogeneity of lung cancer, we assembled a panel of 96 NSCLC (mainly LUAD) cell lines 

and 4 immortalized human bronchial epithelial cell lines (HBECs) (Data File S1). 

Reasonable concordance of the phenotypic variation of this panel with human tumors was 

evaluated using legacy whole-genome transcript array data (Figure 1A, S1A). High-

resolution molecular characterization was then carried out by WES (Data File S2), RNAseq 

(Data File S3), tiled SNP arrays (Data File S4), RPPA (Data File S5), and heavy carbon 

tracing from glucose and glutamine into selected metabolites. For 34 NCLC cell lines, 

matching B-cell lines from the same patients were sequenced, allowing for robust 

discrimination of somatic versus germline variation (Data File S2). For the remaining cell 

lines, we developed a computational pipeline leveraging somatic alleles detected in the 

matched pairs and public datasets to filter probable germline variation (STAR methods, 

Figure 1B, S1B–C). We noted high concordance between transcript profiles from RNAseq 

and hybridization arrays that were performed years apart, providing confidence in the 

accuracy and stability of cell line provenance (Figure S1D).

A deterministic clustering method, affinity propagation clustering (APC), (Frey and Dueck, 

2007) produced more than 15 distinct phenotypic groups as defined by gene expression 

profiles (Figure S1E). Based on this, we devised a tiered high-throughput screening strategy 

to screen 202,103 chemicals across 12 cell lines representing overall phenotypic diversity of 

the panel (Figure S1F). Filters were implemented at each tier to enrich for small molecules 
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that could selectively target the phenotypic variation across the NSCLC cell line panel 

(Figure S1F–I, STAR methods). This culminated in 208 compounds, and an additional 14 

chemicals with known mechanism of action, which were tested for efficacy across the 

complete panel of 100 NSCLC cell lines at 12 doses in triplicate in two independent runs. 

This set was evaluated for potency and selectivity using both area under the dose response 

curve (AUC) and the effective dose required to reduce activity 50% (ED50). In both 

instances, low values indicate sensitivity. While we observed statistically significant 

correlations between AUC and ED50 values, there was a subset of chemicals for which AUC 

was uncoupled from ED50 values (Figure S1J). ED50 values produce a large dynamic range 

of chemical response values corresponding to the activity inflection point while AUC values 

reflect magnitude of response. As both metrics provide complementary information, we 

employed AUC and ED50 values in all subsequent association analyses. (Data File S6). 

Furthermore we examined potential correlations of chemical sensitivities (AUC and ED50 

metrics) with cell doubling times (Data File S6) as differences in proliferation rates can 

make confounding contributions to chemical sensitivity profiles within cell panels (Hafner et 

al., 2017). APC of the final collection of compounds, based on activity across the cell line 

panel, produced at least 38 distinct clusters (Figure S1K). A ranking of this collection, which 

we refer to as a “precision oncology probe set (POPS)”, by potency and activity revealed 

robust selectivity profiles (median fold changes from 2–90,000, Figure 1C, Figure S1L).

To begin to pursue chemical/genetic associations, we first parsed the cell line panel based on 

similarity of chemical response (Figure 1D), and each quantitative molecular feature set 

(Figures S1M–P). We overlaid annotations from feature-specific clusters onto those derived 

from chemical sensitivity, observing unimpressive correspondence with any feature set 

(Figure 1E–F, S1Q–T). This suggests global molecular diversity cannot account for the 

observed selective chemical responses. This observation, together with similar previous 

observations from our group and others, led us to pursue sparse feature selection for finding 

robust chemical/genetic associations (Eskiocak et al., 2017; Garnett et al., 2012; Iorio et al., 

2016; Kim et al., 2013). For this, we employed a combination of regularized machine 

learning (elastic net) and probability-based metrics (scanning KS) to isolate features from 

each molecular dataset predicting sensitivity to each chemical. As compelling proof of 

concept, these methods linked high ALK expression as predicting sensitivity to the ALK 

inhibitor crizotinib (Figure 1G) and EGFR mutations and amplifications to predict 

sensitivity to the EGFR inhibitor erlotinib (Figure 1H). As expected, the EGFR mutant, 

erlotinib-sensitive cell lines have mutations in the kinase domain known to affect EGFR 

function. Notably, among the EGFR mutant non-responders, 2 cell lines harbored 

preexisting T790M mutations (Figure S1U), a known cell-autonomous adaptive mechanism 

promoting inhibitor resistance not detected by related chemical profiling efforts (Figure 

S1V). Together, these observations indicate that clinically relevant associations are 

discoverable within this experimental schema.

High-throughput discovery of pharmacological liabilities among chemicals with robust 
selective sensitivity profiles

From the elastic net feature discovery approach, we noted a cohort of chemicals (12/221) for 

which sharp and selective sensitivity profiles (median deltas of greater than 60-fold) were 
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associated with expression of 1 of 9 known drug metabolism enzymes (Figure 2A, S2A). 

The compounds are structurally diverse and target distinct groups of cell lines (Figure S2B–

D), prompting the attractive possibility that pharmacological liabilities could be detected and 

flagged early in chemistry-first target discovery screening cascades (i.e. for these chemicals, 

selective sensitivity may be due to selective production of a toxic metabolite). To test this, 

we first assessed chemical stability of each compound in groups of sensitive and resistant 

cell lines using LC/MS based approaches (Figure 2B–E, S2E–J). 6 compounds displayed 

accelerated metabolism, evident by loss of parent compound, selectively in the sensitive cell 

lines (Figure 2B–E, Figure S2E–F). We further examined SW157765 as a member of a 

cluster of compounds associated with activity in cytochrome p450 family member, 

CYP4F11, expressing cells. Notably, the CYP4F family inhibitor, HET0016, reversed 

metabolism of the compound (Figure 2F), and CRISPR-mediated knockout of CYP4F11 

reversed toxicity in otherwise sensitive cell lines (Figure 2G, S2K–M). We next predicted 

the activity of SW001286 and SW126788, within a panel of 26 previously untested NSCLC 

cells, using the weighted elastic net models. Expression of the carboxylesterases CES1 and 

CES1P1 was cleanly predictive of SW126788 sensitivity in this test set (Figure S2N). 

However, prediction accuracy of SW001286 sensitivities was lower due to 4 unanticipated 

non-responders (Figure S2O). Like SW157756, HET0016 rescued SW001286 toxicity in 

two sensitive cell lines (Figure 2H). Thus, the metabolic products of SW001286 in 

CYP4F11-expressing cells may not be behaving as a general toxin(s), but rather may be 

targeting a selective vulnerability in sensitive cell lines. In line with this possibility, a manual 

examination of the KS test output indicated mutations in LKB1 as an additional marker that, 

together with CYP4F11 expression, better stratify response (Figure 2I, S2P). In response to 

metabolic stress, LKB1 activates AMPK to suppress anabolic and activate catabolic 

pathways to maintain energy and redox homeostasis via inhibition of ACC1 (Jeon et al., 

2012). A mechanistic connection between SW001286 sensitivity and loss-of-function LKB1 

mutations was supported by the observation that depletion of ACC1 (Figure 2J), or addition 

of a ROS scavenger (Figure S2Q), partially rescued SW001286-sensitivity.

Chemicals correlating with expression of CYP4F11 represent the largest observed “prodrug” 

class (Figure 2A). The P450 class of enzymes, of which CYP4F11 is a member, can oxidize 

a variety of substrates; the scope of which has not been fully characterized but some 

chemical transformations tend to recur thematically within the class. One such 

transformation, the demethylation of aryl methoxy groups, is predicted to occur with two of 

the proposed pro-drug chemicals (Figure S2R). The remaining 3 compounds share a 

common furan-substituted alkene functional group that can likely be engaged by 

xenometabolic enzymes. Furthermore, the internal alkene is a reasonable site for enzymatic 

oxidation and protein conjugation. Consistent with the possibility that protein/small 

molecule conjugation might be at play, 72 hour ED50’s were similar following either 

transient or sustained exposure to SW157765 (Figure S2S). In an effort to identify structural 

components of the molecule required for biological activity, we designed and synthesized a 

series of analogs of SW157765, of which analog 500-01 (Figure S2T) was found to be 

completely inert when tested for viability in a NSCLC cell line panel (Figure S2U). 

Interestingly, 500-01 differs from the parent molecule in only the hydrogenation of its 

internal alkene, suggesting SW157765 requires this functional group for biological activity. 
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Considering that alkenes and other sites of unsaturation can be transformed into points of 

conjugation with larger biomolecules, the discovery of SW157765’s active moiety 

converged with our hypothesis that the molecule can behave as a covalent modifier. We next 

sought to identify labile metabolites of SW157765 that might be susceptible to protein 

conjugation, with specific attention given to metabolite species whose modifications 

appeared at the double bond. Mass spectrometry-based evaluation of metabolites produced 

by H2122 cells treated with either SW157765 or 500-1 for eight hours identified an oxidized 

metabolite, unique to SW157765 (Figures S2V–S2Y), potentially containing an epoxide at 

the site of the internal alkene (Figure S2Z). Considering that strained epoxide ring systems 

are subject to facile protein adduction, we propose this epoxide metabolite is the active 

covalent ligand. Efforts to chemically synthesize the metabolite revealed it to be too unstable 

to produce in quantities needed for in vitro testing, perhaps underpinning the semi-transient 

nature and robust reactivity profile of the molecule in a biological setting.

As a final example of high-throughput detection of pharmacological liabilities, we noted that 

high expression of the multi-drug resistance transporter, ABCG2, predicts resistance to the 

CDK7 inhibitor THZ1 (Figure 2K). RNAi-mediated depletion of ABCG2 sensitized 

resistant cells to THZ1, suggesting it is an ABCG2 substrate (Figure 2L).

Notch2 mutations predict cellular sensitivity to glucocorticoids

From within the Prestwick library, we noted a cluster of 5 glucocorticoid (GC) receptor 

agonists with highly correlated selective activity profiles and a strong association with 

mutations in Notch2 (Figure 3 A,B). Notch2 has been implicated as a tumor suppressor in 

some settings. For example, Notch2 and Notch1 expression are oppositely correlated with 

prognosis in colorectal cancer, where low expression of Notch2 and high expression of 

Notch1 is predictive of poor patient outcome (Chu et al., 2011). Additionally, in 

experimental models of lung cancer, Notch2 loss, but not Notch1 loss, promotes aggressive 

disease (Baumgart et al., 2015). The “dispersed” pattern of Notch2 alleles detected among 

the NSCLC cell lines is reminiscent of loss-of-function alterations typically associated with 

a tumor suppressor (Figure S3A) and the glucocorticoid-sensitive cell lines harboring these 

mutations display downregulation of Notch pathway genes as compared to wild-type 

counterparts. (Figure 3C).

Depletion of the ubiquitously expressed GC receptor, NR3C1, was sufficient to reduce 

cellular sensitivity to GC exposure, suggesting the selective toxicity phenotype is receptor-

dependent (Figure 3D). Intriguingly, several studies have linked GC response to Notch 

pathway activity. For example, activation of Notch signaling is associated with GC 

resistance in T-ALL (Inaba and Pui, 2010) and gamma-secretase inhibitors, which block the 

activation of Notch, restore sensitivity to GC. Moreover, a mutually antagonistic relationship 

exists between Notch effector, HES1, and NR3C1, in which each represses transcription of 

the other (Real et al., 2009; Revollo et al., 2013). Consistent with these observations, we 

found significantly higher basal expression levels of NR3C1 mRNA in Notch2 mutant, GC 

responsive cell lines (Figure 3E). Transcription of NR3C1 itself is responsive to GC 

induction, and we observed significant induction of NR3C1 in response to GC stimulation in 
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these cells (Figure 3F). These observations indicate that GC-responsive cells are primed to 

propagate an NR3C1 signal through a GC-dependent positive feedback amplification loop.

We found the selective efficacy of GC’s was preserved in 3D spheroid models of lung cancer 

(Figure 3G). Thus, we sought to understand the mechanism by which differential activity of 

Notch signaling may specify sensitivity to GCs. HES1 is a general transcriptional repressor 

which has been described to occupy the promoters of GC inducible genes and acts as a 

master negative regulator of GC response (Revollo et al., 2013). Similarly, we found that GC 

exposure selectively reduced cellular HES1 protein levels in GC-sensitive NSCLC cells 

(Figure 3H, S3C). GC exposure was cytostatic, resulting in a selective G1/S arrest (Figure 

S3D). GC’s suppress inflammation through transcriptional activation of anti-inflammatory 

genes and direct inhibition of nuclear factor-kB (NFKB) and activator protein 1(AP-1). A 

well-known target of both pathways is cyclin D1, which was selectively reduced in sensitive 

NSCLC cells exposed to GC (Figure 3I). Finally, stable overexpression of HES1 from a GC-

independent CMV promoter was sufficient to rescue GC-induced cell cycle arrest (Figure 3J, 

S3E–F). We therefore suspect that Notch2 mutations, in NSCLC cells, result in reduced 

Notch signaling and higher basal NR3C1 expression, priming cells to respond to GC with 

G1 cell cycle arrest (Figure S3G). While GC therapy is not commonly used in therapeutic 

doses to treat patients with lung cancer, 5.9% of LUAD tumors and 5.1% of LUSC’s in the 

TCGA have mutations or deletions in Notch2, corresponding to thousands of patients a year 

that could be treated with a FDA approved therapy.

Ready detection of a biologically diverse array of chemical/genetic associations

To enrich for robust chemical/genetic associations that enable productive new target pursuit, 

we established a strict inclusion criteria threshold for automated reporting of predictive 

biomarker hypotheses from the elastic net (STAR methods). Receiver operator 

characteristics and odds ratios were calculated as confidence metrics. Finally, predicted 

responder population frequencies were evaluated using the TCGA LUAD cohort. To enable 

open access for community-based hypothesis testing, we integrated the final results, and all 

associated quantitative data, into a searchable web-based GUI (Data File S6) (http://

pops.biohpc.swmed.edu).

From the output, we selected 26 predicted chemical/genetic associations to experimentally 

evaluate for a distributive assessment of reliability and biological diversity. The weighted 

elastic net models derived from the training set (100 cell line panel) were applied to a 

distinct panel of 33 previously untested NSCLC cell lines (Data File S1; test set). For 21 of 

the 26 chemicals, at least one cell line in the test set was predicted to be sensitive. 9 of these 

were validated by empirical testing (Figure 4A, S4B). In addition, 13 chemicals were 

selected for evaluation of conservation of selective activity in spheroid assays, 9 of which 

validated. (Figure 4B; S4A). 4 chemicals passing one or both criteria were selected for 

additional functional characterization (SW036310, SW151511, SW140154, SW208097).

The automated scanning KS analysis indicated that mutations in TTC21B correspond to 

sensitivity to the benzothiazole-containing small molecule SW036310 (Figure 4C), in which 

selective efficacy was preserved in spheroid assays (Figure 4D). TTC21B (aka, IFIT139B) is 

the only known protein to act solely as a retrograde transport motor for primary cilia. 
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Somatic mutations in TTC21B have not been characterized in the setting of cancer, however, 

loss of function TTC21B mutations upregulate cilia dependent processes in mice (Tran et al., 

2008) and are causal mutations in human developmental diseases driven by primary cilia 

malfunction (ciliopathies) (Davis et al., 2011). Gain-of-function primary cilia growth and 

signaling occurs upon loss of TTC21B activity, including activation of sonic hedgehog, and 

potentially other processes known to be regulated by primary cilia, including NFKB, VHL, 

and TGF-β signaling pathways. Indeed, whole genome transcript profiles indicated that gene 

signatures associated with activation of these pathways were selectively enriched (Figure 

S4B) and primary cilia were selectively detectable (Figure S4C) in TTC21B mutant, 

SW036310-sensitive cell lines (Figure S4B). Given these associations, we suspect that 

SW036310 may perturb a target(s) associated with primary cilia biology that supports 

survival of TTC21B mutant cells. Consistently, SW036310 sensitivity almost perfectly 

correlated sensitivity to the cytoplasmic dynein inhibitor, ciliobrevin, known to disrupt 

primary cilia by perturbing anterograde trafficking to that organelle (Figure 4E).

From a distinct biological context, we examined two chemicals, with anti-correlated activity 

profiles (Figure 4F), corresponding to expression of positive and negative modulators of 

innate immune signaling (Figure 4G). Using the derived weighted sum elastic net model, we 

found SW140154 sensitivity was accurately predicted outside the training set by a 

combination of high expression of the negative regulator of Toll like receptor signaling 

(TLR) pathway, SARM1, and low expression of the cytokine receptor, IL18R1 (Figure 4H, 

S4D) while SW151511 sensitivity could be predicted by high expression of the positive 

regulator of the TLR pathway, PELI2 (Figure 4H, S4E). We compared cell lines on opposing 

ends of the sensitivity spectrum and noted that high expression of TLR pathway genes was 

associated with sensitivity to SW151511 and resistance to SW140154 (Figure 4I). 

Sensitivity to SW151511 (Figure 4B, 4J), but not SW140154 (Figure 4B, S4F), was 

recapitulated in spheroid culture models. We therefore selected SW151511 for examination 

of global gene expression responses to chemical challenge. 2 sensitive and 2 resistant cell 

lines were treated with SW151511 for 24 hours prior to transcript profiling. We found 

significant chemically-induced expression changes associated with the host defense response 

(Figure S4G). Notably, this signature was elevated above base-line upon compound 

exposure, suggesting amplification of a maladaptive innate-immune signaling program may 

represent a conditional vulnerability in cell lines response to SW151511.

Finally, low nanomolar sensitivity to SW208097 was predicted and validated to correspond 

to co-occuring mutations in TP53 and KEAP1 (Figure 4K,L). This is notable, as the 

molecule is a well-tolerated investigational drug (GSK923295) targeting the mitotic motor 

protein CENPE. GSK923295 has dose proportional pharmacokinetics in humans and a low 

number of grade 3/4 adverse events, however, responder populations have not been 

identified. Co-occurring TP53 and KEAP1 mutations are detected in 9.6% of LUAD in the 

TCGA, which extrapolates to ~17,000 patients/year potentially harboring GSK923295-

responsive disease.
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A chemically addressable vulnerability of KRAS/KEAP1 NSCLC cells to perturbation of 
SLC2A8

KRAS mutant lung cancers are common, aggressive, and difficult to manage in the clinic. 

Therefore, we chose this class for in-depth pursuit of tool compound/target/biomarker triads. 

We previously reported the overarching phenotypic diversity among KRAS mutant lung 

cancer cell lines is essentially equivalent to the global phenotypic variation found across all 

characterized NSCLC cell lines (Kim et al., 2016). Consistent with this, we noted KRAS 

mutant NSCLC lines distributed across the majority of APC similarity clusters, defined by 

RNAseq, within the larger NSCLC cell line panel (Figure 5A). This genomic mRNA 

expression diversity was mirrored by a diversity of sensitivity of KRAS mutant cell lines to 

the POPs collection (Figure 5B,C). However, automated scanning KS analyses returned 4 

chemical associations with KRAS mutant subtypes that passed p-value thresholds (p<2E-4). 

These subtypes were defined by co-occurring mutations in KEAP1, NUP214, PTPRT, and 

TTC21B (Figure S5A, 5D). Among these, the association of KRAS/KEAP1 double mutant 

cell lines with sensitivity to SW157765 (Figure 5D) was verifiable in a test set of NSCLC 

lines distinct from the training set (Figure 5E) and selective efficacy was preserved in 

spheroid models of lung cancer (Figure 5F, S5B). KEAP1 is a major regulator of the NRF2 

antioxidant response. Under normal physiological conditions, NRF2 is constantly 

ubiquitinated in the cytoplasm by the CUL3/KEAP1 E3 ligase/substrate adaptor complex. 

Upon stress, KEAP1 inactivation facilitates NRF2 nuclear translocation and consequent 

activation of the NRF2-dependent anti-oxidant and cytoprotective transcriptional responses. 

Deleterious mutations or deletions in KEAP1 are present in ~19% of LUAD’s and ~12% of 

LUSC’s corresponding to constitutive NRF2 activity. Co-occurring mutations in KEAP1 and 

KRAS are present in ~6% of LUADs (www.tcga.org); significantly more than expected by 

chance (p=.007), suggesting they are under positive selective pressure during disease 

development. There were, however, a few KEAP1 wild-type cell lines that were responsive 

to SW157765 (Figure 5G). These included the only cell line in the panel that harbors a 

KEAP1 homozygous deletion (Figure S5C) resulting in undetectable KEAP1 mRNA (Figure 

5G). These also included cell lines (2/2) with amino acid substitutions in the degron domain 

of NRF2 (Figure 5G), corresponding to hotspot NRF2 mutations detected in LUAD tumors 

lacking functional KEAP1 degradation motifs producing constitutively activated variants 

(Figure S5D). We did not detect additional variants in known NRF2 pathway genes among 

the 8 remaining sensitive cell lines that were KRAS/KEAP1 wild type. However, these cell 

lines had a significant upregulation of an NRF2-dependent gene expression signature 

(p<2.2E-16) (Figure S5E), and can be predicted to have high NRF2 pathway activity despite 

the absence of discernable NRF2-related lesions. High expression of this NRF2 gene 

signature (Figure S5F) was predictive of sensitivity to SW157765 when applied to cell lines 

outside the training set (Figure 5H).

SW157765 is found as a member of the ‘prodrug’ compounds in which high expression of 

CYP4F11 is predictive of, and required for, cellular response (Figure 2 A,G). Of note, 

CYP4F11 is a candidate NRF2 target gene whose expression is upregulated in NRF2-

dependent NSCLC (Goldstein et al., 2016). Given this association, we assessed NRF2 

dependent regulation of CYP4F11 in an SW157765-sensitive cell line and found that 

siRNA-mediated depletion of NRF2 resulted in depletion of CYP4F11 (Figure 5I, S5G) and 
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reduction of sensitivity to SW157765 (Figure 5J). This suggests that NRF2 pathway activity 

leads to selective production of a toxic SW157765 metabolite. However, we also noted that 

HCC44 is an SW157765-resistant cell line with high expression of CYP4F11 and 

corresponding SW157765 metabolism (Figure 2E), suggesting CYP4F11-dependent 

modification of SW157765 is not sufficient to account for chemical sensitivity. Consistent 

with this, we found siRNA-mediated depletion of KRAS completely rescued cellular 

sensitivity to SW157765 even though metabolism of the compound was unaffected (Figure 

5K,L). Thus, KRAS and NRF2 pathway activation combine to produce a selective cellular 

vulnerability to SW157765 intervention.

To help identify the nature of this vulnerability, we employed an arrayed genome-scale 

affinity-selection/mass spectrometry screening strategy to identify SW157765 interacting 

proteins from among a panel of ~14,000 candidates (Figure S6A). The noncanonical glucose 

transporter, GLUT8 (SLC2A8), was the sole hit, with an estimated Kd = 200nM (Figure 

6A). Parental SW157765 was used as a substrate for the binding assay rather than the 

CYP4F11-dependent oxidized metabolite (Figure 2Z) as we were unable to synthesize the 

latter de novo. As an alternate approach, we undertook docking studies to assess binding of 

SW157765 to GLUT8 in comparison to the predicted metabolite (Figure S2Z). A homology 

model GLUT8 was developed from homologous crystal structure of GLUT1 (Kapoor et al., 

2016). A crystal structure of GLUT8 has not been published, however GLUT1 has a 48% 

sequence similarity with GLUT8 and most of the critical residues for glucose transport are 

conserved between the two proteins. SW157765 and the epoxide metabolite were predicted 

to dock on top of one another, except for a deviation near the epoxide region. (Figure S6B). 

While both chemicals were predicted to interact with residues on GLUT8 (Figure S6B), the 

epoxide constrains the furan ring, resulting in a significant shift of this ring (55°) relative to 

the parent molecule, producing stronger predicted interactions with Trp433 and a higher 

docking score (−7.9 versus −7.6). Notably, docking studies with the inactive analog, 500-1, 

indicate it fails to achieve a binding pose similar to SW157765, with less H-bonding 

interactions and a relatively poor docking score of only −6.8. In aggregate, these analyses 

are consistent with interaction of both SW157765 and its oxidized metabolite with GLUT8. 

Enhanced GLUT8 thermal stability in cells treated with SW157765, but not 500-1, provided 

orthogonal evidence for this interaction (Figure S6C).

GLUT8 is a member of the class III glucose transporters thought to mainly participate in 

translocation of glucose across the blastocyst membrane (Carayannopoulos et al., 2000). A 

role for GLUT8 in cancer has not been well studied, though it has been found to be 

significantly upregulated in endometrial cancer and in multiple myeloma relative to normal 

tissue. While the dominant glucose transporter in tumor cells is thought to be GLUT1, 

upregulated class III glucose transporters may support higher energy demands in some cases 

(Schmidt et al., 2009). Supporting this notion, glucose uptake and viability of a subset of 

multiple myeloma cell lines was found to be dependent on the continued expression of 

GLUT8 but not GLUT1 (McBrayer et al., 2012). Notably, we found SW157765-sensitive 

NSCLC cell lines were also selectively sensitive to glucose deprivation (Figure S6D) and to 

GLUT8 depletion (Figure 6B). Furthermore, SW157765 selectively inhibited fluorescent 2-

deoxyglucose (2DG) uptake in SW157765-sensitive cells in a dose-dependent manner 

(Figure 6C). In contrast, GLUT1 depletion (Figure S6E,F) had no effect on 2DG uptake 
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(Figure 6D) or viability (Figure S6G). These observations are consistent with action of 

SW157765 at the level of GLUT8 inhibition, and a selective dependence of KRAS/KEAP1 

mutant cells on GLUT8 for glucose consumption.

Uniformly labeled [13C6] glucose is metabolized via the glycolytic cycle to 3-

phosphoglutarate (3PG), which can enter the serine biosynthetic pathway where it is 

converted in a series of steps to serine, which is subsequently cleaved to produce glycine and 

a one-carbon intermediate that can enter the folate cycle to ultimately result in the 

production of purines and thymidines (Figure S6H). Of relevance to this study, high NRF2 

activity was recently demonstrated to promote serine/glycine biosynthesis, in some NSCLC 

cell types, through ATF4-dependent expression of rate-limiting serine biosynthetic enzymes 

(PHGDH, PSAT1, PSPH, SHMT1, and SHMT2). De novo serine biosynthesis is upregulated 

in subsets of lung cancer, breast cancer, glioma, and melanoma, presumably to support 

glutathione and nucleotide production, and can be required for tumor cell survival. When we 

examined carbon flux from uniformly labeled [13C6] glucose into serine (SerM3) and 

glycine (GlyM2) mass isotopomers across 63 NSCLC cell lines, we found significant 

enrichment of heavy carbons in the SW157765 sensitive cell lines (Figure 6E), 

corresponding to significantly higher expression of serine biosynthetic pathway genes 

(Figure S6I) and selective consequences on cell survival upon depletion of the ATF4 

transcription factor (Figure 6F) and PHGDH (Figure 6G), the enzyme that catalyzes the first 

committed step in the serine biosynthetic pathway. Taken together, these findings indicate a 

dependence of KRAS/KEAP1 mutant NSCLC cells on consumption of glucose to support 

serine biosynthetic pathway activity.

These cumulative observations led us to consider that SW157765 may be acting to reduce 

carbon flux through the serine biosynthetic pathway, leading to selective targeting of cancer 

cells dependent on this pathway. To test this, we pretreated H647 (KRAS/KEAP1 mutant) 

with SW157765 for 24 hours, an interval where we do not observe significant induction of 

cell death (Figure S6J), followed by exposure to glucose ([13C2]) (Figure S6O). Heavy 

carbon labeling of serine reached steady-state after 2 hrs (SerM2), which was reduced 5-fold 

by SW157765 (Figure 6H). Iteration of this approach within a panel of NSCLC cell lines, 

indicated basal carbon flux through the serine biosynthetic pathway was higher in 

SW157765-sensitive cell lines, as expected, and exposure to SW157765 selectively reduced 

serine labeling in these cell lines (Figure 6I). Notably, carbon flux from glucose through the 

pentose phosphate pathway (PPP; LacM1) or the citric acid cycle (TCA; CitM2) (Figure 

S6K–L; Figure S6O) was not affected by SW157765. Both KRAS and NRF2 are known to 

shunt glucose towards the PPP. Thus, the selective consequences of SW157765 exposure on 

serine/glycine metabolism suggests a dominant routing of available glucose to the PPP and 

TCA. GLUT8 may therefore support supplementary glucose consumption to an extent that 

provides for serine/glycine biosynthetic demands of the KRAS/KEAP1 mutant cellular 

context.

While KEAP1 and KRAS mutation status was robustly predictive of sensitivity to 

SW157765, we noted 4 unanticipated non-responders (DFCI024, HCC44, H2030, 

HCC4019) with co-occurring mutations in KEAP1 and KRAS and high expression of 

CYP4F11(Figure S6M). Importantly, PHGDH was greatly reduced or absent in all 4 cell 
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lines (Figure 6J). Additionally, cell line H2030 is completely missing mRNA expression of 

PSAT1 (S6H,M). These cells may be resistant to SW157765 due to a pre-existing adaptation 

that reduces contributions of glycolysis to serine/glycine biosynthesis. To test this, we stably 

expressed either full length PHGDH or a hypomorphic mutant (PHGDHV490M) (Tabatabaie 

et al., 2009) in HCC44 cells under the control of a doxycycline inducible promoter (Figure 

S6N). Overexpression of PHGDH, but not PHGDHV90M, sensitized HCC44 cells to 

SW157765 (Figure 6K), suggesting that PHGDH re-established carbon flux into serine/

glycine production with consequent reliance on GLUT8 to maintain sufficient glucose 

consumption.

In summary, we have shown co-occurring mutations in KEAP1 and KRAS define a 

vulnerability to continued function of GLUT8. Inhibition of GLUT8 is associated with a 

reduction of glucose intake leading to a selective shunting of glucose from serine 

biosynthesis. We found overexpression of wild-type PHGDH can re-sensitize HCC44 cells 

to SW157765. Perhaps most intriguingly, re-introduction of PHGDH also can sensitize cells 

to GLUT8 inhibition. These findings suggest that shunting cellular consumption of glucose 

to serine biosynthesis generates a dependency on GLUT8 that can be selectively targeted 

with SW157765. To potentially help assess the generality of this relationship, we profiled 

SW157765 for toxicity in a panel of 27 breast cancer cell lines with publically available 

genomics data (Barretina et al., 2012). Importantly, we found that copy number-driven 

amplification of PHGDH expression together with high expression of CYP4F11 

significantly corresponded to SW157765 sensitivity (Figure 6L).

Discussion

The chemistry-first target nomination approach employed here was designed to leverage 

large-scale uncharacterized chemical diversity as a de novo discovery tool unconstrained by 

any preconceived notions of mechanistic relationships. Of the 202,103 chemicals employed, 

less than 1% are associated with known or suspected modes of action. However, computer 

automated rediscovery of current precision medicine relationships from within the collection 

of known compounds authenticated the screening cascade. This included the association of 

erlotinib-sensitivity with EGFR mutation status and the association of crizotinib-sensitivity 

with EML4-ALK translocations. Likewise, the pipeline returned novel and robust 

repurposing hypotheses and biomarkers for clinically available compounds that currently 

lack patient selection hypotheses.

While the above observations credentialed the rigor of the experimental and data analytics 

pipeline, the identification of novel chemical/genetic relationships was the primary 

objective. To that end, 171 compounds were linked to genomic features within a 95% 

confidence interval by the elastic net. These chemical/genetic relationships spanned a 

strikingly diverse array of biological processes including selective vulnerabilities associated 

with host defense pathway activation, ciliogenesis, and nuclear hormone signaling. 

Furthermore, pharmacological relationships that were a consequence of selective chemical 

clearance and/or selective chemical metabolism were readily detectable.
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To pursue candidate “therapeutic triads” we focused on KRAS mutant adenocarcinoma. 

When considered as a single class, these cell models displayed diverse and discordant 

response profiles to the chemical collection employed here. However, significant chemical/

genetic associations were detected upon segmentation of cell models according to mutations 

in additional genes that co-occurred with KRAS mutations at a reasonable frequency. This is 

in accordance with accumulating evidence that KRAS mutant lung cancers parse across 

multiple distinct mechanistic subtypes. Most notably, KRAS/KEAP1 double mutant NSCLC 

cells were selectively sensitive to the benzothiozole, SW157765, due to the convergent 

consequences of dual KRAS and NRF2 modulation of metabolic and xenobiotic gene 

regulatory programs. Glut8 was identified as a mechanistic target of SW157765, and is 

selectively required to support the diversion of glucose to serine biosynthesis in this genetic 

background. Modulation of these regulatory programs by orthogonal means was sufficient to 

modulate SW157765 responsiveness. We note that lineage-restricted biomarker discovery 

was key to identifying the KRAS/KEAP1 synthetic chemical relationship. Of note, parallel 

analysis within a large cohort of breast cancer cell lines returned sensitivity-associated 

biomarkers indicative of a conserved biological mode-of-action for SW155765, but there 

was no relationship with KRAS/KEAP1 mutation status, an oncogenotype that is 

exceedingly rare in breast.

We find that the application of a large diversity-oriented chemical collection, within a 

carefully delineated phenotypic screening convention, can uncover a compelling diversity of 

here-to-for unappreciated target opportunities within the seeming cacophony of molecular 

etiology of lung cancer. Importantly, these target opportunities are, by nature of the 

discovery paradigm, associated with precision medicine strategies and pharmacologically 

addressable. Furthermore, it is clear that chemical vulnerabilities can be revealed that are 

linked to recurrent mutations in lung cancer patients that are not currently “actionable”. 

Thus, we argue that many undeveloped avenues remain open for productive pursuit of 

tumor-intrinsic precision medicine.

STAR Methods

Contact for reagent and resource sharing

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Michael White (michael.white@utsouthwestern.edu)

Experimental Model and Subject Details

Cell Lines—Most NSCLC lines used in this study were part of the NCI and HCC (Hamon 

Cancer Center at UT Southwestern) series of cell lines, with the exception of THLE-2, 

THLE-3, A427, A549, Calu.1, Calu.6 (American Type Culture Collection; ATCC), Cal.12T 

(Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH; DSMZ), DFCI.024, 

DFCI.032 (Dana Farber Cancer Institute, courtesy of Pasi Jänne), EKVX, Hop62 (NCI-60 

panel), PC9 (Johns Hopkins University School of Medicine, courtesy of Bert Vogelstein). 

Cell lines from these collections were cultured in RPMI 1640 (Gibco, 2.05mM L-glutamine) 

supplemented with 5% FBS (GIBCO) and 1% penicillin/streptomycin (Gibco). Normal 

bronchiole epithelia-derived cell lines (Ramirez et al., 2004) were grown in ACL4 (RPMI 
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1640 supplemented with 0.02 mg/ml insulin, 0.01 mg/ml transferrin, 25 nM sodium selenite, 

50 nM hydrocortisone, 10 mM HEPES, 1 ng/ml EGF, 0.01 mM ethanolamine, 0.01 mM O-

phosphorylethanolamine, 0.1 nM triiodothyronine, 2 mg/ml BSA, 0.5 mM sodium pyruvate) 

with 2% FBS and 1% penicillin/streptomycin. Normal liver lines, THLE-2 and THLE-3, 

were grown in the Bronchial Epithelial Cell Growth Medium (Lonza, CC-3170) 

supplemented with 10% FBS and 1% penicillin/streptomycin. All cell lines were maintained 

in a humidified environment in the presence of 5% CO2 at 37°C. All cell lines were were 

DNA fingerprinted (Powerplex 1.2 Kit, Promega) and mycoplasma free (myco kit, Boca 

Scientific). All chemicals beginning with the prefix SW are from the UT Southwestern 

Chemical Library. THZ1 was obtained from Calbiochem, ciliobrevin from Tocris, 

GSK923295 from SellekChem, HET-0016 from Santa Cruz Biotechnology, nocodazole from 

Sigma-Aldrich.

Methods Details

Chemical libraries—The UT Southwestern chemical screening library (~200,000 small 

molecules; Figure S1G) is composed of 75,000 compounds purchased from ChemBridge 

Corporation, 100,000 compounds purchased from Chemical Diversity Labs and 22,000 

compounds purchased from ComGenex, 1200 purchased from TimTek, 1100 from 

Prestwick, 2,500 com-pounds from UTSW chemistry labs, and the 450 compounds of the 

NIH clinical collection. The TimTek compounds are “natural product-like” synthetic 

compounds and the Prestwick compounds are off-patent drugs. The NIH clinical collection 

is composed of compounds that have been tested in phase I clinical trials. The library is free 

of commercial ties and is wholly owned by UT Southwestern. The compounds from 

commercial sources were selected to reflect the diversity available in the larger sets of 

compounds offered by each company and were screened for desirable, drug-like qualities 

and chemical diversity, using filtering software running in the CheD and SARNavigator 

programs (Tripos, Inc.). The compounds in the library satisfy a relaxed set of Lipinsky’s 

rules, with 99% having a molecular weight less than 550 (average 250–300).

Spheroid assays—Cell lines were trypsinized, counted, and plated into 96-well U-bottom 

low adherence plates (Nunclon Sphera, Thermo Scientific). Cells were inoculated between 

500–4,000 cells per well depending on growth rate. Spheroids were allowed to form over 48 

hrs, drug was added, and the plates incubated for an additional 96 hrs. Luminescence assays 

were performed using CellTiter-Glo® 3D cell viability assay (Promega) according to the 

manufactures instructions. The plates were read on a BMG Labtech FLUOstar® Optima.

RNA isolation and microarray—All cells were seeded in 6-well plates at 300,000 cells/

well in 2 mL standard culture media (RPMI, 5%FBS, penicillin/streptomycin) and allowed 

to adhere overnight. The media was discarded and replaced with 1.5 mL treatment media 

containing either o.1% DMSO vehicle control, or 10 µM of SW compound. After 24 hrs of 

treatment, total RNA was harvested using the miRNeasy Qiagen kit according to the 

manufacturer’s instructions. All samples were submitted for microarray analysis at the UT 

Southwestern Microarray Core using an Illumina Human-HT-12 v4 Expression BeadChip. 

Raw intensitity values were background corrected and quantile normalized using the lumi 

package in R. Using a minimal expression cutoff of 7, we eliminated from the analysis genes 
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that were not expressed before or after compound treatment. For each gene, normalized 

values were converted to a log2 to score to indicate the fold change with compound 

treatment with the following equation:

xnorm = log2(
xcomp

xDMSO
)

where xDMSO and xcomp is the normalized expression value of gene × with DMSO and 10 

µM of SW compound treatment, respectively. The data was deposited into the Gene 

Expression Omnibus (GEO) under the accession number GSE104757.

Carbon tracing and metabolic flux analysis—All labeling experiments performed 

with cells plated at a density of 200,000 cells per 60 mm diameter dishes and grown for 48 

hrs. Afterwards, media was removed and cells were rinsed with PBS prior to treatment with 

SW157765 for either 6 or 24 hrs. Media was then removed and cells were rinsed with PBS 

prior to treatment with SW157765 in media containing glucose-free RPMI supplemented 

with 5% FBS and 13C glucose. For the 6 hr compound treatment, 13C media mixture was 

added for 2 hr. For the 24 hr compound treatment, cells were rinsed with phosphate-buffered 

saline, replenished with 13C labeling medium with SW157765 and cultured for time points 

ranging from 0 to 2 hr as indicated at the end of the 24 hrs. To determine basal 

metabolomics flux in the panel of 61 cell lines, cells were pre-treated with media containing 

either 13C labeled glucose or glutamine for either 6 or 24 hours. Labeled cells were briefly 

rinsed with cold saline, pelleted in cold 50% methanol, lysed through at least 3 freeze-thaw 

cycles, and then centrifuged to remove debris. The supernatants were evaporated to dryness 

methoximated and derivatized by tert-butyl dimethylsilylation. One mL of the derivatized 

material was injected onto an Agilent 6970 gas chromatograph equipped with a fused silica 

capillary GC column (30 m length, 0.25 mm diameter) and networked to either an Agilent 

5973 or 5975 Mass Selective Detector. Retention times of all metabolites of interest were 

validated using pure standards. The measured distribution of mass isotopomers was 

corrected for natural abundance of 13C

Glucose deprivation assays—Cells were cultured in either complete media (RPMI 

supplemented with 5% FBS) or media lacking glucose for 5 days. Viability was determined 

as relative content of DNA at day 5 in reduced media as compared to cells grown in 

complete medium.

qPCR—Cells were plated at a density of 250,000 cells/well in 6 well format and allowed to 

incubate overnight. The cells were then washed with PBS twice prior to RNA extraction 

with the RNeasy Mini Kit (Qiagen) following the manufacturer’s recommended protocol. 

100 ng to 1ug of total RNA was mixed with qScript cDNA SuperMix for cDNA synthesis 

(Quanta Biosciences) or taqman universal master mix II (Applied Biosciences). Taqman 

gene expression probes (Applied Biosciences) for GLUT1, GLUT8 and NR3C1, were used 

for real-time qPCR amplification on a Light Cycler 480 II Real-Time PCR System (Roche). 

The cycling program was 95°C for 10 min, 95°C for 15 sec, and 60°C for 40 cycles. Each 
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sample was run in triplicate, normalized to the Cy5 standard probe, and analyzed by the 

comparative CT method.

Thermal stability shift assay—3E6 cells were cultured in 75 cm2 flasks for overnight 

growth. Cells were treated with RPMI media supplemented with 5% FBS containing either 

0.1% DMSO or 1 µM SW157765 for 24 hr. After treatment, cells were detached with 

trypsin, collected by centrifugation, resuspended in PBS, and cell suspensions of 500,000 

cells/tube were transferred into 8-well 0.2-ml PCR tubes and heated for 3 min. After a 

subsequent 3 min incubation at room temperature, cells were lysed by the addition of 100 µl 

of ice-cold RIPA buffer (150 mM sodium chloride, 6 mM disodium phosphate, 4 mM 

monosodium phosphate, 2 mM Ethylenediaminetetraacetic acid, 1% Triton X-100, 100 mM 

sodium fluoride) supplemented with 20 µg/mL aprotinin, 0.1 M sodium fluoride, 1 mM 

sodium orthovanadate, 1 mM phenylmethylsulfonyl fluoride, complete Mini EDTA-free 

protease inhibitor cocktail (Roche), and PhoSTOP (Roche). The lysates were incubated on 

ice for 30 minutes prior to centrifugation at 14,000 × g for 10 minutes at 4°C. Proteins of 

interest remaining in the supernatant were detected by immunoblotting.

Targeted siRNA and plasmid DNA transfection—For transfection in 96 well 

format, .1-1 µL siRNA (10 µM) of siRNA in 25 µL of serum-free RPMI was mixed with 

either .2 or .4 µL of RNAimax (Invitrogen) in 25 µL serum-free RPMI. Following a 15 

minute incubation, the siRNA-lipid mixture was transferred to a 96 well plate followed by 

plating of cells at a concentration ranging from 3000 cells/well to 5000 cells/well 

(depending on cellular growth rate) in 100 µL media. Optimal concentration of siRNA was 

determined by titering amounts from .1 to 1 µL per well and selecting the maximal 

concentration for which no death is observed with non-targeting control. Consequences on 

cell viability were determined 48–96 hrs post-incubation. Experiments involving chemical 

treatment involved 48 hr pretreatment with siRNA followed by chemical treatment for 72 hrs 

at the indicated doses. CellTiter-Glo (promega) assays were performed using 15 µL regent/

well followed by a 10 minute incubation. Luminescence was quantified with an Envision 

plate reader (PerkinElmer). siRNA data for siATF4 and siPHGDH (Figure 6F–G) was 

curated from a prior study (Kim et al., 2016).

For immunoblot and qPCR analyses, a 6 well plate was prepared containing mixture of 250 

µl siRNA (Dharmacon, 10 µl 10 mM siRNA in 240 µl serum free media) and 250 µl 

RNAiMax (Invitrogen, 6 µl RNAiMax in 244 µl serum free media) per well, pre-incubated 

for 15 minutes at room temperature. Cells were then plated at a final concentration of 

250,000 cells/well. After 48–96 hrs of transfection, cells were lysed and subjected to 

immunoblot or qPCR analyses.

Stable PHGDH expressing cell lines were created by transducing HCC44 cells with the 

pLvx-Tight-Puro (Clontech) tetracycline-inducible vector containing the human PHGDH 

complementary DNA fragment (kindly provided by Matthew G. Vander Heiden)(Locasale et 

al., 2011). Cell colonies were selected and maintained with 0.5 µg/mL of puromycin and 0.5 

mg/mL of G418 sulfate. To induce PHGDH expression, cells were pretreated with 1 µg/mL 

doxycycline for 24 hr prior to SW157765 treatment.
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To create stable HES1 overexpressing cells, H1993 cells were seeded at 3 × 105 cells/well in 

6-well plates 24 hrs prior to transfection. The cells were transiently transfected with the 2ug 

of HES1-pCMV6-AC-GFP expressing plasmid using 8ul/well of Lipofectamine-2000 

(Invitrogen) according to manufacturer’s instruction. At 24hrs post-transfection, 5µM 

hydrocortisone or EtOH vehicle was treated to the culture medium and incubated for 72hrs. 

Nocodazole (300ng/ml) or DMSO vehicle was added at 48hrs post-treatment of 

hydrocortisone. Nocodazole treated cells were used as positive control. For cell cycle 

analysis, the cells were trypsinized, centrifuged at 1200rpm and stained with the cell-

permeable DNA dye Hoechst-33342 (10ug/ml, Invtrogen) for 30 min at 37°C. After 

incubation, the stained cells were washed and resuspended with cold PBS. The DNA content 

of GFP-positive or negative with Hoechst positive cells were determined using FACS with 

UV and 488 nm lasers (LSR fortessa, BD FACSDiva software version 8.0.1, firmwere 

version 1.4, BD bioscience). Data were analyzed using FlowJo 7.6.5.

CRISPR-mediated cell line editing—CRISPR knockout cells were prepared using the 

two-vector system (Sanjana et al., 2014). 293T cells were cultured to 90% confluence. A 

mixture of 0.4 µg transfer plasmid (lenti-cas9 blast or lenti-guide puro; Addgene), 0.87 µg 

psPax2 (Addgene), and 1 µg pMD2-VSV-G (Addgene) were diluted to a total of 50 µL in 

Opti-MEM media and added to a mixture of 21 µL FuGENE 6 (Promega) in 129 µL Opti-

mem after a 10 minute incubation period. The mixture was allowed to sit for 20 minutes 

after which it was added dropwise to 293T cells. Fresh RPMI 5% media was added 24 hrs 

later and 48 hrs post-transfection, target cells were transduced with virus. This processes 

was repeated and clones were selected in 10 µg /mL blasticydin. Cas9 expression was 

confirmed with Western blots. Cas9 expressing cells were then transduced with lenti-guide 

puro constructs using the same protocol. Clones were selected in puromycin and knockouts 

were confirmed immunobloting. sgRNA constructs were designed according to established 

protocol at http://CRISPR.mit.edu and cloned into the lenti-guide puro lentiviral expression 

vector. The sequences are as follows: CYP4F11 CACCGAAGGCGGCGGCAGTTGTCAT

Immunoblot analysis—Cells were plated in 6 well format for at a density of 150,000 

cells/well and allowed to incubate overnight. Cells treated with 5µM GC were allowed to 

incubate 72 hrs prior to collection. Cells were either lysed in RIPA buffer (Sigma-Aldrich) 

with 1× protease inhibitor (GenDEPOT) and phosphatase inhibitor (Thermo Scientific) 

cocktails or in 50nM Tris (pH 6.8), 2% SDS and 10% glycerol. Total 10 µg of lysates were 

loaded and electrophoresed on 4~15% gradient SDS-PAGE gel (Bio-Rad) and transferred to 

a PVDF membrane using the Trans-blot turbo transfer system (Bio-Rad). After blocking 

with 5% nonfat dry milk in PBST (1× PBS, 0.1% Ttween-20), membranes were probed 

overnight with primary antibodies diluted at either 1:500 or 1:1000 at 4°C according to 

manufacturer recommendations. After washing and incubation with secondary antibody, 

protein signals were visualized with the Enhanced Chemiluminescence Western Blot 

Detection Solution (Thermo Scientific) or Supersignal West Pico Chemiluminescence 

Western Blot Detection Solution (Thermo Scientific). Whole cell lysate loading controls 

were either GAPDH or β-actin. Nuclear loading controls were Lamin B1. Glut13 was used 

as a loading control for thermal stability shift assays. Antibodies were purchased as follows: 

β-actin, KRAS, CYP4F11 and HRP-conjugated anti-mouse or rabbit IgG antibody (Santa 
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Cruz Biotechnology), HES1, Cyclin D1, GR and PHGDH (Cell Signaling Technology), 

NRF2 (Invitrogen), β-tubulin, GLUT1, GLUT8, GLUT13 and Cas9 (Abcam).

96 well dose response assays—To determine cytotoxicity of the small molecule 

compounds, NSCLC cells and HBECs were plated at a densities ranging from 3,000 of 

5,000 cells per well in white tissue-culture-treated 96-well clear bottom plate (Corning), 

with the seeding density for each cell line based on growth rate. After culturing the cells in 

assay plates for 24 hrs, compounds were added to each plate at the indicated doses (3 

replicates per dose per cell line). After an incubation of 96 hrs, 15 µl of CellTiter-Glo 

reagent (Promega) was added to each well and mixed. Plates were incubated for 15 min at 

room temperature and luminescence was determined for each well using a SpectraMax 

Paradigm plate reader (Molecular devices).

Flow cytometry analysis—For DNA content analysis, cells were seeded at density of 1.5 

× 105 per well in 6-well plate and after 24 hrs in cell culture, 3 µM hydrocortisone or DMSO 

vehicle was added to medium. Nocodazole at 100 ng/ml or DMSO was added 72 hrs after 

cell seeding. Twenty-four hrs post-nocodazole/DMSO treatment, cells were collected by 

trypsinization, resuspended in 1 ml of ice-cold PBS-F (1 × PBS, 2% FBS), followed by 

drop-wise addition of 10 ml ice-cold 70% ethanol. Following overnight incubation at 4°C, 

cells were washed twice with PBTA (1× PBS, 1% BSA, 0.1% Tween-20), stained with 

propidium iodide (Sigma) containing RNase A at 37°C for 30 minutes. Fluorescence of the 

PI-stained cells was measured using a FACSCalibur (BD Biosciences) and analyzed with 

FlowJo software (BD Bioscience).

In vitro determination of compound stability with human tumor cells—Cell lines 

were plated at a density of either 2000 (H2122, A549, HCC95, HCC44, H1792, H460, 

H322, HCC1171, H920, HCC2108, H226, H647, H2086, HCC4011) or 4000 (DFCI.032, 

HCC3051, H3255, H1395, H2073, H1437, HCC2814, HCC515, H596, H3122) cells per 

well in 96 well plates. After overnight adherence, media was removed and replaced with 

fresh media containing either 100 nM (SW027951, SW098382, SW126788, SW153609, 

SW157765, and SW159580) or 200 nM (SW103675, SW115205, and SW167255) 

compound. Experiments using the CYP4A and 4F inhibitor HET0016 used 50 nM 

SW157765 in combination with 100 nM HET0016 added after overnight cell culture. siRNA 

experiments involved 48 hour pretreatment with siRNA’s targeting KRAS prior to 

compound addition. At varying times post compound addition, media and cells were 

removed using trypsin and the cells were broken open and the lysate precleared of protein by 

the addition of a two-fold volume of methanol containing 0.2% formic acid, 2 mM NH4 

acetate and 100 ng/ml of internal standard (IS = n-benzylbenzamide or tolbutamide) 

followed by vigorous vortexing and centrifugation at 16,000 × g for 5 min. In experiments 

involving the compound SW153609, proteins were pre-cleared by addition of a two-fold 

volume of methanol containing 2 mM NH4 formate and 100 ng/mg of IS. The supernatant 

was analyzed by LC-MS/MS for levels of parent compound. An analytical method for each 

compound was devised by direct infusion of a 1 µg/ml stock in 50:50 MeOH/H20 containing 

0.1% formic acid and 2 mM NH4 acetate or 2 mM NH4 formate into a Sciex 3200 or 4000 

Qtrap mass spectrometer. Using the compound optimization wizard in Analyst 1.6.1, optimal 
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ionization parameters (Declustering Potential, DP; Entrance Potential, EP; Collision Cell 

Entrance Potential, CEP; Collision Energy, CE; and Collision Cell Exit Potential, CEP) for 

each parent/daughter pair were determined and a generic set of gas parameters (CUR=45, 

CAD=medium, IS=4500, TEM=700, GS1=70, GS2=70) and chromatography conditions 

(Buffer A: Water + 0.1% formic acid, 2mM NH4 acetate or Water + 5 mM NH4 formate; 

Buffer B: MeOH + 0.1% formic acid, 2 mM NH4 acetate or MeOH + 5 mM NH4 formate; 

flow rate 1.5 ml/min; column Agilent C18 XDB column, 5 micron packing 50 × 4.6 mm 

size ; 0 – 1.5 min 3%B, 1.5 – 2.0 min gradient to 100% B, 2.0 – 3.5 min 100% B, 3.5 – 3.6 

min gradient to 3% B, 3.6 – 4.5 3% B) were utilized to quantitate peak areas for the parent/

daughter pair for each compound and IS. Transitions utilized in positive mode were as 

follows: SW098382: 459.149/121.2; SW103675: 329.045/91.1; SW115205: 309.119/107.0; 

SW126788: 395.197/349.1; SW153609: 408.098/125.0; SW155765: 332.071/211.1; 

SW167255: 411.032/125.0; n-benzylbenzamide: 212.1/91.1. Transitions utilized in negative 

mode were as follows: SW027951: 331.02/125.9; SW134963: 299.862/240.9; SW147739: 

376.203/166.7; tolbutamide: 269.9/169.9. The peak area for each compound was normalized 

to the peak area for the IS and then relative compound abundance at each time point was 

determined by comparison to the peak ratio at time 0. A “% remaining” value was used to 

assess metabolic stability of a compound over time. The natural Log (LN) of the % 

remaining of compound was then plotted versus time (in min) and a linear regression curve 

plotted going through y-intercept at LN(100). Compound was also incubated in the absence 

of cells (culture media only) to determine whether any compounds showed chemical 

instability. Several compounds (SW134963, SW153609, and SW167255) showed such 

chemical instability with the amount of compound lost in media only by 24 hr equivalent to 

that lost in the presence of both sensitive and resistant cell lines.

SW157765 Metabolite Identification—Metabolite identification studies for SW157765 

were performed essentially as indicated above. H2122 cells were incubated with 10 µM 

SW157765 or 500-1 for 8 hr and then washed and harvested as described. Samples were 

analyzed by LC-MS/MS on a Sciex 4000QTRAP using LightSight Software for information 

dependent acquisition followed by an enhanced product ion scan (IDA-EPI). Transitions 

associated with Phase I metabolism were evaluated.

Glucose utilization—Glucose uptake was evaluated utilizing the Glucose Uptake Assay 

Kit (Abcam). Briefly, 6,000 cells were plated in 96-well plates in RPMI plus 5% FBS. 

Twenty-four hrs later, cells were pretreated with either SW157765 (1 or 5 µM, final) or 

equal volume vehicle (ethanol) in RPMI plus 5% FBS for 6 hr. In experiments involving 

siRNA, GLUT8 or GLUT1 was transfected as described and allowed to incubate for 48 hrs. 

Media was removed and wells were washed three times with DBPS. Afterwards, 0.9 mM 2-

deoxyglucose (2-DG) was prepared in glucose-free RPMI plus 5% FBS and then added to 

each well. Plates were returned to a 37°C incuba tor with 5% CO2 for 2 hr. Afterwards, 

media was removed, cells were washed with DPBS three times to remove exogenous 2-DG 

and detection of glucose uptake was determined using manufacturer’s recommended 

protocol.
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Analysis of 2-DG uptake was performed as follows: First, fluorometric values were 

calculated based on the 2-deoxyglucose-6-phosphate standard curve. Next, cell count and 

viability was determined by the CellTiter-Glo Luminescent Assay in a separate 96-well plate 

that was cultured and treated in parallel to the 2-DG treated plates. Reported relative 

fluorescent 2-DG uptake was calculated by normalizing the fluorescent values (i.e. 2-DG) to 

the luminescent values (cell number).

Binder selection assays

Protein preparation: In order to prepare human protein library, the CMV promoter-based 

vectors encoding a cDNA fragment of human gene (~14,000) was transiently transfected 

into FreeStyle293 cells (Invitrogen) using 293fectin (Invitrogen) according to the 

manufacturer's instructions. After 3 days of incubation, cells were disrupted in a bead beater 

and the cell disruptions were frozen at −80 °C until use.

To prepare the membrane-associated human GLUT8, the pcDNA3.1 vector (Invitrogen) 

encoding a cDNA fragment of human GLUT8 was transiently transfected into FreeStyle293 

cells. After 3 days of incubation, cells were washed with phosphate-buffered saline (PBS) 

and suspended in buffer A, which contained 50 mM HEPES (pH 7.4), 1 mM EDTA. The 

cells were homogenized and centrifuged at 950×g for 10 min at 4 °C, after which the 

supernatant was recovered. Total membrane fractions were isolated by ultracentrifugation at 

140,000×g for 60 min at 4 °C, and resuspended in buffer A. Membrane fractions were frozen 

at −80 °C until use.

Binder selection technology: Arrayed affinity-selection/mass spectrometry binding assays 

were employed to identify binding proteins for test compounds using a human protein 

library with one protein per well in 96 well plate format. The binding assay was performed 

at 4 °C using the human protein library or membranes. Proteins were dissolved in assay 

buffer (25 mM Tris-HCl (pH 7.4), 137 mM NaCl, 2.7 mM MgCl2, 0.005% Tween-20, 1 mM 

DTT). Compounds were added to protein solutions (final DMSO concentration of less than 

1%) and the mixtures were incubated for 2 hours. Nonspecific binding was defined using 

mock-transfected membranes. The reaction mixtures were applied to a size-exclusion 

chromatography to separate bound compounds from free compounds. Then the bound 

compounds were quantified by liquid chromatography-mass spectrometry (API5000 

LC/MS/MS system) and the calculated Kd value was determined using Prism nonlinear 

software (Graph Pad Software, CA, USA).

DNA/RNA extraction for sequencing—Prior to sequencing, all cell lines were DNA-

fingerprinted (PowerPlex 1.2 Kit; Promega) and found to be mycoplasma-free (e-Myco Kit; 

BocaScientific). DNA for exome or genome sequencing was purified from frozen cell line 

pellets using DNeasy reagents and protocols with QIAcube robot (Qiagen). DNA spectra 

were quantitated using spectrophotometer (Nanodrop) and samples diluted with nuclease 

free water (Ambion). Cell lines were grown to approximately 70–80% confluence, washed 

2× with PBS and directly lysed from culture flasks using RLT buffer (Qiagen). Lysates were 

snap frozen and stored at −80° C. RNA was purified from lysates using RNeasy kit and 

QIAcube robot (Qiagen).
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Genomic characterization

SNP Arrays: Whole-genome single nucleotide polymorphism (SNP) array profiling was 

done using the Illumina Human1M-Duo DNA Analysis BeadChip (Illumina, Inc.). Cell line 

DNA was hybridized according to manufacturer instructions. Processing was first performed 

using Illumina BeadStudio to generate the ‘Log R Ratio’ which measures the relative probe 

intensity compared with normal diploid controls. The package DNAcopy in the R statistical 

software environment was then used to segment the data. Final copy number variation was 

interpreted as the log2 segmented copy number values.

RNAseq and Whole Exome Sequencing: FastQC (Babraham Bioinformatics Institute) was 

used to check the sequencing quality, and high-quality reads were mapped to human 

reference genome (hg19) along with the gene annotation data (genecode v19) from 

Genecode database using STAR (v2.4.2). RSeQC was applied for assessing RNA sample 

quality Gene-level expression was reported in fragments per kilobase per million reads 

(FPKM) by Cufflinks.

Illumina BeadChip Microarray: Raw Illumina HumanWG-6 v3.0 BeadChip files were 

obtained from the Gene Expression Omnibus using accession number GSE32026 and 

normalized as described previously (Kim et al., 2016). Briefly, Data were background-

corrected using the ‘MBCB’ package in R, which provides a model-based background 

correction method similar to an RMA correction with affymetrix arrays. Data were then 

quantile-normalized to produce equivalent expression distributions amongst cell lines.

Germline variant filtering—The UTSW-92 panel of the cell lines corresponded to those 

in which we have tumor DNA but corresponding matched non-tumorigenic DNA is not 

available. These correspond to 68 lines from the ‘training set’ of cell lines and 24 lines from 

the ‘testing set’ of cell lines. For these, we developed a pipeline to filter out the most 

probable germline mutations and enrich for somatically acquired mutations. Reads were 

aligned as described to the hg19 reference and filtered for non-synonymous lesions 

(missense, non-sense, splice site mutations) (mean of 5,049 mutations/cell). We next 

removed any site that was annotated as corresponding to a germline mutation in the matched 

dataset (mean of 1,248 mutations/cell). Using publically available datasets such as the 

thousand genome project (TGP) as an exclusion criteria or the catalogue of somatic 

mutations in cancer (COSMIC) as an inclusion criteria may aid in enriching for somatic 

mutations. We removed variants (defined based on genomic position) that were found in > 

12% of the TGP (TGP filter) and where the difference in the UTSW panel frequency and the 

TGP frequency was <1.8% (allele difference filter). We also removed, on a gene-level basis, 

genes that were highly mutated (mutated at any site in >40% of cell lines) in the UTSW 

panel (mutation any site filter), but present at a low frequency (<13%) in COSMIC (Cosmic 

filter) and in the UTSW-34 matched panel (<20%) (UTSW-34 filter). This resulted in a final 

mean mutation count of 718 mutations/cell. We developed a strategy to find a data driven 

way select optimal filter cutoffs from these datasets. We selected 12 evenly distributed 

values for the TGP filter between .02% and 20%, for the allele difference filter between 

−10% and 10%, for the mutated any-site filter between 1.8% and 80%, for the Cosmic filter 

between .13% and 20% (log10 scale), and for the UTSW-34 filter between 2.9% and 50%. 
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Selecting all possible combinations of these filters resulted in 248,832 possible 

combinations. For each filter combination, we can plot the number of mutations that pass the 

filters (Figure S1C), with the strictest filter combination resulting in the fewest variant being 

annotated as ‘somatic’ and the most lenient resulting in the most variants being included. To 

select the optimal filter combination in a data-driven way, we fit a cubic function to the plot 

of filter index (x values) versus number of mutations included at each filter index (y-axis) 

and selected the value on the plot which results in the minimized second derivative for each 

cell line. Figure S1C indicates the mean selected filter value across the cell line panel (solid 

line) with 95% confidence intervals indicated (dashed line). Resulting variants are described 

in Data File S2.

Small molecule cytotoxicity assays—The UTSW chemical library and screening 

assay format was described previously (Kim et al., 2013) and is described above. Our 

chemical library, consisting of ~200,000 chemicals (Figure S1B, G), was initially screened 

at a single dose (2.5 µM) in single well for each compound against a panel of 12 NSCLC 

cell lines. Toxicity data was converted to an activity score according to the following 

equation

AC = − 1 ∗ (100 − x
median(xcontrol)

∗ 100)

so that an activity score indicates percent kill relative to on-board DMSO controls. We 

subsequently converted activity scores to z-scores for each chemical across the 12 cell line 

panel and selected chemicals with z <= −3 in at least one cell line, resulting in 15,483 

chemicals (single dose cohort). These chemicals were then re-screened in triplicate against 

the same 12 NSCLC cell lines along as well as an immortalized human bronchial epithelial 

cell line (HBEC30KT) at the screening dose of 2.5 µM (confirmation dataset). From this 

data set, we used two criteria to select chemicals for further follow-up. We first filtered for 

chemicals with a bimodal pattern of response from our panel of cell lines. Specifically, we 

selected chemicals with > 40% toxicity to a subset of cell lines and < 20% toxicity to the 

remaining NSCLC’s and HBEC30KT. As determined in downstream dose-response studies, 

compounds that met this criteria typically displayed IC50’s in the range of our screening 

dose or lower for a subset of the NSCLC lines and IC50 values > 10 µM in the remaining cell 

lines in the panel and the HBEC30KT cell lines. In terms of chemical selectivity, we expect 

this selection to result in compounds with at least a ½ log difference in response between 

sensitive and resistant cell lines. We also used a selection method to capture potent 

chemicals with more of a continuous distribution of cytoxocity in our 12 cell line panel. For 

each compound, the responses of the cell lines were ranked from most sensitive to least. The 

difference (Δn) in response between each pair of ranked cell line activities for each 

compound was calculated. The S-score is the maximum difference (Δnmax) between two cell 

lines’ responses in the ranked list of responses to the compound. The two cell line responses 

that define the S-score therefore demarcate a boundary between sensitive and resistant 

response groups in the ranked list of responses for each compound. We selected chemicals 

for follow-up to be those with the S-score > 40%, while enforcing the criteria that the 

chemical not be toxic to HBEC30KT (< 20% observed toxicity). These chemicals were 
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subjected to chemistry review that removed compounds with known or suspected 

promiscuous (off target) behavior based on historical screening data, structural alerts, and 

PAINS substructures. Following resupply (1 – 5 mg of powder per compound) and analytical 

quality control for identity and purity (LC/MS), 447 compounds were assayed in a multi-

dose format (12 point dose-response curves in ½ log dilutions with the doses ranging from 

50 pM to 50 µM) against the same panel of 12 NSCLC cell lines plus the HBEC30KT cell 

line. Each compound was assayed twice in this format and the dose-response curves 

compared. In cases where experimental replicates differed by more than 3-fold, we 

performed a third dose-response experiment and averaged the two experimental replicates 

that were in closest agreement. We used the same unimodal (S-score) method to select a 

total of 208 chemicals to be screened across the entire panel of 100 cell lines. In this case, 

we rank-ordered average log10(IC50) values for each compound and applied a threshold of 

0.5 log units for the S-score. Chemical structures for all analyzed chemicals are available at 

http://pops.biohpc.swmed.edu. Smile strings are described in Data File S6.

Quantification and Statistical Analysis

In-silico Molecular Docking—The GLUT8 structural model was developed from the 

inward, open crystal structure of human GLUT1 (hGLUT1, PDBID 5EQG). The hGLUT1 

structure has 48% sequence similarity to GLUT8, and all except one of ligand binding 

residues are conserved between the two proteins. The sequence alignment used for this 

comparison was based on Cheeseman and Long (Long, 2015) and Deng et. al., (Deng et al., 

2015) to ensure correct alignment of sequentially conserved residues. For unresolved loop 

region residues, the GLUT3 crystal structure (4ZW9) was used as template(Deng et al., 

2015). The model GLUT8 structure was evaluated for proper side-chain orientation vs. 

hGLUT1 crystal structure and was then optimized for docking using Protein Preparation 

Wizard. This included addition of hydrogens and step-wise energy minimization using 

OPLS3 force field. Sitemap was used to predict ligand-binding sites on GLUT8. A grid box 

was defined using the top ranked site that overlaps with glucose binding site and inhibitor 

binding residues. Conformations of SW157765 and the epoxy metabolite were generated in 

MOE2016.08 (Chemical Computing Group, QC, Canada). Multiple conformations were 

docked against glucose-binding site of the GLUT8 model using an SP scoring function in 

Glide version 6.5 (Schrodinger, LLC). In these docking experiments, the protein was treated 

as rigid and the liarvargand was allowed to be flexible. The docking results were analyzed 

visually using MOE2016.08 and Maestro (Schrödinger, LLC, New York, NY). The top-

ranked docked pose exhibited H-bond interactions with Asn312 and van der Waals 

interaction with Trp433 and Trp457 consistent with co-crystal structures(Deng et al., 2015; 

Kapoor et al., 2016). SW157765 and epoxide metabolite exhibited similar docked poses 

expect for the double bond/epoxide region.

Normalization of drug response data and calculation of ED50 and AUC values
—Chemical response for each cell line was converted to an activity score as described 

above. We found normalizing to the median of the two lowest doses, as opposed to on-board 

DMSO controls, minimized plate effects and resulted in a better curve fit and a more 

accurate description of sensitivity. We used the drc package in R to fit a standard 4 

parameter log-logistic fit to the data and discover ED50 values. As imputed ED50 values 
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have shown to be problematic in re-tests of large drug screening datasets, we do not impute 

values. Rather, if the imputed ED50 value is greater than the top tested dose (50 µM), we 

assign an ED50 of the top dose. Additionally, to correct for low ED50 values being assigned 

to chemicals in which the response is shallow, we assign an ED50 value of the top tested 

dose if the chemical does not result in at least 30% reduction in CTG values.

We calculated AUC values by determining area under the curve of the log fitted hill equation 

through standard integral analysis. For many of the compounds, a large proportion of the 

dose range is completely innocuous for all cell lines tested. To increase the dynamic range 

with AUC values, we found for each compound the proportion of the curve in which there is 

a response across all cell lines, and eliminated the data for the lower doses. Each compound 

was tested in 2 separate runs, with three replicates per run. To automatically detect the best, 

most reproducible data, we select the two replicates from each run with the best concordance 

between calculated ED50 values. The assigned ED50 or AUC value is then the mean between 

the filtered runs.

Scanning Kolmogorov-Smirnov statistic—A modification to a Kolmogorov-Smirnov 

statistic, which we term a scanning ranked KS test, was used to determine which mutations 

alone or co-occurring combinations of mutation combinations can best predict a selective 

sensitivity to each unknown compound. In addition to single mutations, we also annotated a 

‘RAS_Class’ metaclass in which we assigned a cell line a value of ‘1’ if it contained a 

mutation in either KRAS, NRAS, HRAS, PIK3C1, or BRAF. Mutations or pairwise 

combinations of co-occuring mutations were first binarized (1=mutated; 0=wild-type), 

resulting in 446,435 combinations in which at least 5 cell lines contained the mutation 

combination. For each chemical, we reasoned that if a mutation combination is conferring a 

selective sensitivity, then the ED50 or AUC values for cell lines that are mutated will be 

lower than those that are wild-type. To determine the degree to which the ED50/AUC values 

for cells that are mutated are located towards the bottom of the ranked list sensitivity values, 

and thus lower than the background distribution, the following equation was used:

u = max j = 1
t j

t − V( j)
n

where v(j) is the position of each gene in the gene set in the ordered list of genes, t is the 

total number of cell lines with the mutation combination, and n is the total number of cell 

lines assayed (n=100).

To determine a p-value, 5000 permutations of randomized sorting of ED50/AUC values of 

size t was performed, and urandom was calculated. The resulting p-value was determined to 

be:

p =
#  instances urandom > u

# total permutation
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p<.002 indicates that, out of 5000 permutations, no random value was less than the 

calculated distance, u. This process was repeated for each of the mutation combinations for 

each chemical using both AUC and ED50 values as a sensitivity metric.

Elastic Net Regression—In order to assign predictive biomarkers to each chemical, we 

used a penalized linear regression model, the elastic net. We considered each dataset 

individually and separately as input into the elastic net. Candidate predictive features were 

selected from normalized measures of gene expression (illumina V3 BeadChip, RNAseq), 

copy number (Snp 6.0 arrays), protein expression (RPPA), metabolomics flux analysis and 

binary measures of gene mutational statuses (Whole Exome Sequencing). mRNA measures 

are likely to be the most variable across laboratories are subject to fluctuations from an in-

vitro to an in-vivo system, and are the most difficult to assess in patient samples. Thus, 

mRNA measures were only considered inputs into the elastic net if there was at least a two-

fold difference between lowest and highest expressing cells, and were prioritized for 

experimental follow-up based on maximal fold expression differences. The elastic net 

assigns biomarkers to a response vector of activity scores by solving a basic linear 

regression problem as follows:

Let X ∈ ℝnxp be the matrix of predictive features where n is the number of cell lines 

included in the training dataset and p is the number of features, and let y ∈ ℝn be the vector 

of binary sensitivity values for the same cell line panel. Columns of the predictive features 

matrix and y were normalized to have a mean of zero and a standard deviation of 1. The 

elastic net attempts to find which weighted linear combination of the columns of the 

predictive features matrix can best approximate y, or it solves the following equation for w:

argminw[‖y − Xw‖2
2]

The elastic net solves the above by enforcing a penalty to the solution that makes the 

solution both unique and sparse so that only the features that best approximate y are left with 

non-zero weight values. It does this by combining L1-norm and L2-norm regularization 

parameters so that the elastic net formulation to the above problem is given by:

argminw[‖y − Xw‖2
2 + λ(α‖w‖2

2 + (1 − α)‖w‖1)]

where λ, α, are two adjustable parameters such that lambda controls the degree of the 

overall penalty and α controls the degree to which the L1 norm and L2 norm constraints are 

applied so that when α=0, only the L1 penalty is applied and when α=1, only the L2 penalty 

is applied. In order to determine the optimal values of alpha and lambda to use in the model, 

we did 100 iterations of 10 fold cross-validation where, in each iteration, the cells were 

randomly re-sampled into different groups. The values of alpha and lambda were chosen to 

be those that resulted in the minimum mean squared error for each fold. We then subjected 

the data to a series of 100 bootstrap permutations in which the cell lines were sampled with 

replacement, and features were assigned to each bootstrapped dataset. Features with a higher 

frequency of representation across bootstrapped permutations correspond to those with the 
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highest confidence of being associated with drug response as opposed as being assigned due 

to overfitting of the model. Features were assigned to a chemical that were present in > 70% 

of permutations. Higher weighted features in the elastic net correspond to those with better 

mathematical predictive capacity and lowly weighted features may be assigned due to model 

overfitting. Cutoff values were assigned for weight values to select the most predictive 

features while still maintaining sparcity in the model. As weight magnitudes and 

distributions vary depending on input feature set and chemical sensitivity distributions, 

cutoffs were selected to be tailored to each chemical/feature set combination by selecting 

weight values +/− 2 standard deviations from the mean. Weight distributions follow a 

Gaussian distribution, so this cutoff corresponds to the top 5% of the most predictive 

features being assigned to each chemical.

As input into the elastic net, we used both AUC and ED50 values as measures of 

sensitivities. Additionally, we found that log10 transformation of the sensitivity vector could 

better identify exceptional responders to a compound in some instances, thus we used both 

the linear and log transformed sensitivity measure as input to the algorithm. The elastic net 

was run using the glmnet package in R.

Cell line pathway activity analysis—To calculate pathways that were down regulated 

relative to the background distribution on an individual cell line basis, we used a 

modification of a Kolmogorov Smirnov test. Gene pathways were curated from the Broad 

msigdb. We first converted RNAseq data to z-scores with the following equation

zi, j =
xi, j − mean(xi)

sd(xi)

where zi,j is the z-score for gene i in cell line j. Then for a cell line, we converted z-scores to 

a ranked list, where a value of 1 indicates the highest z-score in that cell line. For a pathway, 

to determine the degree to which the values in a set are located towards the top of a ranked 

list, and thus upregulated relative to background, the following equation was used:

u = max j = 1
t j

t − V( j)
n

and to determine the degree to which a set is downregulated relative to background, the 

following equation was used:

u = max j = 1
t V( j)

n − ( j − 1)
t

where v(j) is the position of each gene in the gene set in the ordered list of genes, t is the 

total number of genes in the gene set, and n is the total number of genes assayed in the array.

To determine a p-value, 5000 permutations of randomized sorting of genes of the same set 

size was performed, and urandom was calculated. The resulting p-value was determined to be:
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p =
# instances urandom > u

# total permutation

Gene Set Enrichment Analysis—Cell lines were dichotomized based on sensitivities to 

SW140154 and SW151511. We selected cell lines that were sensitive (ED50 < 10 µM) to 

SW151511 and resistant to SW140154 (ED50 > 20 µM) and compared them to cells resistant 

to SW151511 (ED50 > 20 µM) and sensitive to SW140154 (ED50 < 10 µM) using a GSEA 

analysis (Subramanian et al., 2005). For SW036310, we compared sensitive (ED50 <2 µM), 

TTC21B mutant cell lines to resistant lines (ED50 > 40 µM) with a GSEA analysis. 

Enrichment plots for the top gene sets were re-plotted using R statistical software.

Sensitivity Prediction—Sensitivity outside the training set was predicted as described 

previously (Kim et al., 2013). Twenty-six NSCLC cell lines not included in the original 

training set were subjected to RNAseq and high throughput 384 well format cytoxicity 

assays as described above in response to 21 chemicals in which at least one cell line is 

predicted to be sensitive. Log2 transformed FPKM values were converted to z-scores, and 

sensitivities were predicted according to the following equation

s j = ∑i = 1
n wixij

where wi is the weight determined from the elastic net for feature i, and xij is the normalized 

expression value of feature i in line j and n is the number of features selected for a chemical 

as described above. The range of si values predicts the degree of sensitivity where a high 

value of si predicts resistant and a low value of si predicts sensitive. Sensitivity to SW001286 

and SW126788 was predicted based on RNAseq based expression of CYP4F11 and CES1/

CES1P1, respectively. Sensitivity to SW151511 and SW140154 was predicted based on 

expression of PELI2 and SARM1/IL18R1. Additionally, we predicted activity of the KEGG 

TLR Pathway on a single-cell line basis using the protocol described above. Cells predicted 

to be sensitive to SW151511 and resistant to SW140154 were confirmed to have high TLR 

pathway expression levels.

To assess predictions, a two sample, one-sided KS test was used to determine if activity 

scores across the 12-point dose range in the predicted sensitive classes were significantly 

lower than those in the predicted resistant classes.

ROC Curve Analysis—For each feature set, we associated biomarkers to a sensitivity 

vector and predicted sensitivities on the original training panel according to the procedures 

outlined above. We used a cutoff of sj = 0 to binarize cell lines into predicted sensitive and 

resistant classes. For each chemical in our dataset, we manually selected ED50 and AUC 

values above which a cell line is considered resistant and below which a cell line is 

considered sensitive. The ROCR package in R was then used to calculate specificity (100 – 

false positive rate) and sensitivity (true positive rate) and plot the values. As input to the 

ROCR package, ‘true positives’ were considered to be those whose predictions were correct 

(sensitive cells predicted to be sensitive and resistant cells predicted to be resistant). Area 
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under the ROC curve was calculated with and p-value was calculated to test the hypothesis 

that the area under the ROC curve is different from .5 (random) using the ROCR R package.

Affinity propagation clustering—Affinity propagation clustering was performed as 

described (Kim et al., 2016) using Pearson distance as a similarity metric. Cell lines that 

were present in the intersection between the POPs and each dataset were clustered for 

similarity. Cell lines in the RPPA dataset (65 cell lines) were clustered according to 154 

unique features, in the metabolomic flux (67 cell lines) analysis according to 84 unique 

features, and in the chemical perturbagen dataset (100 cell lines) according to 221 features. 

We first filtered features in the illumina BeadChip (90 cell lines), RNAseq (99 cell lines), 

and SNP 6.0 arrays (63 cell lines) by selecting the top 20% of the most highly variant 

features. RNAseq and illumina BeadChip features were further reduced by selecting features 

that were above a minimal expression cutoff in at least one cell line (RNAseq FPKM value 

of 1 and illumina BeadChip value of 6), resulting in 5075 and 5047 features, respectively. 

The SNP array was clustered according to a final set of 3583 features. Networks were 

visualized with cytoscape with edges defined according to the procedure above and edge 

lengths drawn proportional to pearson distance using the built-in spring embedding 

algorithm.

NRF2 Signature—We curated publically available datasets to identify genes with NRF2 

binding sites through ChipSeq analysis (Chorley et al., 2012; Hirotsu et al., 2012; Malhotra 

et al., 2010). To identify a context-independent set of NRF2 regulated genes, we selected 

genes that were found to have NRF2 binding sites in all three datasets. Recent work has also 

annotated a non-small cell lung cancer specific set of genes that are upregulated in cells with 

gain of function mutations in the NRF2 pathway (Goldstein et al., 2016). We also included 

these genes in our NRF2 signature, resulting in a total of 40 genes. Cell lines in our panel 

were binarized into two categories. SW157765 sensitive cell lines were defined to have an 

AUC < 400 and an ED50 value <1µM while resistant cells had an ED50 >30 µM. A KS test 

was used to determine if sensitive cells had significantly higher expression of NRF2 

signature genes (two sample, one sided KS test) using the R stats package.

Comparison of cell lines to tumors—LUAD and LUSC RNAseq V2 RSEM 

normalized expression values were downloaded from the TCGA (https://

cancergenome.nih.gov/) (519 LUAD tumors and 504 LUSC tumors). For each dataset, we 

selected the top 20% of the most highly variant genes. 509 genes represented the intersection 

between all three datasets. RNAseq V2 RSEM gene expression values of the 509 genes in 

BRCA tumors (1100 tumors) and MESO tumors (87 tumors) was downloaded using the 

CGDSR package in R. Though the gene signature was defined using a NSCLC dataset, 

every gene in the signature is expressed in at least one tumor in the MESO and BRCA 

dataset. Using the 509 genes, we used a Pearson correlation to compare each tumor in the 

TCGA with each cell line in our dataset with the stats package in R. p-values for the 

correlation are plotted (Figure 1A, S1A)

Peg plots—TCGA mutation data for the LUAD and LUSC subtypes was retrieved using 

the cgdsr package in R. Somatic mutations characterized as either ‘missense’ or ‘nonsense’ 
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were plotted according to amino acid position. Non-synonymous mutations in the UTSW 

cell line panel for the same gene were plotted on the same scale. Domain information was 

obtained from the PFAM database from the following website http://pfam.xfam.org/.

Other Statistical Analyses—Hierarchical clustering, Pearson correlations, two sample t-

tests, and density calculations were performed using the stats package in R.

Data and Software Availability

Microarray data in response to SW151511 was deposited into the Gene Expression Omnibus 

(GEO) under the accession number GSE104757. Raw sequencing data is available at dbGap 

under the study ID 28061.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• A chemistry-first approach for druggable target identification for lung cancer

• Mapping the associations between chemicals and genetic lesions in lung 

cancer

• Matching chemicals with diverse patient-specific cancer-promoting 

mechanisms

• Validating the effect of targeting chemically addressable mechanisms in 

NSCLC cells
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Figure 1. Genomic characterization and chemical sensitivities of NSCLC cell line panel
(A) p-values (Pearson) comparing tumors (MDACC=orange; TCGA=purple) and cell lines 

colored by source

(B) Number of mutations called in the matched (red) and unmatched (blue) subsets post-

filtering

(C) NSCLC sensitivity (ED50) to POPS rank ordered by row. Red dashes = ‘cherry-picked’

(D) APC clustering by similarity of POPs ED50 responses. Nodes are colored according to 

cluster membership

(E) APC clustering by similarity of POPs ED50 responses (as in Figure 1D). Nodes are 

colored according to cluster membership defined by RNAseq based APC (Figure S1E)
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(F) APC clustering across all datasets. Cell lines are ordered according to cluster 

membership in chemical APC. Each cell line is colored according to cluster membership in 

the indicated datasets (Figure S1M–P). Cell lines absent from a dataset are colored in white

(G–H) Predictive mRNA expression signatures specifying (G) crizotinib and (H) erlotinib 

sensitivity. Rank-ordered sensitivity values are indicated as heatmap (top row) with 

corresponding features plotted below.

*all experiments performed in triplicate, unless otherwise indicated. Values are means. Error 
bars plotted as ± 1 SD. * p<.05; ** p<.01
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Figure 2. Detecting “prodrugs” and drug efflux substrates
(A) Elastic net modeling associates mRNA expression of drug metabolism enzymes with 

sensitivity to 8 chemicals. Rank-ordered ED50 values are indicated as heatmap (SWxxxxxx; 

top row). Corresponding log2 FPKM values are plotted underneath

(B–F) Percent remaining (ln scale) of (B) SW126788 (C) SW103675 (D) SW027951 (E) 

SW157765 and (F) SW157765 co-treated with HET-0016 (100 nM) is plotted as a function 

of chemical treatment time (blue = sensitive cell line; orange = resistant cell line). Values are 

normalized to control treatment

(G) SW157765 dose response in H460 cells with and without deletion of CYP411

McMillan et al. Page 35

Cell. Author manuscript; available in PMC 2019 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(H) Viability of cells treated with either DMSO, SW001286 (5µM) or co-treated with 

SW001286 (5µM) and HET-0016 (100nM) for 72 hrs

(I) CDF plot comparing SW001286 sensitivity (ED50) of cell lines with high expression of 

CYP4F11 and LKB1 mutations (red) to wild-type cell lines (grey)

(J) siRNA depletion of ACC1 or a non-targeting control (NC) followed by 72 hr SW001286 

treatment (HCC44= 5µM; H2122=1µM).

(K) THZ1 ED50 plotted as a function of ABCG2 mRNA expression (log2 FPKM). Pearson 

R=.64, p=4.6E-10

(L) siRNA depletion of ABCG2 or non-targeting control (NC) followed by 72 hrs THZ1 

treatment (50nM) in H157 cells.
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Figure 3. Glucocorticoid sensitivity is predicted by Notch2 mutations
(A) 2-way hierarchical cluster of 5 glucocorticoid AUC values across 100 NSCLC cell lines

(B) Rank-ordered ED50 values for methylprednisone are indicated as heatmap (top row). 

Mutation status for NOTCH2 is shown below

(C) CDF plot comparing ranked mRNA expression of genes in the indicated gene set (z-

scores) in GC sensitive (blue) and resistant cell lines (orange; KS-test p=.003)

(D) siRNA depletion of NR3C1 or a non-targeting control (NC) followed by 72 hrs 

hydrocortisone treatment (3µM) in H2073 cells.
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(E) Log2 mRNA expression of NR3C1 in GC responsive and non-responsive cell lines 

(illumina BeadArray)

(F) Changes in NR3C1 mRNA 72 hrs post-GC treatment (5 µM) in 2 sensitive and resistant 

cell lines, normalized to untreated cells

(G) Dose response curves of cell lines grown in 3D spheroid models in response to 

methylprednisone. Cell lines that were sensitive (blue) or resistant (orange) to GC’s in 

standard 2-D cell-culture were evaluated in 3D. (n=8/dose)

(H–I) Changes in (H) HES1 and (I) Cyclin D1 protein expression 72 hrs post-GC treatment 

(5 µM) in sensitive and resistant cells

(J) Flow cytometric histograms for H1993 cells transfected with HES1-pCMV-AC-GFP and 

treated 72 hrs post-GC treatment (5 µM). The propidium iodide signal of cells gated by GFP 

fluorescence is graphed. Nocodazole (100 ng/mL) was added 48 hrs post-treatment to force 

accumulation of proliferating cells in G2/M over the course of the next 24 hrs
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Figure 4. Biological diversity among robust chemical/genetic associations
(A) ED50 values of the testing set cell lines predicted to be sensitive (blue) and resistant 

(orange) to each indicated chemical. Dashes indicate class means. Red font indicates 

chemicals with successfully predicted selectivity profiles (KS-test p-values <.05)

(B) ED50 values of cell lines grown in 3D spheroid format in response to the indicated 

chemicals. Cell lines that were sensitive (blue) or resistant (orange) to each chemical in 

standard 2D cell-culture were evaluated. Dashes indicate class means. Chemicals for which 

2D selectivity is preserved in 3D (KS-test p<.05) are highlighted in red
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(C) CDF plot comparing SW036310 sensitivity (AUC) of TTC21B mutant (red) to wild-type 

cell lines (blue). (Scanning KS p<.0002)

(D) Dose response curves of cell lines grown in 3D spheroid models in response to 

SW036310. Cell lines that were sensitive (blue) or resistant (orange) to SW036310 in 

standard 2D cell-culture were evaluated (n=8/dose)

(E) SW036310 sensitivity (AUC) plotted as a function of Ciliobrevin sensitivity (AUC). 

Pearson R = .88; p=.0041

(F) SW140154 sensitivity (ED50) plotted as a function of SW151511 sensitivity (ED50). 

Pearson R=−.62, p= .00036

(G) Predictive mRNA expression signature specifies sensitivity to SW140154 and 

SW151511. Rank ordered ED50 values are indicated as a heatmap (top row). Log2 FPKM 

values are plotted below

(H) Cell line sensitivities outside the training set were predicted based on associated elastic 

net models of SW140154 and SW151511. Boxplot represents AUC values for each 

prediction class (Orange = predicted resistant, blue = predicted sensitive).

(I) SW151511 responsive cells show enrichment of KEGG TLR Signaling compared to 

SW140154 non-responsive cell lines. (GSEA ES = .39)

(J) Dose response curves of cell lines grown in 3D spheroid models in response to 

SW151511. Cell lines that were sensitive (blue) or resistant (orange) to SW151511 in 

standard 2-D cell-culture were evaluated. (n=8/dose)

(K) CDF plot comparing GSK-923295 sensitivity (ED50) of cell lines with co-occurring 

mutations in TP53 and KEAP1 (red) to wild-type (blue). (Scanning KS p<.0002)

(L) Dose-response curves for cell lines outside the training set predicted to be sensitive 

(blue) and resistant (orange) to GSK-923295
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Figure 5. Chemical response associations among KRAS mutant NSCLC lines
(A–B) Cell lines clustered (APC) according to (A) similarity of ED50 responses to the 

“POPS” and (B) similarity of gene expression (RNAseq). Cell lines (nodes) are colored 

according to KRAS status (blue = KRAS mutant, red= KRAS WT)

(C) 2-way hierarchical cluster of KRAS mutant cells according to response to POPs (ED50). 

Red = cherry-picked dataset

(D) CDF plot comparing SW157765 sensitivity (AUC) of cell lines with co-occurring 

mutations in KRAS and KEAP1 (red) to wild-type (blue; p<.0002; KS-test)
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(E) Dose response curves of 5 cell lines not included in the original training panel in 

response to SW157765 (blue=KEAP1, KRAS mutant, orange = WT)

(F) Dose response curves of cell lines grown in 3D spheroid models in response to 

SW157765. Cell lines that were sensitive (blue) or resistant (orange) to SW036310 in 

standard 2-D cell-culture were evaluated (n=8/dose)

(G) Heatmaps relate SW157765 sensitivity to predictive biomarkers. Cell lines are ranked by 

response (AUC; top panel). For each cell line the co-occurrence of mutations in KEAP1 and 

KRAS, NRF2 mutations and RNAseq based log2 FPKM expression values for KEAP1 are 

shown below

(H) Dose response curves in response to SW157765 of cell lines outside the training set with 

high (blue) and low (orange) mRNA expression of an NRF2 regulated gene signature

(I) protein expression of NRF2 and CYP4F11 post-siRNA mediated depletion of NRF2 or a 

non-targeting control (NC). siNRF2 oligos were transfected individually or as a pool

(J) siRNA mediated depletion of NRF2 or a non-targeting control (NC) followed by 72 hrs 

SW157765 treatment in A549 cells. Dose response curves are shown. siNRF2 oligos were 

individually transfected or transfected as a pool

(K) siRNA mediated depletion of KRAS or a non-targeting control (NC) followed by 72 hrs 

SW157765 treatment in H2122 and A549 cells. Dose response curves are shown (n=6/dose)

(L) The percent remaining of SW157765 in H2122 cells transfected with siKRAS (orange) 

or a non-targeting control (NC, blue) plotted as a function of chemical treatment time

McMillan et al. Page 42

Cell. Author manuscript; available in PMC 2019 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. SW157765 sensitive cell lines define a KRAS mechanistic subtype addicted to GLUT8 
mediated glucose transport
(A) LC/MS binding signals for ~14,000 proteins tested for the ability to bind to SW157765.

(B) siRNA mediated depletion of GLUT8 (blue) or a non-targeting control (grey; NC) in 

SW157765 sensitive and resistant cell lines.

(C) Cellular accumulation of fluorescently labeled 2DG in sensitive and resistant cell lines 

72 hrs post-SW157765 treatment (purple= 1µM; blue = 5µM) or DMSO treatment.

(D) Cellular accumulation of fluorescently labeled 2DG in H647 (KEAP1, KRAS mutant) 

cells post-siRNA depletion of GLUT1 and GLUT8
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(E) Incorporation of [13C6] into serine (SerM3) and glycine carbons (GlyM2) in SW157765 

sensitive (n=12) and resistant (n=57) cell lines at 24 hours post-label incubation

(F–G) Relative viability (z-scores) of SW157765 sensitive and resistant cells in response to 

(F) siATF4 (G) and siPHGDH

(H) Incorporation of [13C6] into serine (SerM2) in H647 cells 24 hrs post-SW157765 or 

DMSO treatment

(I) Incorporation of [13C6] into serine (SerM3) and glycine (GlyM2) carbons in SW157765 

sensitive and resistant cells 6 hrs post-SW157765 or DMSO treatment

(J) Protein expression of PHGDH in KEAP1, KRAS mutant, SW157765 sensitive cell lines 

(A549, H460, and H647) and KEAP1, KRAS mutant unanticipated non-responders 

(DFCI024, HCC44, H2030, HCC4019)

(K) Dose response curves of HCC44 cells and HCC44 cells stably expressing either 

PHGDH or PHGDHV490M in response to SW157765

(L) SW157765 response (AUC) in CYP4F11 and PHDGH positive breast cancer cell lines 

(blue) compared to CYP4F11, PHGDH negative cell lines (orange)
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