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Abstract

Opioid use disorder (OUD) is a significant health problem in the United States and many other
countries. A combination of issues, most notably increased prescription of opioid analgesics, has
resulted in climbing rates of opioid abuse and overdose over the last decade. This ongoing
epidemic has produced a growing population of patients requiring treatment for OUD.
Medications such as methadone and buprenorphine have well documented success rates in treating
the disorder compared with placebo. However, significant percentages of the population still fail to
maintain abstinence or reduce illicit opioid use while using such medications. Genetic variation
may play a role in this variability in outcome through pharmacokinetic or pharmacodynamic
effects on OUD medications, or by affecting the rate of negative side effects and adverse events.
This review focuses on the existing literature on the pharmacogenetics of OUD treatment, with
specific focus on medication metabolism, treatment outcomes, and adverse events.

1 Introduction

Opioids are a class of drugs that bind to opioid receptors and are typically used for the relief
of pain. They comprise licit drugs including buprenorphine, fentanyl, hydrocodone, and
oxycodone, and the illicit drug heroin. The use of opioids has dramatically increased in
recent years in the United States, driven primarily by the abuse of prescription opioids [1]. In
2015, it was estimated that 11.5 million Americans misused a prescription opioid and 1.9
million had a prescription opioid use disorder (OUD) [2]. In comparison, 329,000
Americans were current heroin users in 2015 [2]. The abuse liability of prescription opioids
is high with some studies reporting misuse behavior in approximately 25% of users [3]. An
estimated 80% of new heroin users cite prescription opioid use as their first exposure to
opioids [4], and OUD is one of the leading causes of admission into substance abuse
treatment programs [5]. The economic burden of the abuse of prescription opioids in the US
is substantial with US$78.5 billion lost every year due to crime, unemployment, and
healthcare costs, compared with an estimated US$50 billion lost due to heroin use [6, 7].
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Prescription opioid abuse is somewhat less notable outside of North America. For example,
Europeans were less likely to endorse lifetime nonmedical use of prescription opioids than
individuals from the US (7-13% vs 20%) [8]. However, OUD is still a significant issue
worldwide; the United Nations Office on Drugs and Crime estimated that opioids were
responsible for ~70% of the total global burden attributed to substance use disorders in 2015

[9].

OUD is defined according to the DSM-5 as a pattern of opioid use leading to clinically
significant impairment or distress indicated by the presence of two or more symptoms,
including withdrawal, tolerance, craving, and loss of control of use in a 12-month period.
OUD is typically a chronic relapsing disorder; however, there are a number of
pharmacological interventions that can help individuals manage withdrawal symptoms and
reduce illicit opioid use. OUD treatment programs frequently replace illicit opioids with
longer acting licit opioids that are less euphoric and as such have less abuse potential.
Methadone is an oral mu-opioid receptor (MOR) agonist with some affinity for ionotropic
glutamate receptors. It is commonly used to treat acute opioid withdrawal and also as part of
OUD treatment. Methadone has two enantiomeric forms, (R)-methadone and (S)-
methadone, and methadone is a racemic mixture of the two. Activation of the MOR is driven
by (R)-methadone, while (S)-methadone has little activity at the receptor. A meta-analysis of
methadone efficacy for the treatment of OUD found a significant effect of methadone
compared with non-pharmacological approaches [10]. Furthermore, methadone has been
shown to decrease mortality [11] and HIV infection rates [12] in those with OUD.

Another commonly used pharmacotherapy for the treatment of OUD is buprenorphine.
Buprenorphine is a weak MOR agonist and a partial kappa-opioid receptor antagonist [13].
It is most often administered sub-lingually or as a buccal film, and is also available as a 4:1
combination with the orally inactive opioid receptor antagonist naloxone to prevent injection
[14]. Buprenorphine acts to reduce withdrawal symptoms and also to block the effects of
other opioids, and has long-lasting effects up to 36 hours. OUD treatment with
buprenorphine has been shown to be superior to placebo for OUD [10]; however,
comparisons of methadone and sub-lingual buprenorphine suggest that methadone may be
superior when administered at the correct dose due to increased retention in treatment [10].
Two extended-release formulations of buprenorphine have also been approved for OUD
treatment in the US: Sublocade, a monthly subcutaneous depot injection, and Probuphine, a
subdermal implant that lasts 6 months. Extended-release buprenorphine may improve on the
treatment retention issues of the daily formulations of the medication.

Naltrexone is another Food and Drug Administration (FDA)-approved treatment option for
OUD. This compound is a MOR antagonist, and as such it produces no euphoria and has
little abuse potential. Naltrexone promotes abstinence by blocking the effects of opioids and
therefore individuals must be opioid free before commencing treatment. Naltrexone is
available orally as a tablet and blocks the effects of opioids for 24-36 hours. Meta-analytical
studies have found that due to poor adherence the rates of abstinence in oral naltrexone users
were not significantly higher than those in users treated with placebo or psychotherapy [15,
16]. For those individuals able to remain in treatment, oral naltrexone has some efficacy seen
as a reduction in the number of opioid-positive urine tests [17]. Oral naltrexone therefore
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may only be a suitable treatment option for those individuals highly motivated to stop using
opioids. Naltrexone is also available as an intra-muscular injection administered monthly
that uses an extended-release formula (XR-NTX). This form of naltrexone has been shown
to significantly decrease opioid cravings and increase the number of opioid-free days and
weeks abstinent in some patients [18, 19].

Meta-analysis of OUD treatment has found highly variable outcomes across trials,
suggesting that there may be pre-existing factors that are important in determining which
treatment is best for an individual [10]. Metabolism of methadone and buprenorphine is
highly variable between individuals [20, 21]. The use of other medications can also affect
methadone pharmacokinetics, potentially by affecting the cytochrome P450 enzymes
responsible for metabolizing methadone [20, 22]. Polymorphisms in the genes encoding
those enzymes are candidates to alter methadone pharmacokinetics and potentially alter
treatment outcomes, since higher doses are strongly associated with increased retention
during methadone or buprenorphine treatment [23]. Comorbid psychiatric disorders, stress,
alcohol abuse or dependence, and socioeconomic factors have been found to predict relapse
in a meta-analysis of patients treated for OUD with methadone, buprenorphine, or
naltrexone [24, 25]. Anxiety was specifically associated with continued opioid use during
methadone treatment [26], whereas anxiety, alcohol or benzodiazepine use, and hepatitis C
status predicted relapse in buprenorphine-treated patients [27, 28]. Genetic variation in
patient populations may also contribute to variability in outcomes. This review covers the
current knowledge on the pharmacogenetics of OUD treatment, including dose, metabolism,
treatment efficacy, side effects, and adverse events.

2 Pharmacogenetics of Opioid Use Disorder Treatment Dose and

Metabolism

2.1 ABCB1 and Methadone

The ABCBI gene (aka MDRI) encodes an efflux pump known as p-glycoprotein. P-
glycoprotein transports a wide variety of chemical substrates across the cell membrane in an
adenosine triphosphate (ATP)-dependent manner. As evidence suggests that methadone
interacts with p-glycoprotein in vitro and in rat models, it was hypothesized that ABCB1
genetic variation might have effects on methadone dosing or concentration of the drug in the
blood [29, 30]. An analysis of a 5 single nucleotide polymorphism (SNP) haplotype block in
ABCBI found an association with dose in Australian methadone maintenance patients
(Table 1) [31]. A subset of the variants in this haplotype block (rs1045642, rs2032582, and
rs1128503) were also studied in a population of Israeli methadone-treated patients [32]. The
linkage disequilibrium between these variants results in two common haplotypes: CGC and
TTT [33]. Patients with two copies of the TTT haplotype were more likely to receive higher
doses of methadone (>150 mg/day) [32]. In contrast, patients carrying one copy of each
haplotype were more likely to receive lower doses (<150 mg/day) [32]. A single variant in
the haplotype block, rs1045642, predicted dose requirements during methadone maintenance
in a Han Chinese population [34]. In two European cohorts, the T/T genotype at rs1045642
alone was also associated with decreased trough plasma levels of methadone (i.e., the lowest
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levels before the next dose), further supporting a pharmacokinetic link between this ABCB1
haplotype block and methadone [35, 36].

However, contradictory results and failed replications have raised doubts about the relevance
of ABCBIto OUD treatment. Attempts to replicate the original association in independent
populations found no significant associations between genotype and dose [37-39]. The
association between rs1045642 and methadone plasma concentrations in European patients
also failed to replicate in some studies [38, 40]. The plasma concentration of methadone in a
treatment program in Taiwan was higher in patients with the T/T genotype at rs2032582, but
the effect was the opposite of that predicted based on the previous pharmacogenetic effects
on dose observed in Han Chinese [34, 41]. Another study of Han Chinese patients also could
not replicate the previous association with dose [42]. Most of these results are based on
relatively small sample sizes and therefore the possibility of false positive or false negative
findings is increased. To address this problem, a meta-analysis of ABCBI effects on
methadone was published in 2014 [43]. The analysis found no significant association
between rs1045642 genotype and either methadone dose or plasma concentration [43].
Despite the meta-analysis results, research on the role of ABCBI in OUD treatment has
continued. The G/G genotype at rs2032582 was associated with decreased methadone
clearance from the serum in a patient population of mixed ethnicity [44]. An analysis in
Malaysian patients also found evidence for an association between the rs1128503-
rs2032582-rs1045642 haplotype and dose-adjusted plasma concentrations of methadone,
with CGC/TTT heterozygotes having higher concentrations [45]. In total, the observed
associations between ABCBI polymorphisms are inconsistent and currently of limited
clinical relevance.

2.2 Cytochrome P450 Gene Family and Methadone

The cytochrome P450 (CYP450) enzymes are responsible for metabolizing a broad range of
chemical compounds. The list of targeted substrates includes many illicit opioids and opioid
analgesics. Genetic variation in the genes encoding the CYP450 enzymes has been shown to
alter enzyme function [46]. A significant number of functionally relevant haplotypes have
been identified in CYP450genes, resulting in a range of potential phenotypes whose
frequencies vary across ethnic groups [47, 48]. These different haplotypes in CYP450 genes
are referred to as “alleles’ and often noted in the format * GENESYMBOL * #°, where ‘#’
indicates the allele number (e.g. CYP2B6*6) [48]. The potential metabolism statuses
produced by the various alleles for each enzyme are generally termed ‘poor’, ‘intermediate’,
‘extensive’, and ‘ultrarapid’. ‘Slow metabolizer’ may also be used for alleles that are not null
but result in severely reduced enzymatic function.

Methadone is metabolized by several members of the CYP450 family but the primary
enzyme targeting methadone is thought to be CYP2B6; administration of the CYP2B6
inhibitor ticlopidine alongside methadone resulted in reduced clearance and increased
plasma concentration of methadone [49]. CYP2B6 activity was also correlated with
methadone metabolism rates in healthy volunteers treated with a single dose [50]. As
hypothesized based on the links between CYP2B6 activity and methadone data, two variants
identifying the common slow metabolizer allele CYP2B6*6 were associated with lower
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mean methadone doses in a primarily Israeli cohort (Table 2) [51]. Other studies, however,
have not found associations between dose and CYP2B6*6 or CYP2B6*4 (rs2279343) in
either European or Taiwanese patients [39, 52]. In another study of a Taiwanese population,
patients carrying CYP2B6*4 had increased plasma levels of methadone [41]. Although the
frequency of CYP2B6*4 in European (8%), East Asian (15%), and Ashkenazi Jewish
populations (14%) are similar (Genome Aggregation Database) [53], other genetic
background or environmental differences between these populations could contribute to the
observed differences in phenotype.

Genetic markers of pharmacokinetics can be valuable tools for guiding dosing decisions.
More rapid metabolizers may require higher doses, while poor metabolizers require less
medication. There is evidence, however, that the effect of CYP2B6 genotype on methadone
plasma concentrations is driven primarily by metabolism of (S)-methadone, the enantiomer
of the drug with minimal efficacy at the MOR. This correlation between CYP2B6
metabolism status and (S)-methadone plasma levels has been found in several independent
studies, while effects on (R)-methadone concentrations were smaller or not significant at all
[35, 36, 44, 54]. Similar results have also been observed in patient populations from Taiwan
[55]. A resequencing study that analyzed Swiss patients with extremely low or high (S)-
methadone plasma concentrations implicated the *4, *6, *9 (rs3745274), and *11 alleles in
reduced CYP2B6 function, while the *5 allele was linked to increased enzyme activity [56].
Postmortem plasma levels of methadone are also higher in individuals carrying the *4, *6,
and *9 alleles [57]. In total, these data suggest that CYP2B6 genotype may not be a relevant
pharmacogenetic marker for the opioid receptor agonism of methadone.

Like ABCBI1, many of these CYP2B6 studies feature relatively small cohorts, which may
explain inconsistencies in some of the results. A meta-analysis found that methadone-treated
patients who were homozygous for the CYP2B6*6 allele did have significantly higher
plasma concentrations of methadone [43]. However, no consistent effect on dose was
observed [43]. The preference of CYP2B6 for (S)-methadone may explain the apparent
inconsistencies between effects of CYP2B6 metabolism status on dose and plasma
concentrations of methadone. The small effect of the enzyme on (R)-methadone means that
CYP2B6 metabolism status is not causing a significant change in the amount of functional
methadone.

CYP2D6, CYP2C19, and CYP3A4 may contribute to overall metabolism of methadone,
although the specific contribution of each enzyme is not entirely clear [35, 49, 58-62].
Crettol et al. found that higher CYP3A4 activity, as determined by phenotyping, and
CYP2D6 ultrarapid metabolism status were associated with lower trough methadone plasma
levels [35]. In this population, CYP3A4 and CYP2D6 metabolized both (R)- and (S)-
methadone equally, rather than showing the stereoselectivity observed in CYP2B6 [35]. A
significant difference in methadone dose was also observed between CYP2D6 poor and
ultrarapid metabolizers in another European cohort [63]. Unfortunately, multiple other
studies have not found an effect of CYP2Dé6 genotype on dose [39, 51] or plasma
concentrations in methadone maintenance patients [64, 65].
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CYP2C19 and CYP3AA4 results have also been equivocal. The CYP3A4*22 allele
(rs35599367) was associated with increased (R)-methadone clearance [36] but no effects of
CYP3A4 genotype on methadone dose were observed in other studies [51, 52]. CYP3A4*22
is rare in almost all populations and does not explain most of the variability in CYP3A4
activity between individuals, which may explain the lack of consistent results. The
CYP2C19+2 and *3 alleles, both resulting in reduced enzyme activity, were also associated
with increased methadone plasma concentration : dose ratios in Europeans [64] but no
association for the gene was found by a Taiwanese group [41]. In contrast, CYP2C19 status
predicted methadone dose in Taiwanese [52] but not European patients [39]. Reduced
function alleles for other enzymes in the CYP450 family, specifically CYP3AS5 and
CYP2C9, were associated with increased methadone plasma concentration : dose ratios in
one study, despite little evidence those enzymes are involved in metabolizing the medication
[64]. These data suggest that the metabolism of methadone in vivo may involve enzymes
outside the canonical list.

2.3 Additional Genes and Methadone

Less information on methadone dose, clearance, and plasma concentration is available on
the effect of genetic variation outside the ABCBI and CYP450 genes. Candidate gene
studies have identified some potentially relevant variants. In a German population, the A/A
genotype at rs2070995 in KCNJ6, encoding a voltage-gated potassium channel, was
associated with increased methadone dose (Table 3) [66]. Two variants in the dopamine
receptor D2 gene (DRDZ2) were associated with lower dose in Han Chinese methadone-
treated patients, as well as several haplotypes in the DRD2- ANKK1 locus [34]. ANKK, as
well as other polymorphisms in BONF and NTRKZ, were also associated with dose in
Israeli patients after permutation testing [67]. These genes encode ankyrin repeat and kinase
domain containing 1, brain-derived neutrophic factor, and neurotrophic receptor tyrosine
kinase 2, respectively. A more recent study in Han Chinese found an association between
dose and an OPRD1 polymorphism, but not SNPs in the beta-arrestin 2 (ARRB2) or
dopamine receptor D1 (DRDI) genes [42]. A French study titled METHADOSE also failed
to find associations between dose and common functional variants in DRDZ2, COMT, and
OPRMI1 [39]. COMT encodes catechol-o-methyl transferase, an enzyme that degrades
catecholamines including dopamine and norepinephrine. A subsequent analysis in an
Australian cohort found an interactive effect on methadone dose and plasma concentration
of an ABCBI1 haplotype and OPRM1 variant rs1799971 (aka A118G) [68]. Another study
found an allele of the gene encoding CYP450 reductase to be associated with (R)-methadone
concentrations specifically [36]. CYP450 reductase transfers electrons to many CYP450
family members and is required for enzymatic function. These findings suggest that the
pharmacogenetics of OUD treatment dosing are likely complex and that polymorphisms
with mixed findings thus far may still be relevant to methadone treatment depending on
other genetic variation in the patient.

Genome-wide association studies (GWAS) have also been used to identify relevant
polymorphisms that would be overlooked using a candidate gene approach. A variant
>300kb upstream of OPRMI was associated with methadone dose in African-Americans
[69]. The variant also predicted post-operative analgesic requirements in African-American
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children, suggesting it may be broadly applicable to opioid pharmacodynamics in patients of
this ethnicity [69]. A GWAS in Han Chinese patients found additional associations between
(S)-methadone plasma levels and haplotypes in the spondin-1 (SPONZ) and germ cell-
specific gene 1-like (GSG1L) genes [70]. Both of the encoded proteins have been linked to
neural phenotypes; spondin-1 is an adhesion molecule that promotes proper axon
development in vitro [71] and GSG1L regulates AMPA receptor-mediated
neurotransmission [72]. However, it is not clear how these established functions might be
related to methadone metabolism. An intergenic SNP (rs17180299) was also associated with
the plasma concentration of (R)-methadone in this Han Chinese cohort [70]. For both the
GWAS and candidate gene findings, lack of replication is currently a concern. The
significant associations have also come from a variety of ethnic groups and it is currently
unclear how broadly applicable those results are. A number of the identified genes would
also be predicted to affect the pharmacodynamics of methadone rather than the
pharmacokinetics, which makes any potential mechanisms more complicated than directly
altering metabolism of the medication. These indirect pharmacodynamic effects may have
complex interactions with CYP450 metabolism status, comorbid substance use, local dosing
policies, and other factors that are not elucidated by the current literature.

2.4 Buprenorphine and Naltrexone

No polymorphisms associated with buprenorphine or naltrexone dose or serum
concentration have been identified. This lack of information most likely reflects limited
sample sizes rather than a lack of genetic contribution to those phenotypes. For example,
buprenorphine is known to be metabolized by CYP450 enzymes [73-75]. Polymorphisms
associated with altered metabolism status in those enzymes are strong candidates for effects
on buprenorphine dose or serum concentration. Genetic variants that predict continued
opioid use during buprenorphine or naltrexone treatment may also be relevant to dose and
metabolism. These pharmacogenetic analyses have simply not been performed yet.

3. Pharmacogenetics of Opioid Use Disorder Treatment Response

3.1 Pharmacogenetics of Methadone Response

OUD is a complex issue and treatment outcomes can be analyzed in a number of different
ways. The percentage of urine drug screens positive for opioids, other than the one
prescribed in treatment, can be used as a quantitative measurement of efficacy. A 24-week
randomized trial of methadone and buprenorphine for the treatment of OUD, known as
START (Starting Treatment with Agonist Replacement Therapy), collected weekly
urinalysis data on participants. In this population, African-American methadone-treated
patients carrying the T allele at rs678849 in OPRD1 were significantly more likely to test
positive for opioids compared with patients with the C/C genotype (Table 4) [76]. No effect
was observed in individuals of European descent. However, methadone efficacy in
European-Americans in that study was associated with a polymorphism in the OPRM1 3’
untranslated region (rs10485058) [77]. A single urine drug screen following treatment has
also been used as a measurement of efficacy. Using this metric, plasma levels of cadherin 2
were associated with methadone efficacy [78]. Those plasma levels were found to be
associated with two SNPs in CDHZ, the gene encoding cadherin 2 [78]. The CDH2 protein
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is a cell adhesion molecule that regulates function of excitatory synapses [79]. The observed
connection between CDHZ2 genotype and methadone efficacy may therefore be related to
learning and memory differences.

Patients can also be analyzed using binary ‘responder/non-responder’ metrics, where a
successful response is defined by the percentage of opioid-positive urine drug screens alone
or in combination with other factors. One Spanish study applied a candidate gene approach
to their responder analysis, looking at variants previously associated with OUD risk [80].
Responders were defined as having no opioid-positive urines in the last four drug screens,
while non-responders had two or more positive urines in that period. An interaction between
variants in the myocardin (MYOCD; rs1714984) and glutamate metabotropic receptor 6
(GRMBS6, rs953741) genes predicted an increased risk of a patient being a non-responder
[81]. A second study found a functional non-synonymous polymorphism in ALDH5A1,
encoding aldehyde dehydrogenase 5 family member A1, to also be associated using the
same definitions for response and non-response [82]. SNPs in GRMS, CRY1, OPRM!1, and
NR4AZ2 showed no association [81].

A Swiss group found no effect of CYP2D6 genotype on successful treatment, despite linking
metabolism status for the enzyme to methadone plasma levels [63]. Subsequent studies in
another Swiss methadone cohort found associations between response and polymorphisms
in DRDZ2 (rs1800497 aka TaqlA) and ARRBZ2 (rs3786047, rs1045280 and rs2036657) but
not in DRDI (rs4532), OPRM1 (rs1799971), or OPRD1 (rs2234918) [83, 84]. In these
analyses, responders were patients with one or fewer opioid-positive urines in the last 3
months and non-responders were patients with regular opioid and/or cocaine use in that 3-
month period. While another study also found an association between this DRD2 variant and
methadone response, no significant associations were found in two other populations [85-
87]. Similar issues have arisen for the BDNF gene. The non-synonymous SNP rs6265
showed no association in a Canadian cohort [86] but a haplotype in the gene predicted
outcome in a Spanish methadone population using the response and non-responses definition
outlined in the previous Spanish study described above [88]. The mixed results in the studies
of BDNFand DRDZ2 may potentially be explained by methodological differences; the
studies varied in both the specific SNPs analyzed and the definitions of success.

Measurements beyond opioid use have also been studied as predictors of current or future
effectiveness of methadone. Haplotypes in OPRK1 and 12 variants in UGT2B7 were
associated with withdrawal symptoms in a group of 366 Taiwanese methadone-treated
patients [89, 90]. Europeans with the A/A genotype at the KCNJ6 variant rs2070995 also
showed reduced prevalence of withdrawal symptoms, although the sample size in that
genotypic group was very small [66]. Patients experiencing withdrawal symptoms may be
more likely to relapse to illicit opioid use, making these markers potential predictors of
treatment outcome. Patient satisfaction with treatment is another potential predictor of
treatment retention and relapse risk. CYP2D6 ultrarapid metabolizers were less satisfied
with methadone maintenance when compared with poor or extensive metabolizers [91],
while no significant associations with satisfaction were found in a panel of variants from
OPRM1, OPRD1, and OPRK1[92].
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3.2 Pharmacogenetics of Buprenorphine Response

In the START trial, a genotype at rs678849 in OPRD1 was also associated with
buprenorphine efficacy in African-Americans (Table 4) [76]. However, the effect was the
opposite of that observed in methadone-treated patients; individuals with the C/C genotype
produced significantly more opioid-positive urines than T-allele carriers. An additional study
using the START cohort focused on sex differences in European-Americans. Variants in
OPRD1 (rs581111 and rs529520) were associated with continued opioid use during
buprenorphine treatment in women but not men [93]. The associations between
buprenorphine efficacy and OPRD1 variants are somewhat surprising since buprenorphine is
primarily thought to act as a partial MOR agonist and a kappa-opioid receptor (KOR)
antagonist. However, buprenorphine has some affinity for the DOR, although it does not
appear to activate downstream signaling through the receptor [13]. It is possible that at
therapeutic doses buprenorphine could act as a DOR antagonist and disrupt signaling
through the receptor, which is known to be involved in OUD and opioid tolerance [94, 95].
In addition to OPRDI variants, a 2014 analysis of 107 Italians diagnosed with heroin
dependence found the variable number of tandem repeats (VNTR) polymorphism in the 3’
untranslated region of SLC6A3, which encodes the dopamine transporter, to be associated
with buprenorphine efficacy when patients were separated into ‘responder’ and ‘non-
responder’ categories [96]. No effect of the OPRKI variant rs1051660 was observed in this
patient population, nor was an effect of the DRD2rs1800497 polymorphism in an Australian
cohort [85].

3.3 Pharmacogenetics of Naltrexone Response

Pharmacogenetic effects in naltrexone treatment for OUD have not been published to date.
This is likely a reflection of a lack of genetic data on the small number of available cohorts.

4 Pharmacogenetics of Adverse Events During Opioid Use Disorder

Treatment

Pharmacogenetics is not solely focused on treatment efficacy and dose requirements. The
field also encompasses side effects that are affected by an individual patient’s genetic
background. Understanding the pharmacogenetics of adverse events can identify patients
who are at risk of severe complications or who would be less likely to sustain treatment due
to the negative effects of a medication. The pharmacogenetics of adverse events during
buprenorphine or naltrexone treatment have not been explored. In contrast, methadone has
been studied in this context. Methadone-treated patients have increased mortality rates
compared with the general population [97, 98]. Polymorphisms in some CYP450 genes are
likely candidates to affect risk of methadone-related death, since they encode enzymes
responsible for metabolizing methadone and therefore regulate serum levels of the
medication. Supporting this hypothesis, the minor alleles of variants in CYP3A4
(CYP3A4*1B; rs2740574) and CYPZB6 (CYP2B6*9 and rs8192719) were found to be
enriched in a population of European-Americans who died of methadone overdose (Table 5)
[99, 100]. CYP3A4*1B and CYP2B6*9 are known to alter the metabolism status of their
respective enzymes. Of the two, however, only rs3745274 has been associated with
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methadone dose or plasma concentration in patients of European descent. Individuals
carrying the minor allele of the variant were found to have increased (S)-methadone plasma
concentrations [56]. Other studies have also found CYP2B6 slow metabolizer status to be
associated with increased methadone plasma concentrations in victims of methadone-related
death [101].

Another potentially related side effect of methadone use is a lengthening of the heart rate-
corrected QT (QTc) interval, which is a measurement of the electrical cycle regulating
contraction of the heart ventricles [102]. This effect is not observed in buprenorphine-treated
opioid-dependent patients [102, 103]. However, some lengthening of QTc interval was
observed in healthy controls treated with buprenorphine, particularly at doses above standard
therapeutic levels, suggesting that the medication does have some effect on this phenotype
[104]. Prolonged QTc interval increases the risk of arrhythmia, cardiac arrest, and death,
which may partially explain the increased fatality rate among methadone-treated patients.
Importantly, buprenorphine has not been associated with increased risk of arrhythmia.
Clinicians have noted that the effect of methadone on QTc interval varies widely in the
patient population, suggesting that there are other factors relevant to this potentially deadly
side effect [105]. Methadone plasma levels show a correlation with QTc interval and (S)-
methadone concentration was found to have a larger effect on the phenotype than (R)-
methadone concentrations [36]. Given the enantiomer-specific effects of some
polymorphisms, genetic variation in the population may therefore explain some of the
variable risk of prolonged QTc interval. The associations between CYPZB6 genotype and
methadone-related fatalities may be explained by this specific side effect, since CYP2B6
slow metabolizers had increased QTc intervals compared with extensive metabolizers [106].

Additional data further suggest that variants that affect methadone metabolism may alter
susceptibility to cardiac phenotypes. A polymorphism in CYP2C19that results in a
nonfunctional enzyme (rs4244285; CYP2C19*2) was associated with higher plasma levels
of ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidene (EDDP), a metabolite of methadone, in
a population from the US [107]. EDDP levels were associated with QTc interval in this
population, suggesting a possible link from CYP2C19 genotype to cardiac issues [107]. In a
Taiwanese cohort, CYP2C19 metabolism status was also associated with the change in QTc
interval in methadone-treated patients who tested positive for opioids during treatment entry;
however, in this study extensive metabolizers had a larger change in QTc during treatment
[108]. The discrepancy between these results may be the result of ethnicity-specific effects,
different methodologies in treatment or experimentation, or the relatively small sample size
in the American study. Notably, EDDP was previously found to not block the channel
encoded by the HERG gene, which is often used to test medication effects on cardiac
repolarization [109]. Genes encoding ion channels involved in polarizing or repolarizing the
heart may also contain polymorphisms that increase risk. Methadone-treated patients
carrying a variant (rs1805123) in the cardiac potassium channel gene KCNHZhad longer
QTc intervals on average [110]. A similar but much smaller effect was observed in healthy
subjects, suggesting a potential interaction between medication and genotype [111].

Methadone has a number of other less severe side effects that may nonetheless affect patient
retention. These include dry mouth, insomnia, changes in libido, fatigue, and changes in
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appetite. Since methadone is an MOR agonist, the medication also has the common side
effect of constipation. In a population of Taiwanese methadone-treated patients, 12 OPRM1
variants were associated with insomnia after multiple testing correction [112]. Four of these
variants (rs1074287, rs510769, rs495491, and rs589046) were also associated with changes
in libido [112]. No significant associations with methadone-related fatigue were observed.
An OPRDI1 variant previously associated with OUD (rs2236855) [95] predicted libido
problems in Iranian methadone-treated patients [113]. Two OPRKI polymorphisms were
associated with libido (rs997917) or insomnia (rs6985606) in the same cohort [114].

5 Conclusion

Progress on the pharmacogenetics of OUD treatment has been slow and the amount of
research in the field is remarkably limited given the current OUD epidemic. Treatment
efficacy is a complex phenotype that is affected by genetic variation, comorbid substance use
and psychiatric disorders, environmental factors, and other variables that may operate
independently and through interactions with one another. This complexity highlights the
importance of deep phenotyping in OUD treatment data sets so that these factors can be
integrated into statistical models to the extent possible. Another significant issue is the lack
of large data sets that have outcome or dosage data matched with DNA samples. The cohorts
that actually meet these requirements are generally small and this has resulted in many
underpowered candidate gene studies with few readily available replication populations. A
number of the studies discussed in this review have also been treated as exploratory and as
such did not correct p-values for multiple testing, further increasing the possibility of false
positives and emphasizing the need for replication of any findings. Small samples sizes and
a lack of independent replication means that none of the pharmacogenetic effects described
here are currently clinically actionable. This is reflected in the lack of any pharmacogenetic
tests for OUD treatments that have been approved by the FDA. A concerted effort needs to
be made in the field of OUD pharmacogenetics to significantly increase the number of
appropriate samples going forward, both through the collection of new study populations
and the merger of existing cohorts for meta-analysis. Focus must also shift to buprenorphine
and extended-release naltrexone, as these medications are rapidly expanding at the expense
of methadone treatment and will be increasingly relevant to OUD treatment in the future.
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Key Points
Opioid use disorder treatments are not effective in all patients.

Genetic variants associated with treatment response or medication metabolism
have been identified, but few have been reproduced.

The most reproducible result is an association between the CYP2B6*6 allele and
(S)-methadone plasma concentrations.
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