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Abstract

The variation and taxonomic diversity among mammalian gut microbiomes raises several 

questions about the factors that contribute to the rates and patterns of change in these microbial 

communities. By comparing the microbiome compositions of 112 species representing 14 

mammalian orders, we assessed how host and ecological factors contribute to microbiome 

diversification. Except in rare cases, the same bacterial phyla predominate in mammalian gut 

microbiomes, and there has been some convergence of microbiome compositions according to 

dietary category across all mammalians lineages except Chiropterans (bats), which possess high 

proportions of Proteobacteria and tend to be most similar to one another regardless of diet. At 

lower taxonomic ranks (families, genera, 97% OTUs), bacteria are more likely to be associated 

with a particular mammalian lineage than with a particular dietary category, resulting in a strong 

phylogenetic signal in the degree to which microbiomes diverge. Despite different physiologies, 

the gut microbiomes of several mammalian lineages have diverged at roughly the same rate over 

the past 75 million years; however, the gut microbiomes of Cetartiodactyla (ruminants, whales, 

hippopotami) have evolved much faster and those of Chiropterans much slower. Contrary to 

expectations, the number of dietary transitions within a lineage does not influence rates of 

microbiome divergence, but instead, some of the most dramatic changes are associated with the 

loss of bacterial taxa, such as those accompanying the transition from terrestrial to marine 

lifestyles and the evolution of hominids.
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Introduction

There is tremendous variation in the composition of the gut microbiomes of mammalian 

species—and even among individuals of the same species. Both genetic and environmental 

factors, such as sex, geography, diet, and disease-state, contribute to differences in microbial 

community composition among individuals (Degnan et al. 2012; Bonder et al. 2016; Gilbert 
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et al. 2016). Across a broad taxonomic range, the gut microbiome often appears adapted to 

assist in metabolic processes related to host diet (Muegge et al. 2011a; Delsuc et al. 2014b; 

Sanders et al. 2015a). For example, in contrast to dolphins, baleen whales harbor bacteria 

that specialize in degrading chitin, a prominent component of the invertebrate exoskeletons 

that comprise their diet (Sanders et al. 2015a). Even at the level of individuals, changes in 

diet or feeding regimes have been shown to alter microbial community compositions in both 

humans and mice (Wu et al. 2011; David et al. 2014; Carmody et al. 2015).

The gut environment is subject to a constant influx of microbial colonizers, and yet, 

mammalian species harbor distinct microbiomes and can be readily differentiated based on 

their resident microbes. Among very recently diverged species with similar diets, and even 

in cases where co-occurring species participate in microbial transfer, it is possible to 

partition host species based on their microbiomes (Moeller et al. 2013; Song et al. 2013; 

Amato et al. 2015). And while it has repeatedly been shown that variation in environmental 

factors, such as diet and lifestyle, contribute to differences in the microbiome composition in 

human populations (De Filippo et al. 2010a; O’Keefe et al. 2015; Rampelli et al. 2015), 

genetic factors have also been shown to play a role. Genome-wide studies indicate that 

individuals of different ethnicities experience varying levels of selection on genetic sites 

associated with microbiome composition (Blekhman et al. 2015). Furthermore, genetic 

differences among individuals are associated with the abundance of certain microbial taxa 

(Goodrich et al. 2014, 2016a; Davenport et al. 2015)

Despite the high level of host- and species-specificity of gut microbiomes, and the potential 

for rapid change in response to diet and environment, it was recently reported that 

microbiome composition diverges at a relatively constant rate over evolutionary timescales 

(Moeller et al. 2014). Comparisons of samples from great apes revealed that species 

accumulate differences in microbiome composition in a clocklike manner, but that humans 

show accelerated divergence due to the loss of microbial diversity arising from changes in 

lifestyle and diet. To explore how microbiomes diverge across different taxonomic groups, 

we analyzed the microbiome compositions of over 100 mammalian species, and assessed the 

taxonomic and dietary factors contributing to microbiome diversification. Among major 

mammalian orders, there is substantial variation in rates of microbiome divergence, with two 

of the most intensely sampled orders, Cetartiodactyla and Primates, presenting opposite 

trends. Microbiome divergence in the Cetartiodactyla lineage is associated with changes in 

diet and environment, whereas Primates steadily accumulate differences in their microbiome 

composition regardless of diet.

Materials and Methods

Data acquisition and taxonomic sampling

Sequence data used to assess gut microbial diversity were obtained for an initial total of 116 

species representing 14 orders of mammals, as available from the QIITA website 

(qiita.ucsd.edu) and other sources (Table S1). Because DNA extraction methods can affect 

the recovery of certain bacterial taxa (Yuan et al. 2012), we limited analyses to studies that 

applied a bead-beating approach to obtain DNA from fecal samples (Table S2). Due to the 

variation in the numbers of individuals sampled from each species (which ranged from one 
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to several hundred individuals), we randomly selected five individuals from each of the 

species datasets for which larger numbers of samples were available. In the two instances 

where a particular species was surveyed in two separate studies where more than five 

conspecifics were sampled, we included individuals from both studies (Table S2). Because 

several of the samples from insectivorous species showed signs of contamination from soil 

bacteria (Delsuc et al. 2014), we included only those samples that passed a source-tracking 

threshold set by the authors. To determine how well samples of this size represent total 

microbial diversity, we performed a subsampling procedure on the datasets of Pan paniscus 
and Gorilla gorilla (Figure S1).

Sequence quality filtering and preprocessing

Sequence files were visualized for quality in FastQC, and sequence reads were trimmed and 

filtered with Prinseq (Andrews & others 2010; Schmieder & Edwards 2011). Only reads 

with average quality scores >25 over a 20-nucleotide window were retained. For studies that 

did not release FASTQ data, the available FASTA files were merged with the quality-filtered 

FASTQ files. Reads were sorted according the particular 16S rRNA region they overlapped 

(V2 or V4). For each of the region-specific datasets, reads were aligned in mothur (Schloss 

et al. 2009) to the SILVA reference database (Quast et al. 2012) and trimmed at uniform 

positions (V2: 200 nt ending at position 6333; V4: 100 nt beginning at position 13862). 

Because sequence datasets varied in length, these positions were selected to maximize the 

number of sequences overlapping a uniform region. Sequences whose lengths fell short of 

75% of either of the defined regions were removed.

Microbial community analysis

Estimates of diversity within and among taxonomic ranks were calculated on the V2 and V4 

regions separately. Sequences were clustered de novo into 97% OTUs with Vsearch 
(Rognes et al. 2016). Sequences aligning with less than 70% identity to the SILVA reference 

database (Quast et al. 2012) and those deemed chimeric by UCHIME (Edgar et al. 2011) 

were removed. Further processing and analysis were performed with QIIME (Caporaso et 
al. 2010), such that OTUs represented by a single read as well as those that could not be 

assigned to Bacteria or Archaea (including unassigned, chloroplast, and eukaryotic 

sequences) were removed. Samples that did not rarefy to the threshold number of sequences 

(V2: 1500 sequences; V4: 5000 sequences) were also omitted, reducing the number of 

species included in our analyses to 112 (Table S2). Due to the differences in sequencing 

platforms and variation in sampling depth of published studies, rarefaction depths were 

chosen to maximize number and diversity of hosts sampled. Because the number of 

individuals per species ranged from 1 to 5, reads from all individuals of a species were 

collapsed into a single pool. We rarefied the collapsed single pool 10 times and averaged 

OTU counts across the rarefactions to generate a representative sample for each species.

Comparing microbial diversity by host lineage and diet

Host diet and body mass information were obtained from published sources (Table S1). Host 

species were consolidated into four dietary categories: herbivore, omnivore, predatory 

carnivore (i.e., eating vertebrate prey) and invertivorous carnivore. This last dietary category 
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includes baleen whales, myrmecophagous mammals, and some bat species, as their diet is 

principally invertebrate-based. In contrast, insectivores that consume a wide range of plants, 

such as the nine-banded and pink-fairy armadillos, were designated as omnivores.

The relationship between body mass and microbial diversity was analyzed with Kendall rank 

correlation tests. Microbial diversity was indexed by both a taxonomic metric (total number 

of OTUs) and a phylogenetic metric [Faith’s Phylogenetic Diversity (Faith 1992)]. To 

investigate the phylogenetic independence of these trends, we conducted a PGLS analysis 

using a Brownian motion model of evolution (Felsenstein, 1985). We performed Kendall 

rank correlation tests among taxa assigned to the various dietary categories. To determine 

the relative influence of small-bodied organisms on the relationship between body mass and 

microbial diversity, we repeated the analysis after excluding species weighing more than one 

kilogram. Furthermore, this analysis was also implemented within selected host lineages—

termed the “K-T lineages”—that all originated around the time of the K-T mass extinction 

and that contained more than five sampled species. In the V4 dataset, five lineages 

(Carnivora, Cetartiodactyla, Chiroptera, Primates, and Xenarthra), and in the V2 dataset, 

three lineages (Carnivora, Cetartiodactyla, and Primates) met these criteria.

To compare the relative influence of host dietary category and K-T lineage, we performed a 

perMANOVA analysis on unweighted uniFrac distances using 999 permutations. We 

compared the relative abundances of bacteria and archaea at various taxonomic ranks, 

ranging from phyla to 97% OTUs (roughly equivalent to species), using Kruskal-Wallis 

tests, applying a Bonferroni correction for multiple testing (Supplemental Data). We 

determined microbial lineages that were significantly enriched in species assigned to a 

particular dietary category or host phylogenetic lineage. We also calculated the core 

microbiome (microbial lineages present in over 95% of the species) across all mammals as 

well as individually for each mammalian order, for each K-T lineage, and for taxa within 

each of the dietary categories. Beta-diversity was visualized with PCoA plots ordinated by 

weighted and unweighted UniFrac distances on each of the region-specific datasets.

Host phylogenies

Divergence times for the major mammalian lineages and radiations were obtained from 

published sources (Table S3). Genera were assumed to be monophyletic, such that 

intergeneric divergence times could be applied to all species within a given genus. In those 

few instances where published phylogenies showed incongruencies in the branching order of 

closely related clades, we considered the node as an unresolved polytomy.

Rates of microbiome divergence

Average rates of microbiome divergence within each of the K-T lineages were based OTU 

dissimilarities among species’ microbiomes in relation to the corresponding species’ 

divergence times. To test whether the microbiome divergence rates among K-T lineages 

were consistent among different dissimilarity metrics, we calculated the microbiome 

divergence rate applying both phylogenetic metrics (unweighted and weighted UniFrac) and 

non-phylogenetic metrics (Bray-Curtis dissimilarity and percentage of shared OTUs) of 

dissimilarity. Phylogenetic metrics give more weight to the gains and losses of divergent 
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microbial taxa than to those taxa that just pass the 97% OTU threshold. Moreover, these 

metrics offer an additional perspective on microbiomes dissimilarity in that some account 

for the relative abundance of microbial taxa whereas others are based only on the presence/

absence of microbial taxa. The percentage of shared OTUs was calculated by dividing the 

number of shared OTUs by the total number of OTUs between two taxa, with the percentage 

of unique OTUs is equal to 100 minus the fraction of shared OTUs.

We calculated microbiome divergence rates for all examined species in the V2 and V4 

datasets and within each of the K-T lineages. We did not include intraspecies comparisons of 

microbiome composition because these data were not available for all species. We also 

determined the microbiome divergence rate within selected sublineages that had a common 

ancestor (MRCA) within the last 30 million years (for example, the Cetartiodactyla lineage 

as well as its monophyletic sublineages Cetacea and Ruminantia). Analyzing sublineages 

within a clade allows recognition of any deviations in microbiome divergence rates. To 

evaluate the influence of host phylogeny on microbiome dissimilarity, we performed Mantel 

tests between matrices of host divergence times and microbiome dissimilarities with 10,000 

permutations.

To examine the effect of host dietary changes on rates of microbiome divergence, we sorted 

all pairwise comparisons among hosts into subcategories denoting whether their diets were 

the same or differed. In addition to the six possible transitions among the four dietary 

categories, we distinguished whether species are of the same dietary category due to 

common ancestry or dietary convergence, resulting in eight additional subcategories. (To 

distinguish dietary convergence from common ancestry, we examined the phylogenetic 

relationships of hosts and determined whether all species descended from the common 

ancestor of the focal species have the same diet.) For this analysis, we pooled all pairwise-

difference values for the V2 and V4 regions and in cases where a particular species-pair was 

compared for both the V2 and V4 regions, the mean dissimilarity was calculated. For each 

of the 14 diet-change subcategories, the relationship between divergence time and 

dissimilarity was analyzed with Kendall rank correlation tests. To compare rates of 

microbiome divergence among host lineages and dietary change subcategories, we generated 

95% confidence intervals by bootstrapping 5,000 replicates for both the slope and y-

intercept in a linear regression of microbiome dissimilarity and divergence time.

Results

Body size, diet, and gut microbial diversity

Microbial diversity within gut microbiomes is reported as being higher in larger hosts 

(Godon et al. 2016). This trend manifests only when all taxa are considered, and it is not 

evident in each of the individual dietary categories or when the smallest organisms (those 

weighing less than one kilogram) are excluded (Figure 1a). Furthermore, this trend also 

depends on the taxonomic scale at which the association is examined (Figure 1b). Focusing 

initially on variation detected in the V4 region rarefied to depths of 5000 reads per 

individual (since this maximizes the number and taxonomic breadth of species being 

compared), we detect a positive association between body mass and microbial diversity 

(PGLS, p = .05). After separating taxa into different dietary categories, herbivores exhibit 
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the largest gain in microbial diversity with body size, increasing, on average, at about twice 

the rate of omnivores and carnivorous invertivores (Figure 1a).

Among carnivores, the association between body mass and gut microbial diversity is 

restricted to invertivores, and there is no significant relationship in predatory carnivores. We 

examined the relationship between body mass and gut microbiome diversity in additional 

ways to determine the strength of the association in different taxonomic or dietary groups, 

and to identify factors that might contribute to the trend. Herbivores, which showed the 

strongest trend, typically have the highest gut microbial diversity (although the giant 

armadillo, an insectivore, exhibits the same level of microbial diversity as that of large 

herbivorous ruminants), whereas predatory carnivores harbor the lowest gut microbial 

diversity, with larger hosts having roughly the same, or sometimes lower, numbers of OTUs 

than smaller hosts.

Notably, the gut microbiomes of all sampled mammals weighing less than 100 grams, 

regardless to which dietary category they were assigned, contain low numbers of 97% OTUs 

(Figure 1a). Excluding these small-bodied hosts from the analysis reveals that only 

herbivores—not omnivores or either invertivorous or predatory carnivores—exhibit a 

significant increase in microbial diversity with body mass, as indexed by total number of 

OTUs (Figure 1a) or by Faith’s Phylogenetic Diversity (Figure S2).

Furthermore, confining analyses to the K-T lineages (i.e., the five mammalian orders 

originating at the K-T boundary that each contained more than five sampled species), we 

find that none exhibits a significant positive relationship between body mass and microbial 

diversity (Figure 1b) and that some display a negative association. The decrease in microbial 

diversity with body mass in several of these K-T lineages can be traced to dietary differences 

among the constituent taxa. For example, within the Cetartiodactyla, carnivorous marine 

Cetaceans (toothed and baleen whales) have the largest body masses and gut sizes, but 

harbor significantly lower gut microbial diversity than do ruminants.

Aside from differences in microbial diversity that are attributable to body size and diet, 

several other features emerged from these comparisons. For example, marine-dwelling 

herbivores harbor less microbial diversity than land-dwelling herbivores of comparable size

—a trend observed for different mammalian groups in several geographic locations (such as 

manatees and hippos). Among primates, humans, which were already known to possess the 

lowest microbial diversity among the great apes, maintain about twice the gut microbial 

diversity of the Goeldi's monkey, which has a diet predominated by fungi (Porter et al. 
2007). When microbial diversity is assessed by Faith’s Phylogenetic Diversity, the trends 

observed for the V4 datasets are almost identical to those observed when microbial diversity 

is assessed by the number of OTUs (Figure S2). Many of the associations reported above 

were also observed in the V2 dataset, but fewer reach statistical significance due to the 

smaller number of sampled species (Figure S3).

The influence of diet and phylogeny on microbiome contents

Both the breadth of taxonomic diversity and the relative abundances of bacterial lineages 

vary substantially with host taxonomy and diet. Four bacterial phyla—Actinobacteria, 
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Bacteroidetes, Firmicutes, and Proteobacteria—constitute the core mammalian microbiome 

(i.e., present in over 95% of all samples). Among the K-T lineages, Chiropterans are 

enriched in Proteobacteria and are the most compositionally distinct, whereas Bacteroidetes 

and Firmicutes predominate in the other lineages (Figure 2). Accordingly, when species are 

ordinated based on OTU composition, Chiropterans generally group together (yellow 

symbols in Figure 3), whereas other taxa assort according to both host phylogeny and 

dietary category. Excluding Chiropterans from the analysis, the PCoA plot separates 

herbivores, which are enriched in Bacteroidetes and other less abundant phyla (such as 

Planctomycetes and Verrucomicrobia) from primary carnivores, with omnivores and 

invertivores situated intermediate to the two (Figure 3). Although the V2 dataset was not as 

extensive in its coverage of host species, it also separates herbivorous from carnivorous 

species (with the exception of the herbivorous panda), with omnivorous species intermediate 

to these two clusters (Figure S6). Notably, predatory mammals form a distinct cluster due to 

the high relative abundance of Fusobacteria, as previously reported (Roggenbuck et al. 2014; 

Nelson et al. 2013).

Within the four phyla that constitute their core microbiome, all surveyed mammals possess 

two classes of Firmicutes (Bacilli and Clostridia) and two classes of Proteobacteria (Beta- 

and Gamma-) (Table S4). Although a single order, Clostridiales, is part of the mammalian 

core gut microbiome, within this order, herbivores and carnivores harbor different families 

(Ruminococcaceae and Peptostreptococcaceae, respectively) (Table S5). Herbivores harbor a 

greater microbial diversity at almost every taxonomic level.

Based on a perMANOVA analysis, phylogenetic lineage has a larger relative effect on 

microbiome composition (Psuedo-F 4,83 = 5.90, p < .001) than does host dietary category 

(Pseudo-F3,83 = 2.81, p < .001), as evident by the observation that the relative abundances of 

several microbial lineages differ among K-T lineages but not among dietary categories 

(Tables S6 and S7). At lower taxonomic ranks, the majority of bacterial lineages are more 

likely to be associated with a particular K-T lineage rather than with a particular dietary 

category, even though non-Chiropteran species still sort according to diet when clustered 

using a phylogenetic method (Figure 3). Approximately 10% (40) of archaeal and bacterial 

families vary significantly in their abundances according to host lineage (Table S6), whereas 

only 2% (8) families vary significantly according to host dietary group (Table S7). K-T 

lineages also vary dramatically in the number of bacterial lineages that constitute their core 

microbiomes: Cetartiodactyla species share just a single family (Clostridiaceae), whereas 

Xenarthran species share 15 families from five phyla as part of their core microbiome (Table 

S4).

Host divergence affects microbiome dissimilarity

Although divergent host species assigned to the same dietary category share several bacterial 

taxa, there is a strong phylogenetic signal in the degree to which microbiomes diverge, such 

that more closely related species generally exhibit more similar communities of bacteria 

(Figure 4). Based on unweighted UniFrac dissimilarities, approximately 1.5% of shared 

phylogenetic branch-length between gut microbiomes is lost every 10 million years (Table 

S8). Based on a non-phylogenetic metric, this amounts to a loss of about 2% of shared OTUs 
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over the same interval of time (Figure S7, Table S8). This relationship is confounded by the 

fact the closely related organisms often have more similar lifestyles, diets and niches; 

however, the trend persists over long evolutionary timescales. There is a significant positive 

relationship between divergence time and microbiome dissimilarity spanning 100 million 

years of mammalian evolution—an association maintained despite numerous instances of 

dietary convergence among species from different lineages and of closely related species 

occupying very different environments. Although the V2 and V4 regions furnish different 

amounts of variation, when considering all mammals, both datasets yield roughly the same 

absolute rate of microbiome divergence (Figure 4).

The relationship between microbiome dissimilarity and host divergence plateaus and is best 

fit by a polynomial second-order function (Voung’s closeness test, p < .0001). To establish 

the date of this saturation point, we calculated the intersection between the random 

expectation of dissimilarity between any two species and the regression model. All four 

dissimilarity metrics reached a saturation point between 65 and 75 million years ago (Figure 

S7). Therefore, K-T lineages represent an appropriate timescale to make meaningful 

comparisons among host lineages because the majority share a common ancestor that 

diverged around this time. Among the K-T lineages, Chiroptera and Cetartiodactyla display 

rates of microbiome divergence that differ significantly from the mammalian average both in 

terms of percentage of shared OTUs and percentage of unweighted UniFrac distance lost per 

10 million years (Table 1) as well as the other surveyed dissimilarity metrics (Table S8). The 

Cetartiodactyla microbiomes diverge at roughly three times the average rate, whereas 

Chiropteran microbiomes diverged at rates that were significantly slower. For Carnivora, the 

rate of microbiome divergence could only be assessed with the V2 dataset, for which a 

greater range of species was sampled, and the resulting rate was similar to the average (Table 

S9). Additionally, three mammalian lineages, Perissodactyla, Rodentia, Afrotheria (which 

were not considered K-T lineages due to their more limited sampling) show similar patterns 

of divergence (Figure S8).

Effects of dietary change on rates of microbiome divergence

To determine the effect of dietary transitions on the rate of microbiome divergence, we first 

asked whether related species of the same dietary category displayed different degrees of 

microbiome dissimilarity depending on whether their diet arose through shared ancestry or 

by convergence. Overall, comparisons among species that evolved the same diet 

independently had higher microbiome dissimilarity than those species that maintained the 

same diet since descending from a common ancestor (p < .0001), a result that was apparent 

for hosts in all dietary categories (Figure 5a). One potentially confounding factor is that 

species that have undergone dietary convergence are more distantly related than those 

species having the same diet due to ancestry, so we limited our analyses to taxa where there 

were no biases in divergence times and obtained the identical result (p < .0001).

To determine whether particular types of dietary transitions are associated with enhanced 

levels of microbiome dissimilarities, we analyzed 14 categories of dietary transitions within 

the K-T lineages (thereby excluding comparisons among species that diverged over 75 

million years ago). We observed positive relationships between host divergence time and 
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microbiome dissimilarity in those cases where species have the same diet due to ancestry, 

but not in cases where species acquired the same diet independently (Figure 5a). The 

transition between carnivory and herbivory produces the steepest rates of microbiome 

divergence, and for two of dietary transitions—i.e., the transition between carnivorous 

invertivore and omnivore, and between carnivorous invertivore and predatory carnivore—

there were negative associations between divergence time and microbiome dissimilarity 

(Figure 5b). However, the number of observations limited the statistical power to compare 

divergence rates across dietary categories.

How constant is the rate of microbiome divergence?

To examine whether microbiome divergence occurs in periodic bursts or at more uniform 

rates, we analyzed subclades within those K-T lineages in which multiple sister taxa were 

sampled and whose representative species span different divergence intervals. Within 

Primates, both the Old World Monkey (OWM) lineage and the New World Monkey (NWM) 

lineage display linear, but highly accelerated, rates of microbiome evolution over the past 20 

million years (Figure 6). When humans are excluded, the rate of microbiome divergence in 

Hominidae is very similar to the rate observed in OWM, with species’ microbiomes losing 

8% of their shared phylogenetic branch length and 10% of their shared OTUs per 10 million 

years. Rates of microbiome divergence in each of these primate families are 10 times faster 

compared to the rate observed across all Primates, again supporting the view that the extent 

of microbiome divergence reaches a saturation point.

In contrast to Primates, in which changes in the microbiome occur at a relatively constant 

rate, changes to the Cetartiodactyla microbiome occur with periodic bursts in response to 

changes in diet and environment. When Cetartiodacytla are categorized by diet, there is no 

significant trend between divergence time and microbiome dissimilarity. However, we 

observe significant differences in microbiome dissimilarity among species that share the 

same diet versus those with different diets.

Analytical Constraints

Because this study derives data from multiple sources, several factors, such as differences in 

sampling (wild vs. captive individuals; taxonomic coverage of host species) and/or 

sequencing protocol could potentially affect estimates of microbiome diversity and 

comparisons across samples. The available datasets did not allow direct comparisons of wild 

and captive individuals of the same species; however, we observed no significant difference 

in the microbiome divergence rates of captive or wild individuals (Figure S9). Similarly, 

neither the sequencing method nor the particular 16S rRNA region sequenced had a 

significant effect on microbiome composition (Table S10). However, DNA extraction 

method yielded a significant effect on microbiome composition, but its effect was slight 

relative to biological factors, such as diet and K-T lineage.

Discussion

We amassed microbiome data from a phylogenetically diverse cohort of over 100 

mammalian host species to analyze the pace of evolution in microbial community 
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composition and the factors that contribute to gut microbiome divergence. Previous studies 

have shown that there is a broad phylogenetic signal in the divergence of microbiomes but 

that other factors, most notably diet and body mass, influence the diversity and composition 

of gut microbial communities (Ley et al. 2008; Ochman et al. 2010; Muegge et al. 2011a; 

Phillips et al. 2012; Delsuc et al. 2014b; Sanders et al. 2015a; Godon et al. 2016; Groussin et 
al. 2017; Hale et al. 2017). With this expanded sampling, we sought to determine the 

background rate at which microbiome changes accrue and the host features that accelerate or 

confine this rate. Overall, as taxa diverge, their microbiomes diverge as well—at a rate of 

approximately 2% of shared 97% OTUs or 1.5% of shared phylogenetic branch length lost 

every 10 million years. This rate of change is common to taxonomic groups that differ in 

their habitats and geographic ranges as well as in their feeding habits and the degree of 

heterogeneity of dietary-types within a lineage, and we use it as a baseline for comparing 

how mammalian microbiomes change over evolutionary timescales.

Because it is necessary to determine when comparisons of microbiome divergence are still 

meaningful, we plotted the degree of microbiome dissimilarity based on a variety of metrics 

against host divergence times. For each of the dissimilarity metrics, this saturation point, i.e., 

the point at which microbiome divergence asymptotes and no longer becomes more 

dissimilar with time, occurs between 65 and 75 million years ago. For those metrics based 

on the presence or absence of microbial lineages (i.e., unweighted UniFrac and % shared 

OTUs), rare microbial taxa have a greater impact on the microbiome dissimilarity between 

host species. These unweighted metrics saturate at slightly later dates and explain a greater 

amount of variation than metrics based on the relative abundances of taxa (Figure S7).

Microbiome composition can fluctuate in response to dietary and environmental changes. 

Seasonal availability of food and modifications to the diet of individuals have been shown to 

influence microbiome composition in several mammalian species (Turnbaugh et al. 2009; 

Kohl & Dearing 2014; Davenport et al. 2014; Amato et al. 2014; Degnan et al. 2012; Sun et 
al. 2016; Gomez et al. 2016). In humans, adopting a high-protein diet increases the 

abundance of bile-tolerant bacteria, whereas a plant-based diet enriches microbial taxa that 

specialize in carbohydrate fermentation (David et al. 2014; O’Keefe et al. 2015), paralleling 

the differences observed in gut microbiomes of hunter gathers vs. humans in industrialized 

societies (Rampelli et al. 2015; Morton et al. 2015a).

Despite the potential for large shifts in the microbiome composition of individuals and the 

diversity within populations due to diet, mammalian species can be distinguished from one 

another based on their microbiome compositions (Nelson et al. 2013; Delsuc et al. 2014b; 

Moeller et al. 2014; Sanders et al. 2015a). Even though captivity can decrease microbial 

diversity (McKenzie et al. 2017) and “humanize” the composition of gut microbiomes 

(Clayton et al. 2016), the degree of similarity among the microbiomes of captive primate 

species remained largely concordant with host phylogeny, suggesting that species retain their 

lineage-specific microbial taxa during compositional shifts.

Although there is a pervasive phylogenetic signal in the microbiome composition of 

mammals, we detected several factors that alter rates of microbiome divergence. First is 

body size—the body masses of mammals surveyed span six orders of magnitude, and the K-
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T lineages at the extremes showed the most disparate rates of microbiome evolution. 

Cetartiodactyla, which include the most massive terrestrial and marine mammals (ruminants, 

hippopotami, whales), diverged significantly faster than the baseline rate, whereas 

Chiropterans (bats), the smallest hosts, diverged significantly slower. Chiropterans harbor 

the lowest microbial diversity, while Cetartiodactyla include several species that possess 

among the highest gut microbial diversity.

It was previously reported that microbial community diversity increases with host mass 

(Godon et al. 2016). It is noteworthy that the sampling by Godon et al., who initially 

reported the broad trend between body mass and gut microbial diversity, was biased towards 

herbivorous hosts. By sampling across a range of dietary categories, we find that larger hosts 

do not universally harbor more microbial diversity, and that the positive association between 

body mass and microbiome diversity is largely limited to herbivores. Omnivores and 

carnivores have simpler intestinal tracts and, unlike herbivores, their gut capacity does not 

scale linearly with body mass (Clauss et al. 2013; Karasov & Douglas 2013). This suggests 

that gut capacity, which depends both on gut physiology as well as host size, is a more 

accurate measure of microbial diversity than body mass alone. This is supported by that fact 

the smallest hosts, regardless of their dietary category, harbor about the same levels of 

microbial diversity, whereas the largest hosts show considerable variation (ranging from 50 

OTUs in carnivores to 1250 OTUs in herbivores), indicating that diet has a greater effect on 

microbial diversity and microbiome divergence in larger hosts. And although it has been 

suggested that larger, species-rich communities are less subject to turnover and change 

(Nemergut et al. 2013), we find there is no significant difference in the rates of microbiome 

divergence for different diet categories, even though herbivores tend to have much higher 

alpha diversity.

Contrary to what might be anticipated, the incidence of transitions between dietary 

categories within a lineage does not significantly alter its overall rate of microbiome 

divergence. Evaluating the number of actual to potential dietary transitions (i.e., the number 

of dietary transitions vs. the number of internal + terminal branches) within each of the K-T 

lineages, we find no acceleration in the rates of microbiome divergence related to the 

number of dietary changes (Table 1, Table S8). Chiropterans were assigned to all four 

dietary categories and display many dietary transitions but maintain the most slowly 

evolving microbiomes. This suggests that even after a dietary transition, gut physiology of 

the host restricts the composition of the gut microbiome. For instance, the giant panda 

switched to a strictly herbivorous diet roughly 2 million years ago but maintains carnivore-

like microbiome that reflects the constraints of a simple gastrointestinal tract with rapid 

transit time typical of its carnivorous/omnivorous relatives (Zhu et al. 2011; Xue et al. 2015). 

Additionally, Sanders et al. suggested that difference between microbiome composition of 

baleen whales and terrestrial invertivores is reflective of the pre-adapted artiodactyl multi-

chambered stomach. We find that the degree of microbiome divergence between two sister 

lineages that experienced a dietary transition is related to the age of the transition, showing 

the accumulation of microbiome changes is associated with phylogenetic distance.

A final factor found to influence rates of microbiome divergence is host lifestyle. Although 

host size and diet can confound the analysis of ecological factors, there are several cases 
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where marine mammals displayed lower levels of microbial diversity (Figure 1a) and 

accelerated rates of microbiome divergence in comparison to terrestrial mammals with the 

same diet. For example, the same dietary transition (e.g., herbivory and invertivorous 

carnivory) occurred in both the Cetartiodactyla and Xenarthra lineages. Yet, when such 

changes are associated with a transition from terrestrial to marine environments, the rates of 

microbiome divergence are augmented due to the loss of taxa (Table 1). Similarly, in 

primates, which over their 75-million year history have sustained the most constant rate of 

microbiome divergence among mammals, there has been an acceleration in the human 

lineage due to the dramatic loss of bacteria at all taxonomic levels (Moeller et al. 2014). 

When compared to other mammalian lineages, primates have more parental care and 

sociality (Clutton-Brock 1991; Storey & Ziegler 2016), which can both increase the 

potential for transmission and safeguard against loss of bacterial taxa (Tung et al. 2015; 

Moeller et al. 2016). Despite the high levels of social behavior in humans, the reduction of 

microbial diversity and accelerated divergence of human microbiomes have been ascribed to 

changes in lifestyle, including dietary features, improved sanitation and antibiotic usage 

(Blaser & Falkow 2009; De Filippo et al. 2010b; Yatsunenko et al. 2012; Morton et al. 
2015b).

As previously shown, the microbiome compositions of mammalian species assort according 

to both diet and phylogeny (Ley et al. 2008; Ochman et al. 2010; Muegge et al. 2011b; 

Delsuc et al. 2014a; Sanders et al. 2015b). Host species with the same diet often converge on 

similar microbiome contents at high taxonomic ranks, whereas host phylogeny is associated 

with bacteria at lower taxonomic ranks (Groussin et al. 2017). This broad pattern is evident 

for the majority of K-T lineages: we find that diet serves as a good predictor of the relative 

abundance of some of the core bacterial phyla, such as Bacteroidetes, Firmicutes, and 

Proteobacteria, but at the level of bacterial family and genus, the number of taxa associated 

with a particular phylogenetic lineage outweighs the number associated with diet (Table S6, 

Table S7). Note, however, that this pattern does not hold true for Chiropterans, which cluster 

apart from other mammals regardless of host diet (Figure 3). Although tests based on 

differential abundance could potentially result in some false positives (Gloor et al. 2016; 

Weiss et al. 2017), the overall trend—that host phylogeny is associated with the diversity of 

microbes at lower taxonomic ranks and diet associated with the diversity of microbes at 

higher taxonomic ranks—would not be affected.

Our finding that Chiropteran microbiomes do not display either a strong dietary or 

phylogenetic signal conflicts with a previous study that reported a distinction between bats 

with plant and animal-based diets (Carrillo-Araujo et al. 2015). Additionally, there is an 

earlier report that the pattern of divergence among microbiomes of insectivorous bats was 

congruent with host phylogeny (Phillips et al. 2012). Because these studies sampled 

microbiomes from either intestinal mucosa or dissected segments of the gut—neither of 

which is not directly comparable to fecal samples—we did not include their data in our 

analyses. And in neither case was the reported pattern apparent in our more comprehensive 

dataset. Chiropterans have a gut physiology that reflects their volant lifestyle, and like bats, 

the microbiomes of small passerine birds do not assort by diet (Hird et al. 2015). Bats and 

small birds have evolved convergent adaptations to increase paracellular absorption during 
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the digestive process (Caviedes-Vidal et al. 2007; Price et al. 2015), suggesting that such 

digestive features may limit microbial diversity.

By analyzing a diverse set of mammalian species in a phylogenetic context, it was possible 

to identify several trends influencing microbiome composition that previously went 

unrecognized. Although mammals exhibit a robust phylogenetic signal dating back at least 

75 million years, such that a large component of microbiome divergence between taxa is 

time dependent. The rate at which microbiomes diverge is influenced by host size, gut 

physiology and environment but is relatively insensitive to diet and the number (or type) of 

dietary transitions within a lineage. The most anomalous order is the Chiroptera, where gut 

physiology has constrained the evolution of microbiome composition despite the numerous 

dietary changes that accompanied rapid speciation. At the opposite end of the spectrum, 

rates of microbiome divergence have greatly accelerated in Cetartiodactyls, accompanying 

the transition from terrestrial to marine environments, and in Hominids, during the evolution 

of the human lineage.
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Figure 1. Association between body mass and gut microbial diversity
Microbial diversity is expressed as the number of 97% OTUs present in each mammalian 

host (colored-coded dots) surveyed for sequence variation in the V4 region of 16S rDNA, 

rarefied to 5000 reads. (A) Host species sorted to dietary category. Solid lines correspond to 

the regression for species greater than 1 kg, and dotted lines correspond to the regression for 

all species, in a particular dietary category. After removing hosts <1 kg, only herbivores 

display a significant positive association (assessed by Kendall rank correlation test) between 

microbial diversity and body mass. (B) Host species sorted taxonomically. Color-coded 

ellipses enclose those host species assigned to one of the five K-T lineages. Note that there is 

no significant relationship between microbial diversity and body mass when hosts are sorted 

taxonomically and that this is particularly pronounced for Cetartiodactyla, in which large 

marine mammals have among the lowest OTU diversity.
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Figure 2. Phylogenetic relationships and gut microbiome compositions of mammalian hosts
Names of the five K-T lineages are boxed. Terminal branches are color-coded according to 

host dietary category. Taxonomic classification of gut microbes is at the level of phylum. 

Branching orders and divergence times obtained from sources listed in Table S3.
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Figure 3. Principal coordinates plot showing similarity in gut microbiome composition among 
hosts
Ordination based on unweighted Unifrac distances among 97% OTUs. Geometric shapes 

denote host dietary categories, with host lineages color-coded.
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Figure 4. Rate of microbiome divergence across mammals
Dissimilarities among species calculated from unweighted Unifrac distances of 97% OTUs 

for both the V2 (silver) and V4 (gold) datasets. Strengths of correlations assessed by Mantel 

tests with 10,000 permutations.
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Figure 5. Effect of dietary transition on rates of microbiome divergence
Dietary transitions inferred by parsimony from the phylogeny in Figure 2. Rates are based 

on comparisons among species that diverged < 80 million years ago. Microbiome 

dissimilarities among species were calculated from unweighted Unifrac distances of 97% 

OTUs. Strengths of associations were assessed with a Kendall rank correlation test. (A) 
Rates of microbiome divergence among species that have the same diet due to either dietary 

convergence (upper p and τ values) or common ancestry (lower p and τ values). Note that 

neither omnivores nor predatory carnivores with the same diet due to common ancestry had 
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sufficient comparisons to perform statistical tests. (B) Rates of microbiome divergence for 

different types of dietary transition.
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Figure 6. Similar rates of microbiome divergence in primate sublineages
Relationship between host divergence time and microbiome dissimilarity among three 

lineages of Primates: Hominidae, Old World monkeys (OWM), and New World monkeys 

(NWM). Circles represent comparisons between nonhuman apes, and triangles represent 

comparisons between humans and other hominid species. The dotted line represents the 

relationship within Hominidae when humans, whose gut microbiomes are known to evolve 

at accelerated rates (Moeller et al. 2014), are included. The strength of the correlation was 

assessed using a Mantel test with the complete set of possible permutations.
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