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Abstract
Here, we review the role of pituitary adenylate cyclase-activating peptide-38 (PACAP38) in migraine pathophysiology and data
implicating PAC1 receptor as a future drug target in migraine. Much remains to be fully elucidated about migraine pathophys-
iology, but recent attention has focused on signaling molecule PACAP38, a vasodilator able to induce migraine attacks in patients
who experience migraine without aura. PACAP38, with marked and sustained effect, dilates extracerebral arteries but not the
middle cerebral artery. The selective affinity of PACAP38 to the PAC1 receptor makes this receptor a highly interesting and
potential novel target for migraine treatment. Efficacy of antagonism of this receptor should be investigated in randomized
clinical trials.
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Introduction

Since its discovery in 1989 [1], pituitary adenylate cyclase-
activating peptide (PACAP) has gained considerable interest
as a key molecule in migraine [2–4]; importantly, more recent-
ly, one of its receptors has been implicated as a treatment
target for this debilitating neurological disease [5]. PACAP
hails from the same superfamily as structurally related vaso-
active intestinal peptide (VIP) [6]. Two bioactive forms exist:
a 38-amino acid peptide (PACAP38) and a 27-amino acid
peptide (PACAP27) [1]; the former accounting for 90% of
mammalian tissue PACAP. In the nervous system,
PACAP38 acts as a hormone, a neurotransmitter, and a
neuromodulator [6, 7]. PACAP38 crosses the blood–brain bar-
rier (BBB) via a protein transport system, which is responsible
for transport in both directions, that is, from blood to brain and
from brain to blood. While PACAP38 transport over the BBB
occurs in a saturable manner, PACAP27 influx is

nonsaturable. Although, both PACAPs cross the BBB, their
effect on the central nervous system is questionable owing to
1) rapid efflux back to the blood from brain, and 2) degrada-
tion of the peptide [8]. PACAP38 is found in several important
structures of interest in migraine pathophysiology—notably in
sensory and parasympathetic perivascular fibers [9, 10], the
trigeminal [11] and sphenopalatine [12] ganglia, and in the
trigeminal nucleus caudalis (TNC) (see Fig. 1) [34]. In mast
cells in human skin, PACAP38 causes degranulation and his-
tamine release [35]. PACAP38 exerts its effects through at
least 3 different receptors—the VPAC1, VPAC2, and PAC1

receptors [36], which are all G protein-coupled receptors that
increase intracellular cyclic adenosine monophosphate [37].
PACAP38 shares affinity for the VPAC1–2 receptors with the
structurally similar parasympathetic signaling molecule VIP
[36], but surpasses VIP 300 to 1000-fold in affinity for the
PAC1 receptor. mRNA of these receptors is found in trigemi-
nal (sensory) and otic (parasympathetic) ganglia, with only
VPAC1 found in sphenopalatine ganglia [38], and all 3 recep-
tors are found in cerebral and cranial vessels (see Fig. 2) [38,
48]. Vasodilation and mast-cell degranulation are mediated by
VPAC1–2 receptors. The PAC1 receptor is involved in multiple
physiological functions [49], including chronic pain.

Here, we review studies implicating PACAP38 in migraine
pathophysiology and discuss data sparking interest in the
PAC1 receptor as a future drug target in migraine.
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PACAP38 Provocation Studies

The continued development of human experimental models of
migraine have helped elucidate migraine pathophysiology
[50]. Recent advances include combining provocation studies

with advanced imaging techniques such as structural and
functional magnetic resonance imaging [51, 52].

A first systematic study investigated the effect of
PACAP38 on cerebral hemodynamics in healthy volunteers
and reported no effect on regional cerebral blood flow (when

Fig. 2 Schematic illustration of distribution of pituitary adenylate cyclase
activating peptide (PACAP) receptors PAC1, VPAC1, and VPAC2 in
cingulate cortex [39, 40], frontal cortex [40], hypothalamus [39–41],

trigeminal ganglion (trig ganglion) [42], superior cervical ganglion (sup
cerv ganglion) [43, 44], thalamus [39–41], cerebellum [39, 40, 45, 46],
pontine nuclei [39, 40], and cranial arteries[47]
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Fig. 1 Schematic illustration of distribution of pituitary adenylate cyclase
activating peptide (PACAP) in cingulate cortex [13], frontal cortex [13],
hypothalamus [14–20], trigeminal ganglion (trig ganglion) [21–23],

superior cervical ganglion (sup cerv ganglion) [13], thalamus [15,
24–27], occipital cortex [28], periaqueductal grey (PAG) [29],
cerebellum [13, 19, 25, 30, 31], and pontine nuclei [27, 32, 33]
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corrected for PACAP38-induced hypocapnia) [53]. Mild
headache was noted as a side effect of infusion of
PACAP38 at doses of 10 pmol/kg/min in 10 of 12 patients
(83%), as well as a heart rate increased by 40% to 50%.Owing
to the latter and other dose-dependent changes in vital signs a
maximum dose of 10 pmol/kg/min was chosen for future
provocation studies—a finding that was later upheld after in-
vestigation of headache inducing abilities of PACAP38 at
lower doses [54].

The first study specifically investigating the headache
and migraine-inducing abilities of PACAP38 elucidated
responses in 12 healthy volunteers and 12 patients with
migraine without aura (MO) [2]. In both groups, partici-
pants completed a randomized, double-blind, placebo-
controlled crossover study comparing 20-min intravenous
infusion of PACAP38 (10 pmol/kg/min over 20 min) to
saline. Healthy volunteers reported 100% incidence of
headache after PACAP38 and, interestingly, 2 of 12 report-
ed migraine-like attack within 1 h of PACAP38 infusion.
In patients with MO, 58% reported migraine attacks after
PACAP38 versus none after placebo. In the same study a
modest dilation of the middle cerebral artery (MCA) by
9.5% was calculated based on velocity measurements in
the MCA and the assumption that cerebral blood flow
was unchanged [53]. Moreover, the superficial temporal
artery (STA) was dilated by 37.5%, which lasted through-
out the 90-min observation period. Interestingly, migraine
attacks occurred at a mean time of 6 h after the start of the
infusion, suggesting the link between sustained vasodila-
tion and PACAP38-induced delayed migraine attacks. To
explore this a double-blind, placebo-controlled study in-
vestigated vascular responses after PACAP38 and placebo
in 14 healthy volunteers by high-resolution magnetic reso-
nance angiography (MRA) [55]. The major outcome was
that PACAP38 dilated the middle meningeal artery (MMA;
extracranial segment of the artery) over the 5-h observation
period. In contrast, PACAP38 did not dilate MCA (intra-
cerebral artery). Furthermore, migraine abortive treatment
(sumatriptan injection 6 mg) had no effect on the MCA but
reversed the MMA dilation and reduced the headache ac-
companying dilation.

To further elucidate mechanisms underlying PACAP38-
induced migraine, a double-blind, randomized, crossover
study in 22 patients with MO examined vascular responses
after 20-min infusion of PACAP38 and VIP by MRA [52].
This study demonstrated that migraine induction was
higher after PACAP38 (73% of patients) than with VIP
(18% of patients). Both peptides dilated the STA and
MMA but not the MCA, which is in contrast to findings
of MCA increase and no change in STA and MMA in
spontaneous migraine attacks in patients with migraine
[56]. The discrepancy between arterial circumference dur-
ing spontaneous and PACAP-induced migraine attack may

be caused by the difference in time. In PACAP38-induced
migraine experiments, patients underwent MRA scans at a
very early time point, when PACAP38 had a marked dila-
tory effect on the extracranial arteries. During spontaneous
attacks patients were scanned many hours into the attacks.
Therefore, direct comparison of arterial circumference dur-
ing provoked and spontaneous migraine is not possible.
Interestingly, MMA dilation returned to baseline 2 h after
start of VIP infusion but sustained (> 2 h) following
PACAP38. PACAP38 receptors are found in both human
meningeal and cerebral vessels [38, 48]. The vasodilator
effect of PACAP38 is suggested to be mediated via the
VPAC1–2 receptors, which are shared with VIP [48, 57,
58]. Although in vivo rat studies have yielded contradicto-
ry results reporting the VPAC1–2 receptors as mainly re-
sponsible for the PACAP38-induced meningeal vasodila-
tion [57, 58] neither of the two in vivo studies reported any
significant inhibition of this vasodilation by a PAC1 recep-
tor antagonist. Previous studies pointed out the importance
of mast-cell degranulation and histamine release in
PACAP38-induced prolonged vasodilation [59, 60].
However, a human provocation study found no increase
in serum tryptase, a marker for mast-cell degranulation,
after PACAP38 [52]. It is important to note that possible
mast-cell degranulation localized in dura might not ade-
quately be reflected in antecubital vein blood.

To investigate the differential impact of PACAP38 and VIP
on intrinsic functional brain connectivity, one study employed
resting-state functional magnetic resonance imaging, a meth-
od analyzing the functional connectivity between the various
parts of the brain [51]. PACAP38, but not VIP, was associated
with altered connectivity in the three networks investigated.
These networks, the salience, sensorimotor, and default net-
work, have been implicated in cognition, emotional process-
ing [61–64], photo- and phonophobia [65], and pain process-
ing [66]. Whether the reported alterations are specific for
PACAP38-induced migraine attacks is unknown. A similar
study in other pain conditions than migraine may further elu-
cidate this.

To investigate a possible genetic component in suscep-
tibility to migraine after PACAP38, a double-blind human
provocation study [67] compared PACAP38 migraine in-
duction in patients with high (≥2 first-degree relatives with
MO) and low (≤1 first-degree relative with MO) family
load of migraine. In addition, based on previous genotyp-
ing, patients were stratified on presence of 2 or 0 risk al-
leles of a single nucleotide polymorphism, rs2274316,
known as a risk factor in migraine and located within the
MEF2D gene, which is involved in regulating PACAP ex-
pression [68]. Results showed no difference in migraine
induction between groups—either based on family load
or allele status. Thus, no apparent genetic susceptibility
to PACAP38 was found.
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The PAC1 Receptor and Future Directions

Several studies have shed light on the fluctuations of
PACAP38 in ictal and interictal phases of migraine and in
comparison to healthy volunteers. While PACAP38 levels in
patients with migraine are higher ictally than interictally [69,
70], these increases are actually not statistically higher than
PACAP38 levels in healthy controls [69]. Furthermore, con-
flicting results on interictal PACAP38 levels in patients with
migraine have been reported [71]. Two studies reported lower
PACAP levels in patients with migraine interictally than in
healthy controls [69, 72], whereas one recent study reports
comparable PACAP levels interictally in patients with mi-
graine and controls [73]. This discrepancy can be explained
by interassay differences. Interictally lower PACAP levels in
patients with migraine could indicate chronic depletion of
PACAP38 in the trigeminovascular system caused by repeated
attack activity [74]. In an animal model, Han et al. [74]
established a model of chronic migraine by repeated dural
exposure to an inflammatory soup. In both plasma and trigem-
inal ganglion (TG), rats subsequently showed decreased
PACAP38 levels. Interestingly, increased PAC1 receptor
mRNA expression in TG but not TNC was reported. The
mRNA expression of VPAC1–2 receptors, which PACAP38
and VIP share equal affinity for, was not significantly in-
creased in TG and TNC [74]. Given that VIP did not induce
migraine [75] and that PAC1 receptor mRNAwas expressed in
meningeal arteries [48], TG neurons [38], and TNC [34], the
PAC1 receptor should be considered as a viable candidate for
targeted migraine treatment. Interestingly, one in vitro study
reported that administration of the selective PAC1 receptor
agonist maxadilan and the PAC1 receptor antagonist M65 on
TG neurons increased intracellular free calcium concentration
[76]. The authors suggested that the PAC1 receptor antagonist
may also act as agonists on primary sensory neurons and that
unknown receptors or splice variants linked to distinct signal
transduction pathways might explain this effect [76].

PACAP38 signaling in migraine could be blocked in a
number of ways. Small molecules or monoclonal antibod-
ies could target the PAC1 receptor. Alternatively, targeting
PACAP38 itself with monoclonal antibodies would be an
option [77]. These strategies also hail from emerging re-
sults of targeting similar peptide calcitonin gene-related
peptide (CGRP) in large-scale clinical trials showing
promising results in migraine prevention [78–80]. At pres-
ent, it is difficult to speculate on the possible mechanism of
the treatment of monoclonal antibodies against PACAP
itself or PAC1 receptor. Anti-CGRP antibody trials re-
vealed no difference between compounds developed
against CGRP or its receptor [78–80], and the exact site
of action for anti-CGRP agents remains to be fully eluci-
dated [81]. Whether targeting the PACAP38 signaling
pathway will be efficacious in migraine treatment is

unknown. Future phase II trials investigating this are cur-
rently planned [82, 83].
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