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Abstract

We develop a combined experimental-mathematical framework to investigate heterogeneity in the 

context of breast cancer treated with doxorubicin. We engineer a cell line to over-express the 

multi-drug resistance 1 protein (MDR1), an ATP-dependent pump that effluxes intracellular drug. 

Co-culture experiments mixing the MDR1-overexpressing line with its parental line are evaluated 

via fluorescence microscopy. To quantify the impact of population heterogeneity on therapy 

response, these data are analyzed with a coupled pharmacokinetics/pharmacodynamics model. The 

proliferation and death rates of each line vary with co-culture condition (the relative fraction of 

each cell line at the time of seeding). For example, the death rate in the parental line under low-

dose doxorubicin treatment is increased from 0.64 (±0.22) × 10−2 hr−1 to 1.46 (±0.58) × 10−2 hr−1 

with increasing fractions of MDR1-overexpressing cells. The growth rate of the MDR1-

overexpressing line increases 29% as its relative fraction is decreased. Simulations of the 

pharmacokinetics/pharmacodynamics model suggest increased efflux from MDR1-overexpressing 

cells contributes to the increased death rate in the parental cells. Experimentally, the death rate of 

parental cells is constant across co-culture conditions under co-treatment with an MDR1 inhibitor. 

These data indicate that intercellular pharmacokinetic variability should be considered in 

analyzing treatment response in heterogeneous populations.
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1. Introduction

The advent of precision medicine has brought significant advances to oncology. The 

majority of these efforts have leveraged genetics to classify and pharmaceutically target 

cancers13. While the genetic-centric approach has great merit in appropriately selecting 

therapies and identifying new pharmaceutical targets, it overlooks a host of patient- and 

tumor-specific measures that influence therapy response. For example, the 

microenvironment of the tumor alters response34, delivery of therapy to tumors is variable as 

tumor perfusion is limited19, and patient-specific pharmacokinetic properties vary35. Further, 

tumors demonstrate intratumoral heterogeneity that evolves over time33. Tumors are 

composed of a diverse cell populations that demonstrate differences in phenotypes, such as 

gene expression and sensitivity to anti-cancer agents12,17. This intratumoral heterogeneity 

affects the response of tumors to therapy21. It is an ongoing challenge in clinical oncology to 

quantify tumor heterogeneity to adjust therapy choice, dose, and frequency to account for 

evolving tumor behavior in the individual patient.

Tumor initiation and progression has long been described as an evolutionary process in 

which the tumor is composed of discrete clones that are selected according to their relative 

fitness29. The fitness of a clone is defined by its interactions with neighboring clones and the 

microenvironment25. These inter-clonal interactions include those defined in ecology such as 

competition, under which clones compete for a limited resource, and mutualism, in which 

clonal interactions provide a benefit to each clone21. Some interactions result in selective 

sweeps, in which a single clone expands to dominate a neoplasm. Alternatively, non-

autonomous behavior, in which driver mutations in one clone confer benefit to neighboring 

clones, selects for heterogeneous populations to maximize tumor population fitness, often to 

the detriment of the patient. For example, in a small cell lung cancer model, clonal 

heterogeneity was found to enhance tumor proliferation and metastatic potential8.

The dynamics of cancer progression have been a target of mathematicians for decades2,28. A 

host of both stochastic and deterministic models have been proposed to describe the 

evolution of a tumor in response to therapy and to optimize treatment approaches10,14,37. 

These computational models are often complemented by flow-cytometry or histology to 

quantify distinct clonal populations within a tumor and the interaction among those 

clones3,9,31. These techniques have been leveraged to quantify how both genetic and non-

genetic heterogeneity influence tumor behavior20,22. While models of heterogeneous 

populations include terms to describe the interactions among populations, additional 

research is needed to elucidate the specific biophysical bases of those interactions. Such 

mechanisms could include paracrine signaling 8 or biomechanical forces 36. We recently 

proposed and validated a coupled pharmacokinetic/pharmacodynamic (PK/PD) model to 

predict the temporal response of a homogeneous cell population to a temporally-varying 

treatment timecourse23. We hypothesize that variable pharmacokinetic properties among 
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clones serves as an additional means of interclonal interaction and influences the treatment 

response of heterogeneous population.

A goal of mathematical modeling is to abstract the key features of a physical system to 

succinctly describe its behavior in a series of mathematical equations. In this way, the 

system can be simulated in silico to further understand system behavior, generate specific, 

experimentally-testable hypotheses, and guide experimental design. In this work, we 

describe a coupled experimental-mathematical modeling approach to develop and 

parameterize a mathematical model describing treatment response in heterogeneous cell 

populations. We investigate this problem in triple negative breast cancer cell lines subject to 

standard-of-care doxorubicin therapy. We leverage two cell lines: a doxorubicin-sensitive 

line and a doxorubicin-resistant, multi-drug resistance protein 1 (MDR1)-overexpressing 

line. MDR1 is a surface membrane pump that actively effluxes drug from cells, decreasing 

intracellular drug accumulation and conferring resistance to anthracyclines (including 

doxorubicin), taxanes, and several other agents24. Each cell line is engineered to be 

distinguished via fluorescence imaging, which is utilized to monitor cell population 

dynamics. We build on a coupled pharmacokinetic/pharmacodynamic model of doxorubicin 

treatment response 23 to quantify how sensitive and resistant cell lines respond to treatment 

independently and in combination. Finally, we leverage mathematical models to predict 

aspects of treatment response in heterogeneous cell populations.

2. Materials and Methods

2.1 Cell Lines

The MDA-MB-468 triple negative breast cancer cell line was obtained through American 

Type Culture Collection (ATCC, Manassas, VA) and maintained in culture according to 

ATCC recommendations. The line was virally transduced to express a monomeric red 

fluorescence protein (mRFP)-tagged H2B protein as described previously12. The 

H2BmRFP-expressing MDA-MB-468 cell line was again transduced to express green 

fluorescent protein (GFP)-tagged MDR1 (ABCB1 gene, Origene Technologies, Rockville, 

MD). Following transduction, the cell line was cultured in 100 nM doxorubicin for two 

weeks to select a doxorubicin-resistant phenotype. The H2BmRFP MDA-MB-468 and the 

double positive H2BmRFP, MDR1GFP MDA-MB-468 cell lines are denoted as parental and 

resistant, respectively. Sample images of each cell line are shown in Figure 1.

2.2 Chemicals

Doxorubicin is a standard-of-care cytotoxic agent used in the treatment of several 

malignancies, including triple negative breast cancer. Doxorubicin canonically induces DNA 

damage by intercalating DNA bases, stabilizing the topoisomerase II complex, and 

increasing free radical formation15. Doxorubicin hydrochloride was obtained from Sigma 

Aldrich and diluted to a stock concentration of 1 mM in saline.

Tariquidar (TQR) is a third-generation MDR1 inhibitor that non-competitively inhibits 

MDR1 function26. TQR was purchased from Selleckchem (Boston, MA) and dissolved to a 
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1 mM stock concentration in DMSO. Both doxorubicin and TQR were stored in 250 μL 

aliquots at −80 °C.

2.3 Treatment Response Assays

The response of each cell line to doxorubicin was measured using previously-published dose 

response assays23. Briefly, cells were added to 96-well microtiter plates at 5,000 cells per 

well. Cells were treated with doxorubicin concentrations ranging from 10 to 2,500 nM. 

Doxorubicin was removed via media replacement after 24 hours. These experimental 

conditions were designed such that the areas under the concentration of doxorubicin curves 

overlapped those observed in vivo. Live cells were imaged daily via fluorescent microscopy 

for up to two weeks following treatment. For these studies, fluorescence microscopy images 

were collected using a Synentec Cellavista High End platform (SynenTec Bio Services, 

Münster, Germany) with a 20× objective and tiling of 25 images. For each imaging session, 

cells were transferred from the incubator to the microscope and returned immediately 

following imaging. During all imaging sessions, cells were maintained in standard growth 

media (Leibovitz’s L-15 media supplemented with 10% fetal bovine serum). In this way, cell 

populations could be observed over time. Two co-registered channels of data were collected 

for these experiments: a red channel to image H2BRFP and a green channel to image the 

MDR1GFP. At least three replicates of each treatment condition were collected. Media was 

refreshed every three days for the duration of each experiment to ensure sufficient growth 

conditions.

The response of each cell line was assessed using the above assay. To investigate the 

behavior of heterogeneous populations, the parental and resistant lines were co-cultured in 

the microtiter plate at several ratios totaling 5,000 cells per well. For example, to simulate a 

tumor composed of 20% resistant cells, 1,000 resistant cells were added to 4,000 cells from 

the parental line. The response of these co-culture conditions was measured in the same way 

as above. Several co-culture conditions were investigated, ranging from 20% to 80% (in 

increments of 20-25%) resistant cells.

2.4 Image Processing

Nuclei were segmented and counted in MATLAB (Natick, MA) using a fully automated, 

watershed-based method12. A classification scheme was developed to identify resistant cells 

(GFP-expressing) in heterogeneous populations. Each identified nucleus and its surrounding 

area was described by an image feature vector (described below), and a support vector 

machine (SVM) was used to classify each cell nucleus as either parental or resistant. A SVM 

defines a hyperplane to optimally separate two classes6. The SVM was trained using image 

feature vectors from a subset of cells identified in parental-only and resistant-only control 

experiments. In all, the training set consisted of 10,000 feature vectors corresponding to 

5,000 parental and 5,000 resistant cells. A 10-fold cross validation approach was used to 

train and tune the SVM.

Each cell identified via segmentation was described by a feature vector focusing on the 

intensity of the green channel image. For each identified nucleus, the average GFP intensity 

around the nucleus was calculated within a bounding box. Three bounding box sizes were 
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used: 20×20, 30×30, and 40×40 pixels. Additionally, a radial intensity histogram was 

computed around each identified nucleus. The histogram summarizes the distribution of 

image intensities as a function of radial distance from the center of the nucleus, and this 

feature has been used to identify circular objects11. The histogram consisted of twenty bins, 

each containing of the average intensity over 5 pixel-wide rings with increasing radii 

centered on the nucleus. Finally, the distance from the nucleus to peak GFP intensity was 

calculated. We hypothesized that these features would capture the brightness patterns of the 

resistant cells. Briefly, resistant cells are characterized by a ring of MDR1-GFP a set 

distance from the nucleus (see Figure 1 for examples). The peak seen for parental cells near 

a resistant cell would be farther from the nucleus than the distance seen for resistant cells.

To classify images in the test set (i.e., cells in co-cultured wells), the above features were 

calculated for each identified nucleus and classified with the trained SVM. In this way, the 

image processing pipeline outputs the cell counts of both the parental and resistant lines. To 

establish the performance characteristics of the trained classifier, we defined a unique 

validation set consisting of approximately 28,000 cells (16,000 parental and 12,000 resistant 

cells). The sensitivity and specificity of the classifier when applied to this validation set is 

reported.

2.5 Treatment Response Model

We previously proposed and validated a coupled pharmacokinetic/pharmacodynamic model 

of doxorubicin treatment response in vitro23. The model incorporates measured doxorubicin 

pharmacokinetic and pharmacodynamic rates and allows for prediction of treatment 

response to a wide range of treatment conditions on a cell-line specific basis. This model is 

extended to account for the two cell populations present in the current experimental system. 

A compartment model is used to describe doxorubicin pharmacokinetics:

dCE(t)
dt = kFE, P

vI, P
vE

CF, P(t) − kEF, PCE(t) + kEF, R
vI, R
vE

CF, R(t) − kEF, RCE(t) (1)

dCF, P(t)
dt = kEF, P

vE
vI, P

CE(t) − kFE, PCF, P(t) − kFB, PCF, P(t) (2)

dCB, P(t)
dt = kFB, PCF, P(t) (3)

dCF, R(t)
dt = kEF, R

vE
vI, R

CE(t) − kFE, RCF, R(t) − kFB, RCF, R(t) (4)
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dCB, R(t)
dt = kFB, RCF, R(t) (5)

where CE (t), CF,c (t), and CB,c (t) are the concentrations of doxorubicin in the extracellular, 

free, and bound compartments, respectively, in cell line c (parental, P, or resistant, R) at time 

t. Both the free and bound compartments are defined to share the same physical space 

(intracellular). The free compartment represents drug that has diffused into the cell, while 

the bound compartment represents drug that has bound to DNA. The kij,c parameters are rate 

constants that describe the movement of doxorubicin between each of these compartments in 

each cell line; for example, kFE,R describes the rate of drug transfer from the free, 

intracellular compartment of the resistant cell line to the extracellular compartment. Similar 

definitions apply to kEF,R, kFB,R, kEF,P, kFE,P, and kFB,P. The volumes of the intracellular 

and extracellular compartments are denoted with vI,c and vE,c, respectively.

The pharmacodynamics model is similarly extended from that presented in previous work23 

to include both parental and resistant cells. Specifically, we define the temporal change of a 

population consisting of a specified fraction of resistant cells, f, to a delivered doxorubicin 

dose, D, for all time, t as follows:

NT(t) = NP(t) + NR(t) (6)

dNP(t)
dt = (kp, P( f ) − kd, P(t, D, f ))NP(t) 1 −

NP(t) + NR(t)
θ(D, f ) (7)

dNR(t)
dt = (kp, R( f ) − kd, R(t, D, f ))NR(t) 1 −

NS(t) + NR(t)
θ(D, f ) , (8)

where NT is the total population size, NP is the number of parental cells, and NR is the 

number of resistant cells. kp,c and kd,c are the proliferation and death rates for cell line c, 

respectively. θ is the carrying capacity describing the maximum number of cells that can be 

supported by the experimental system. Dose, D, is defined as the maximum bound 

concentration of drug following treatment and is calculated by simulating the 

pharmacokinetics model using an experimentally-defined extracellular doxorubicin 

concentration timecourse. Co-culture condition, f, is defined by the fraction of each cell line 

at the time of seeding. As cell line behavior was observed to vary as a function of co-culture 

conditions, all model parameters are allowed to vary with f. Additionally, kd,c and θ are 

dose-specific. The death rate, kd,c, for each population can assume either of the following 

forms:
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kd, c(t, D, f ) =
0 t < 0

kd, a(D, f ) t ≥ 0 (9)

kd, c(t, D, f ) =
0 t < 0

kd, b(D, f )r(D, f )te1 − r(D, f )t t ≥ 0 . (10)

Eq. (9) assumes an immediate transition to a constant post-treatment death rate, kd,a. Eq. 

(10) assumes a smooth induction to and recovery from a maximal death rate, kd,b. r 
describes the rate at which treatment response is induced. A weighted averaging approach is 

used to combine these two models (i.e., Eqs. (6) – (8) with the death rate in Eq. (9) and Eqs. 

(6) – (8) with the death rate in Eq. (10) into a single best-fit model. The Akaike information 

criterion (AIC) is used to calculate the weight of each model. The AIC is a measure of 

model likelihood that balances goodness of fit with the number of free parameters. This is a 

common approach for multimodal inference5,7, and additional information on the model and 

model averaging approach can be found in previous work23.

2.6 Treatment Response Model Fitting

The two-species pharmacodynamics model, Eqs. (6) – (8), is fit to data by minimizing the 

following objective function, G(x):

min
x

G(x) = ∑
t = ti

t f Yt, P − Yt, P(x)
Yt, P

+
Yt, R − Yt, R(x)

Yt, R
+

Yt, T − Yt, T(x)
Yt, T

2
,

where x is the set of parameters to be estimated, Yt,c is the measured cell counts at time t for 

cell line c, Y t, c is the model-estimated cell counts at time t for cell line c when the model is 

evaluated with parameters x, and ti and tf are the initial and final timepoints respectively. c 
represents the parental cell line (P), resistant cell line (R), or total cell count (T). 

Specifically, the proliferation rate (kp,R, kp,P) and all dose-response parameters (kd,R, kd,P) 

for each cell line are optimized to fit the data. Data from each co-culture and treatment 

condition are fit independently using the trust region reflective algorithm, a nonlinear least 

squares optimization routine, implemented in MATLAB. To ensure the stability and 

accuracy of the fitting approach, the model was simulated with user-defined initial 

conditions and model parameter values, and the optimization routine was used to recover 

model parameters from the simulated data. Results of this simulation study are reported in 

Supplementary Materials. Model fits are compared to the measured response for each cell 

line, and the mean percent error across all timepoints is reported for the best-fit model. We 

define the mean percent error over all timepoints as the average of the model-data 

mismatches, which are calculated at each experimental timepoint. Specifically, we define the 

mean percent error (MPE):
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MPE =
∑

t = 0

n yt − yt
yt

n ,

where y is the observed cell count, yt is the model predicted cell count, and n is the number 

of timepoints in the experiment. We utilize the mean percent error as a summary statistic to 

quantitatively describe the goodness of fit of the model to the cell population timecourse 

data.

2.7 Simulation of Pharmacokinetics in Heterogeneous Cell Populations

The pharmacokinetics model is simulated to explore the movement of drug between the 

parental and resistant populations. Specifically, the accumulation of drug in the parental cells 

(CB,P) over a range of co-culture conditions is simulated. For these simulations, both cell 

lines are assumed to have identical pharmacokinetic parameters, except for the doxorubicin 

efflux parameter (kFE,R and kFE,P). To assess the effect of the efflux rate on the accumulation 

of drug in the parental cell line, a range of kFE,R values were simulated while holding kFE,P 

constant. To simulate a range of co-culture conditions, the total intracellular volume (vI,R + 

vI,P) was held constant while altering the relative volumes of the intracellular compartment 

of the resistant and parental cell lines. Proportional changes in kEF,P and kEF,R were made to 

reflect the changing volumes of the intracellular compartments. Doxorubicin primarily 

diffuses into cells, and diffusion, described by kEF, is proportional to membrane 

permeability and surface area. As we assume the cell surface area per unit volume for each 

cell line is constant in all co-culture conditions, the changing intracellular volumes require 

corresponding changes in total cell surface areas. For a simulation consisting of a fraction f 
of resistant cells and influx rate kEF, kEF,P = (1 – f) kEF and kEF,R = f kEF. This adjustment 

ensures that for each cell line the accumulation of drug per unit cell volume is constant in all 

co-culture conditions. A complete list of parameter values is shown in Table 1.

2.8 Modulation of Pharmacokinetics in Heterogeneous Cell Populations

We hypothesize that doxorubicin efflux from the resistant line contributes to increased 

parental cell death in co-culture experiments. To test this hypothesis experimentally, the 

efflux of drug via MDR1 in the resistant cell line is inhibited with TQR. By inhibiting the 

effect of this pump, we hypothesize that the death rate of the parental population to 

doxorubicin should be independent of the presence of resistant cells. The treatment response 

assay described in Section 2.3 is repeated with 1 μM of TQR applied one hour prior to 

doxorubicin therapy and throughout the course of the assay. Notably, low concentrations of 

doxorubicin (50 and 100 nM) are used to avoid saturating the death rate. These data are fit 

with the pharmacodynamic model, and the hypothesis is assessed by measuring the change 

in the death rate of the parental population (kd,P) as a function of the percentage of resistant 

cells at the time of seeding.
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3. Results

3.1 Cell Counting Results

A representative image set and corresponding segmentation and classification results are 

shown in Figure 1. The tuned SVM correctly classified 98.5% of cells in the training set. In 

the separate validation set, the classifier achieved a sensitivity of 0.942 with a specificity 

0.994.

3.2 Model Fits

The treatment response model was fit to each co-culture and treatment condition. Model fits 

are superimposed on the total population cell counts in Figure 2. The model accurately 

captured the total cell count over a wide range of co-culture and treatment conditions with a 

mean percent error of 10.1% across all data points. Additionally, the model accurately 

described the dynamics of each cell line in co-culture conditions. Cell counts of the resistant 

and parental lines under a range of co-culture conditions at a representative doxorubicin 

treatment are shown in Figure 3. The best-fit model is overlaid on these data. The mean 

percent errors over all timepoints of the model fits to the parental and resistant lines are 

17.2% and 8.9%, respectively. Of note, the high error rates of the parental line are 

concentrated in conditions of high cell death with relatively low cell counts.

Prior to doxorubicin treatment, the parental and resistant cell lines displayed exponential 

growth in monoculture with proliferation rates (kp) of 2.07 (±0.08) × 10−2 hr−1 and 1.72 

(±0.04) × 10−2 hr−1, respectively (the bounds here and below correspond to the 95% 

confidence interval of the parameter estimates). The proliferation rate of the resistant line 

increases as the percent of resistant cells at the time of seeding decreases. Conversely, the 

proliferation rate of the parental line decreases as the percent of resistant cells increases. The 

proliferation rate of each species as a function of the percentage of resistant cells is shown in 

Figure 4. For example, in an untreated control with 75% resistant cells, the parental 

proliferation rate decreases 30% from its monoculture rate to 1.45 (±0.07) ×10−2 hr−1. In the 

untreated 25% resistant culture control, the proliferation rate of the resistant line increases 

29% from its monoculture rate to 2.22 (±0.07) × 10−2 hr−1. The mean percent error of the 

model fits in these untreated conditions were 9.1% and 14.9% for the resistant and parental 

lines, respectively.

Each cell line demonstrated a concentration-dependent response to doxorubicin. The 

parameter fits with 95% confidence intervals from a representative experimental replicate 

are shown in Tables S1 and S2 for the parental and resistant lines, respectively. The death 

rate of the parental cell line (kd,P) appears to saturate to approximately 2.0 × 10−2 hr−1 at 

high doxorubicin doses (≥ 500 nM) (this is the death rate in Eq. (9)). A similar trend was 

noted in the death rate derived from Eq. (10) (see Tables S1 and S2)). Notably, the death rate 

in the parental cells for the 100 nM treatment condition increases with the number of 

resistant cells present in the population. In the parental-only condition, the death rate is 0.64 

(±0.22) × 10−2 hr−1. This rate increases to 1.46 (±0.58) × 10−2 hr−1 when the population 

consists of 80% resistant cells. Increasing death rate in the parental population with 

increasing numbers of resistant cells was noted in all experimental replicates (Figure 7a). 
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The resistant cell line demonstrates decreased sensitivity to doxorubicin therapy relative to 

the parental line. For example, the death rate in the resistant line under 100 nM treatment 

(0.31 (±0.20) × 10−2 hr−1) is half that observed in the parental line.

In Figure 5, the net proliferation rate (kp - kd) for each species is shown as a function of the 

percentage of resistant cells at the time of seeding. The increase in the death rate in the 

parental cell line is compounded by the decreasing proliferation rate, creating a synergistic 

effect leading to a significantly decreased net proliferation rate with increasing fractions of 

resistant cells. Further, the increased proliferation rate in the resistant line is greater than the 

effect of doxorubicin, causing an increasing net proliferation rate with decreasing fractions 

of resistant cells.

3.3 Pharmacokinetics Simulation

Based on the results of section 3.2, it is clear that the presence of resistant cells increases the 

sensitivity of parental cells to treatment. Simulation of the pharmacokinetic model predicts 

an increase in drug accumulation (up to 15%) in the parental cell line (CB,P) in the presence 

of resistant cells. Simulation results are shown in Figure 6. As the accumulation of 

doxorubicin is proportional to therapy response23, these simulations are consistent with the 

decreased net proliferation rate of the parental line with increasing fractions of resistant cells 

seen in Figure 5 and Table S1. A synergistic effect of the efflux rate of the resistant cells 

(kFE,R) and the fraction of resistant cells present in the co-culture condition in increasing the 

accumulation of drug in the parental line is observed. The magnitude of this effect is 

proportional to kEF. Additionally, no difference in CB,P is observed when kFE,R = kFE,P. This 

suggests that the response of the parental line to therapy would be independent of the 

presence of resistant cells if kFE,R were decreased to match kFE,P.

3.4 MDR1 Inhibition

The co-culture treatment response experiments were repeated with addition of 1 μM TQR, 

and the treatment response model was fit to the resulting timecourses. The mean percent 

errors over all timepoints and treatment conditions of the model fits to the parental and 

resistant lines in these experiments are 6.5% and 5.9%, respectively. The death rate of the 

resistant cell line increased with the addition of TQR. For example, under treatment with 

100 nM doxorubicin, the death rate of the resistant line increased an order of magnitude 

from 0.093 (±0.084) × 10−2 hr−1 to 2.00 (±0.87) × 10−2 hr−1 with addition of TQR. Contrary 

to the previous observation that the death rate of the parental line increases with increasing 

numbers of resistant cells, the death rate of the parental line appears constant across co-

culture conditions with addition of TQR. These results are illustrated in Figure 7. This 

observation is consistent with the prediction of the PK model. By equalizing the efflux rate 

of the two cell lines through use of TQR, the death rate of the parental cell population 

appears independent of the presence of resistant cells. Of note, while treatment with TQR 

appeared to restore the linearity of the death rate with respect to co-culture condition in the 

parental population, the proliferation rate of each cell line still varied with respect to co-

culture condition (Figure 8). The model described these untreated control data well with 

mean percent errors of 9.7% and 7.0% for the parental and resistant lines, respectively.
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4. Discussion

We have established an experimental-mathematical modeling framework to investigate the 

response of heterogeneous cell populations to doxorubicin therapy. We found that treatment 

response of heterogeneous cell populations is non-linear in that model parameters change as 

a function of population composition. Specifically, over a range of clinically-relevant doses, 

the death rate of parental cells is increased in the presence of resistant cells. Further, the 

proliferation rate of the resistant cell line increases with decreasing fractions of resistant 

cells, and the proliferation rate of the parental cells is depressed with increasing fractions of 

resistant cells. We have proposed and validated a pharmacokinetics-based mechanism 

contributing to the nonlinearities in the observed death rates. We believe this framework to 

be a useful tool to systematically investigate the behavior of heterogeneous systems and to 

characterize quantitatively how heterogeneity affects therapy response.

Both the growth and death rates of each cell line are altered in co-culture conditions. The 

MDR1-overexpressing cell line demonstrates increased resistance to doxorubicin treatment 

relative to the parental cell line, and this difference is accentuated in co-culture. When grown 

together, the resistant line grows more quickly, and the parental cell line is further sensitized 

to doxorubicin therapy. We posit these observations largely agree with the ligand-capture 

hypothesis of cell competition27. Briefly, the ligand-capture hypothesis assumes: 1) the 

ligand is in limiting supply; 2) the ligand is a survival signal; and 3) partial withdrawal of the 

ligand triggers apoptosis.

The differing proliferation rates could be explained through competition for growth 

nutrients. Specifically, the MDR1 pump is ATP-dependent, and in other MDR1-positive cell 

lines, glucose uptake and ATP consumption are significantly increased relative to MDR1-

negative cell lines4,32. Potentially, with transduction of MDR1, the resistant cells evolve an 

improved ability to capture nutrients from the environment to support the metabolic 

demands of the pump. The enhanced growth rate of resistant cells seen at low fractions of 

resistant cells may arise due to a decrease in competition for nutrients with fewer resistant 

cells. Conversely, the decreasing proliferation rate of the parental cells in the presence of 

resistant cells may arise due to the increased nutrient consumption by the resistant cells. 

Indeed, ATP generation mechanisms have been shown as a basis for cellular competition30. 

The proposed model can be extended to describe these effects through inclusion of 

metabolic rates into the proliferation rate. Just as the death rate was defined to account for 

varying drug concentrations, the proliferation rate can be defined to include the availability 

of nutrients (similar to the model proposed by Silva and colleagues32).

The enhanced death rate of the parental line requires a slight modification of the ligand-

capture hypothesis, which we denote as the ligand-rejection hypothesis. We assume again 

that the ligand (in this case drug) is in limiting supply. However, the ligand is a cell death 

signal, and addition of ligand induces death. Cells that are able to reject or metabolize ligand 

will out-compete those that avidly consume the ligand. This is indeed the behavior predicted 

by simulations of the extended pharmacokinetic model in Figure 6 and validated with the 

experiments presented in Figure 7. We hypothesize that this pharmacokinetic-based 

mechanism may also contribute to responses to targeted anti-cancer agents. Biophysical 
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processes of ligand transport underlie both the ligand-capture and ligand-rejection 

hypotheses. As demonstrated in this work, these physical processes can be described by a 

parsimonious set of equations, and simulations can be run to guide interventions to control 

heterogeneous populations.

We proposed and validated a mechanism that contributes to the increasing death rates in the 

parental cell line in co-culture conditions. Simulation of the pharmacokinetic model 

suggested that increasing the efflux rate of the resistant cell line increased drug 

accumulation within the parental cells. The increased accumulation would subsequently 

increase the death rates of the parental line in co-culture conditions. These simulations 

generated a specific hypothesis (i.e., response of the parental cell line is independent of the 

presence of resistant cells if the MDR1 pump is inhibited) that could be tested 

experimentally. Indeed, when MDR1 function is inhibited with TQR, the death rate of the 

parental cell line appears constant across co-culture conditions (Figure 7c). These data 

indicate that variable cellular pharmacokinetics contribute to the nonlinear death rate of 

parental cells. These data do not exclude alternative hypotheses explaining the observed 

increase in death rate (e.g., cell-cell signaling, extrusion of toxic metabolites from the 

resistant line, or impaired DNA repair mechanisms in the parental line secondary to nutrient 

depletion). Indeed, these additional interactions may be necessary as the increase in drug 

accumulation predicted by the PK model may not entirely explain the increase in death rate 

in co-culture conditions. Additional studies are needed to more precisely quantify the 

contribution of PK heterogeneity to the increased death rate.

While the variability in cell line pharmacokinetics is significant in predicting treatment 

response in the engineered cell populations in this work, these observations remain to be 

tested in additional cell lines and in vivo. Further, the proposed pharmacokinetic interaction 

does not preclude the presence of additional inter-clonal interactions that alter treatment 

response. For example, cells can secrete factors to stimulate growth and transfer resistance to 

previously-sensitive cells1. The spatial dependency of the clonal interactions observed in this 

study remains to be investigated. Indeed, local cell densities have been found to affect 

treatment response in vitro16. Finally, the hypothesized metabolism-based competition 

driving differing proliferation rates in co-culture conditions requires further exploration. 

With these limitations come opportunities to iteratively increase the complexity of the 

experimental-modeling framework to quantify the magnitude of these effects. Indeed, a 

major goal of mathematical modeling is to construct models that distill the relevant biology 

into a parsimonious set of equations. The framework proposed in this work provides a rich 

platform from which these equations can be constructed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Sample image time series of parental and resistant cell lines and illustration of the counting 

and classification scheme. Both the parental and resistant cell lines are engineered to express 

a nuclear H2BmRFP label (left column). The resistant line additionally expresses a GFP-

tagged MDR1 protein (middle column). Note that these fluorophores are stably expressed as 

the images show the same area over six days. The nuclear image (left column) is used for 

cell segmentation and counting. A SVM classifier is used to classify each detected cell as 

parental or resistant in co-culture conditions using the GFP image (middle column). A 

sample segmentation and classification result is shown in the right column. In this example, 

the resistant cells are colored blue and the parental line is shown in red. The classifier is able 

to accurately identify each cell line semi-automatically. (Placed in Section 2.4)
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Figure 2. 
Treatment response in heterogeneous cell populations and pharmacodynamic model fits. The 

total cell counts (sum of resistant and parental cells) over time and corresponding 95% 

confidence intervals are shown for in a representative set of doxorubicin treatments and co-

culture conditions. Each treatment condition is fit by Eqs. (6) – (8) as described in Section 

2.6, and the model fit is overlaid on the data (smooth lines color-coded to data in all panels). 

The parental line is more sensitive to doxorubicin therapy relative to the resistant line. 

Complete population regression of the parental line is seen for doxorubicin treatments ≥ 500 

nM (a). The cell populations demonstrate increasing resistance to therapy as the fraction of 

resistant cells increases (b – e). The resistant cell line continues to proliferate under 500 nM 

doxorubicin (f). The proposed model can describe the observed pharmacodynamics. (Placed 

in Section 3.1)
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Figure 3. 
Model fits for each cell line in several co-culture conditions following treatment with 100 

nM of doxorubicin. In the current experimental approach, each cell line can be quantified 

throughout the course of the experiment. The cell counts of the parental (red) and resistant 

(blue) lines with 95% confidence intervals are shown following treatment with 100 nM 

doxorubicin. The total cell counts with 95% confidence intervals are shown in black. Eqs. 

(6) – (8) are fit to these data as described in Section 2.6, and the best-fit model is overlaid on 

the observed cell counts (smooth line color-coded to data in all panels). While the parental 

line demonstrates continued positive proliferation in monoculture (a), the net proliferation 

rate of the parental line decreases with increasing fractions of resistant cells (b – e). The 

resistant line demonstrates positive growth in all conditions (b – f). (Placed in Section 3.1)
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Figure 4. 
Proliferation rate of each cell line changes as a function of co-culture condition. The 

proliferation rate of each cell line and corresponding 95% confidence interval are estimated 

from control experiments (no doxorubicin). These rates are shown as a function of the 

percentage of resistant cells at the time of seeding. The proliferation rate of the resistant cell 

line increases as the fraction of resistant cells decreases. Conversely, the proliferation rate of 

the parental cell line decreases as the fraction of resistant cells increases. (Placed in Section 

3.2)

McKenna et al. Page 18

Ann Biomed Eng. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Net proliferation rate of the parental (left) and resistant (right) cell lines as a function of the 

number of resistant cells present at the time of seeding. Eqs. (6) – (8) were fit to each cell 

line in each co-culture and treatment condition. The net proliferation rate (kp - kd,a) with 

corresponding 95% confidence intervals under 100 and 500 nM of doxorubicin is shown for 

each cell line as a function of the percentage of resistant cells. Sensitivity to doxorubicin in 

the parental cell line increases with increasing fractions of resistant cells as demonstrated by 

the significant decrease in net proliferation rate under 100 nM of treatment with increasing 

fractions of resistant cells (left). The net proliferation rate of the parental line appears 

saturated at approximately −0.5 × 10−2 hr−1 under treatment with 500 nM doxorubicin. 

Conversely, the net proliferation rate of the resistant line increases with decreasing numbers 

of resistant cells (right). This indicates that the increase in proliferation rate in the resistant 

line more than offsets the effects of low-dose doxorubicin. (Placed in Section 3.2)
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Figure 6. 
Pharmacokinetics model predicts increased doxorubicin accumulation in the parental cell 

line with increasing efflux rate in the resistant line (kFE,R) and increasing fractions of 

resistant cells. The pharmacokinetics model was simulated to assess the effect of kFE,R and 

the fraction of resistant cells on the accumulation of drug in the parental cells (CB,P). In 

these simulations, the drug binding rate was equal for each cell line (kFB,R = kFB,P), and the 

diffusion rate into each cell line was equal (kEF,R = kEF,P = kEF). The fraction of resistant 

cells in the population was varied between 0 (entirely parental) and 0.95. The efflux rate for 

the resistant cells (kFE,R) was varied between 0.05 and 0.15 hr−1. The efflux rate for the 

parental population (kFE,P) was fixed at 0.05 hr−1. All other parameter values are specified in 

Table 1. The drug accumulation in the parental cell line (CB,P) is normalized to the 

minimum simulated value in each plot to show the percent increase in drug accumulation as 

the fraction of resistant cells, kEF, and kFE,R are varied. As the percentage of resistant cells 

increase, there is an increase in the drug accumulation in parental cells. This accumulation is 

further increased as kFE,R increases. The magnitude of this effect is proportional to the 

simulated value of kEF. (Placed in Section 3.3)
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Figure 7. 
The death rate in the parental population is constant as a function of co-culture condition 

when the MDR1 pump is inhibited. Cells under various co-culture conditions were treated 

with doxorubicin only or a combination of doxorubicin and 1 μM TQR, which inhibits 

MDR1 function. The treatment response of these populations were then observed over time 

as described in Section 2.8. The treatment response model was fit to the treatment response 

timecourses. The death rate and corresponding 95% confidence interval from these model 

fits for each cell line (left and right columns for parental and resistant lines, respectively) are 

reported under the doxorubicin-only condition (top row) and the doxorubicin + TQR 

condition (bottom row). The death rate in the parental cell line appears to increase with 

increasing percentages of resistant cells (a). The resistant cell line is relatively insensitive to 

doxorubicin treatment as demonstrated by the low death rates in (b). The assay is repeated 

with the addition of 1 μM TQR to doxorubicin. The addition of TQR reverses the trend 

observed in a, and the response to therapy in the parental line appears constant as a function 

of co-culture condition (c). The death rate of the resistant cell line increases significantly 

with addition of TQR (d). (Placed in Section 3.4)
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Figure 8. 
Proliferation rates of parental and resistant cell lines under treatment with TQR. 

Proliferation rates were estimated from control (i.e., no doxorubicin) treatment response 

studies with 1 μM TQR. The proliferation rate of the parental line decreases with increasing 

fractions of resistant cells. Conversely, the proliferation rate of the resistant cells increases 

slightly as the fraction of resistant cells decreases. This is consistent with the observation in 

Figure 4. (Placed in Section 3.4)
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Table 1

Properties for pharmacokinetic simulation. (Placed in Section 2.7)

Parameter Value Source

vE 250 μL Experimentally-defined extracellular volume

vI 0.005 μL 10,000 cells × 5e-7 μL (estimated volume per cell)

kEF [0.005, 0.05] hr−1 Jackson (2003)18

kFE,P 0.05 hr−1 McKenna (2017)23

kFE,R [0.05, 0.15] hr−1 McKenna (2017)23

kFB,R, kFB,P 0.015 hr−1 McKenna (2017)23
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