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Abstract

Acid-sensing ion channels (ASICs) are a family of ion channels, consisting of four members; ASIC1 to 4. These channels are
sensitive to changes in pH and are expressed throughout the central and peripheral nervous systems—including brain, spinal
cord, and sensory ganglia. They have been implicated in a number of neurological conditions such as stroke and cerebral
ischemia, traumatic brain injury, and epilepsy, and more recently in migraine. Their expression within areas of interest in the
brain in migraine, such as the hypothalamus and PAG, their demonstrated involvement in preclinical models of meningeal
afferent signaling, and their role in cortical spreading depression (the electrophysiological correlate of migraine aura), has
enhanced research interest into these channels as potential therapeutic targets in migraine. Migraine is a disorder with a paucity
of both acute and preventive therapies available, in which at best 50% of patients respond to available medications, and these
medications often have intolerable side effects. There is therefore a great need for therapeutic development for this disabling
condition. This review will summarize the understanding of the structure and CNS expression of ASICs, the mechanisms for their

potential role in nociception, recent work in migraine, and areas for future research and drug development.
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Introduction to Migraine

Migraine is a common and disabling headache condition af-
fecting millions of people worldwide [1]. The World Health
Organization (WHO) classifies migraine as the sixth most
disabling disorder globally [1], with a total prevalence of 15
to 18%, regardless of which country is surveyed [2].
Typically, migraine tends to affect people during their peak
working years so there is significant disability and subsequent
socioeconomic impact associated with the condition [3].
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Migraine is classified as a disabling disorder of moderate to
severe throbbing head pain, with each attack lasting 4 to 72 h,
associated with nausea and/or vomiting and other sensory sensi-
tivities [4]. Despite migraine being well recognized as a disorder
of head pain among the general public, there are a wide range of
nonheadache symptoms which can be associated with migraine;
thus, it has become increasingly accepted as a central disorder of
sensory processing; this creates a condition in which usual sen-
sory stimuli such as light, sound, touch, and smell are perceived
as more intense or bothersome, or that there is a problem with the
modulation of such stimuli by the migraine brain [5].
Additionally, there can be difficulties processing such stimuli,
in which the brain is unable to block “noise” of nonuseful stimuli
such as peripheral conversation, a television that has been left on,
or bright lighting, and migraineurs can find managing excessive
amounts of such stimulation particularly difficult, for example, in
loud concerts or crowds, or in flashing lighting such as at a party.
Such difficulties with sensory stimulation, in some cases, are also
present interictally in the absence of head pain [6], or indeed in
the premonitory or postdrome phases of the attack, in which
these symptoms are present without migrainous headache [7,
8]. Migraine may therefore be viewed as a primary brain disor-
der, in which the brain is abnormally sensitive to sensory stimu-
lation, be that via touch, movement, light, sound, or smell, as
well as subcortical and cortical brain dysfunction, so that
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activation of the process leads to a cascade of further neuronal
and vascular dysfunction within the brain, mediating pain as well
as other associated symptoms.

Migraine is also a disorder of trigeminovascular activation;
that is, it includes activation of a pathway between sensory
afferents located in the meninges and vessel walls in the crani-
um (the only pain sensate structures within the cranium) and
neck which transfer nociceptive information through the tri-
geminal ganglion, cervical ganglion, and greater occipital
nerve into the brain, where this information converges in the
trigeminocervical complex (TCC) within the pons. From here,
nociceptive signaling and modulation occur through various
subcortical structures, including the rostroventral medulla
(RVM), the locus coeruleus (LC), periaqueductal gray
(PAG), hypothalamus, and thalamus, and eventually to the
cortex for the sensory processing of pain. There is also a reflex
connection from the TCC through the sphenopalatine ganglion
(SPG) to the cranial vasculature, and it is thought that this
pathway is likely to mediate some of the cranial autonomic
symptoms that can accompany a migraine attack [9]. Despite
historical views about migraine as a vascular headache and this
hypothesis explaining the clinical response to triptans and di-
hydroergotamine as the most effective migraine abortives (me-
diating their action via vasoconstriction [10]), it has become
increasingly clear that although the blood vessels do play a part
in the disorder, migraine is much more a neural rather than
vascular brain disorder, with several cortical and subcortical
brain areas and ascending and descending pathways involved.

Despite decades of research into migraine, there remains a
paucity of effective acute or preventive treatments available to
treat the disorder. Most of the preventive treatments available
were initially developed for the treatment of other conditions
such as epilepsy, depression, or hypertension, and their helpful
effect in migraine was noticed by chance. This means that the
treatments are nonspecific and untargeted to migraine mecha-
nisms, complicating these drugs by adverse effect profiles and
tolerability issues as well as suboptimal efficacy. With regards
to acute treatments, there have been no real breakthroughs in
targeted abortive development since the triptans in the early
1990s [11-13], which, despite excellent efficacy in a proportion
of patients, do not work for everyone [14], can be complicated
by headache recurrence [15], and can cause vascular effects
which are often unfavorable and contraindicate their use in
anyone with preexisting cardiovascular, cerebrovascular, or pe-
ripheral vascular disease, and in anyone over the age of 65 [16].
The drugs also carry a limited license in children, and only
intranasal sumatriptan is currently available for use in this group
[17]. Medication overuse is another noted complication of fre-
quent triptan use and can lead to further difficulties treating the
migraine [18]. Other acute treatments used come from other
pain conditions, and largely consist of nonsteroidal anti-
inflammatory drugs (NSAIDs) and combination drugs includ-
ing those containing opioids, which pose their own problems.

There is therefore a therapeutic gap in migraine, and an
ever-increasing need to develop targeted therapeutics for the
condition, to limit its impact and burden without adverse ef-
fects. This can only be achieved through furthering under-
standing of the neurochemical systems and neurobiology of
the disorder, to identify novel therapeutic targets within the
migraine system, to ideally abort and/or prevent pain onset at
all, and to treat associated migraine symptomatology.

Introduction to Acid-Sensing lon Channels

Acid-sensing ion channels are a family of ion channels which
were first cloned in 1997 [19]. There are four members,
ASIC1 to 4 (with several splice variants), three of which (all
except ASIC4) are sensitive to changes in pH [20] (see
Table 1). The channels are permeable to cations such as sodi-
um, potassium, and in some cases calcium, and they are acti-
vated by low pH, both intracellular and extracellular [21, 52,
53]. Additionally over recent years, there has been the sugges-
tion that the channels can also be modulated by endogenous
and external modulators [20]. The channels can detect and
open at ranges of pH between 4.0 and 8.0 [52, 54] (ASIC3
in humans is sensitive to alkaline pH [52]). They are expressed
throughout the human nervous system, both in the brain and
spinal cord [55, 56]. The most broadly expressed channel
within the central nervous system is ASIC1 [55], particularly
ASICla. ASICla is widely expressed within the mouse brain,
with particular expression within the amygdala, hippocampus,
PAG, caudate, putamen, olfactory bulb, cerebral cortex layer,
and cerebellum [56, 57], as well as in the spinal dorsal horn
neurons in rats [22, 58]. Most ASIC subtypes are expressed on
primary sensory neurons and are likely to be important for
pain and mechanosensation from the skin [23]. ASIC1 and
ASIC3 are highly expressed in dorsal root ganglia and in
peripheral sensory neurons which supply visceral organs such
as the heart and bowel as well as in muscles and joints
[59-61]. See Boscardin et al. [62] for a recent review.
Maintenance of a physiological acid—base balance of cellular
environments is important for normal cellular function [20]. In
certain disorders, tissue acidosis can follow a range of patholog-
ical processes such as tissue ischemia and inflammation [63]. It is
thought that ASICs are involved in responding to this fall in
extracellular pH in such conditions, and thereby contribute to
pathological mechanisms and cell death in response to acidosis
[24, 64]. It is postulated that on peripheral neurons, the channels
are involved in sensory function such as mechanosensation and
pain sensation [65, 66], and centrally they are likely to be in-
volved in synaptic plasticity (with channel activation through
increased proton levels caused by frequent synaptic activity)
[25, 56, 67, 68]. Their wide expression within the central nervous
system and their role in mediating cell response to acidosis have
contributed to their suggested role in human diseases, including

@ Springer



404

N. Karsan et al.

Table 1 ASIC channels and subunits, and their localization and potential functions and contributions to human disease
ASIC channel  pH sensitivity (pHso) Predominant Likely cellular Potential function References
type [21] localization localization
ASICIA 5.8-6.8 Central and peripheral ~ Axons, cell bodies, Cell death following injury, epilepsy,  [21-35]
nervous systems dendrites pain signaling, neuroinflammation,
neurodegeneration, fear behavior
ASICIB 6.1-6.2 Peripheral nervous Axons, cell bodies [21, 36]
system
ASIC2A 4549 Central and peripheral ~ Axons, cell bodies, Modulate ASIC1, ASIC2b, and [21, 3740]
nervous systems dendrites ASIC3 function, autonomic
circulatory control
ASIC2B Associates with other Central and peripheral ~ Axons, axons terminals, =~ Modulate ASIC1 function, [37, 38, 41]
channels to have nervous systems cell bodies autonomic circulatory control,
pH sensitivity acidosis-induced neuronal death
ASIC3 6.4-6.6 Peripheral and central ~ Axons, axons terminals,  Pain signaling, fear conditioning [21, 42-50]
nervous systems cell bodies with exogenous expression,
anxiety and aggression
ASIC4 Not pH sensitive Central nervous Fear and anxiety through ASICla [51]

system

antagonism

epilepsy [26], stroke, ischemic injury [69, 70], and traumatic
brain injury [71], as well as several nociceptive states [72, 73].
Through this understanding, increased research around their ex-
pression, roles, and pharmacology has subsequently led their
emergence as a potential therapeutic target for such neurological
disorders. Additionally, it is increasingly being recognized that
they may contribute to migraine given their role in several neu-
ronal processes linked to the disorder within the central and
peripheral nervous systems.

Molecular Structure of ASICs

ASICs are either Na*- or Ca2+-permeable ion channels, are
formed of three subunits, and are a part of the wider family
of ENaC/degenerin epithelial channels, which are involved in
Na* homeostasis [74] (see Fig. 1).

Although there are four main types of channel, ASIC1 to 4,
subunits including ASIC1a, ASIC1b, ASIC2a, and ASIC2b also
exist as splice variants, and these can form heteromultimeric
channels with different functions (see Table 1). The channels
are composed of three subunits that form a ligand-gated protein
structure [75]. The ASIC subunits among different species are
highly conserved, and human ASIC2 sequences are 99% identi-
cal to rat ASIC2. This suggests that the protein plays an impor-
tant role in neuronal function across different species.

The channel subunits are composed of 500 to 560 amino
acids each, and two transmembrane domains (which line the
pore of the channel) [76] with a relatively short cytoplasmic
section, with 35 to 90 amino acids, with a longer extracellular
domain, consisting of over 300 amino acids [77]. The proton
ligand binds to the extracellular domain, which is organized in
a three-dimensional structure [76]. The extracellular domain is
composed of 12 beta sheets and 7 alpha helices, made of
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several pairs of amino acids [76]. The two long alpha helices
form the transmembrane domains lining the ion pore [76]. The
alpha-helix of the second transmembrane domain loosens near
the selectivity filter. After the selectivity filter, the remainder
of the second transmembrane domain alpha-helix fills in the
lower portion of the second transmembrane domain of a
neighboring subunit (see Fig. 1). The extracellular domain
contains an acidic section, replete with acidic amino acids,
which is involved in response to extracellular acid and re-
sponse to other extracellular modulators [78] (Fig. 1).

The knowledge of this structure comes from characteriza-
tion of chicken ASIC1 (PDB code 4NYK) plasma membrane
(blue) and chloride ions (green) are shown. The channel is
activated by protons binding to sites within the extracellular
domain. Sodium and calcium ions enter the protein complex
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Fig. 1 Structure of an amd-sensmg ion channel (in particular chicken ASIC1)
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through fenestrations at the protein/plasma membrane inter-
face (red arrow) and pass through the pore into the cell. This
leads to membrane depolarization and downstream cellular
effects. Amiloride [79] and PcTx1 [80] bind to a site near
the interface of two subunits in the extracellular domain.
Guanidino compounds [46] may interact at an extracellular
site along the channel’s midline. The pore blocking sites for
amiloride [79] and potential sites for diminazene [81] and
memantine [82] are located within the channel pore, near the
channel’s selectivity filter. The three ASIC1 subunits make a
trimeric ASICla complex. The function of the channel can
also be modulated by intracellular regulators, such as p11 [83].

ASICs in Neurological Disease

ASICs have been postulated as having a role in a variety of
neurological diseases, including Parkinson’s disease, stroke,
traumatic brain injury, multiple sclerosis, and epilepsy.
Although most of the data suggesting a role for ASICs in these
conditions comes from preclinical studies and animal models
of human disease, their possible contribution to these diseases
can provide translational insights into how they mediate cell
damage and clinical syndromes.

In neurodegenerative conditions such as Parkinson’s and
Alzheimer’s disease, mitochondrial and microglial ASICs
(primarily ASICla) may be involved in mediating cell death
[84, 85]. ASICs may also contribute to stroke, although
through a variable role in the cell response to cerebral ische-
mia, with ASICla activation (presumably from acidic hypoxic
tissue) leading to cell death and ASIC2 being possibly protec-
tive [24]. Multiple sclerosis (MS) is another neurological dis-
ease with a potential ASIC contribution, as ASICla has been
shown to be upregulated in a neuroinflammatory model, and
could be responsible for axonal injury [86]. Finally, intense
neuronal and synaptic activity in epilepsy causes reduced pH
which can potentially activate ASICs and lead to seizure ter-
mination via an ASICla mechanism [29].

The potential contribution of ASICs to these wide-ranging
neurological conditions, from neurodegeneration and
excitotoxic/hypoxic cell death following ischemia and fre-
quent synaptic activity in epilepsy, suggests that these chan-
nels may become pharmacological targets in human disease.
Their wide expression and role from the cortex to deeper sub-
cortical structures in these various conditions suggests that
novel pharmaceutical agents against these channels would
need to be designed to target specific ASIC subtypes under
specific conditions, as there may otherwise be unwanted ad-
verse effects associated with broad antagonism, particularly
with CNS penetrant agents. Perhaps for migraine, peripherally
acting agents, at the level of the trigeminal ganglion or sensory
afferents (discussed below), would be sufficient for disease
control.

Potential Mechanisms of the ASIC Role
in Migraine

Meningeal Nociceptor Activation

Migraine pain involves the activation of dural nociceptors
peripherally which then transmit pain for processing centrally
[9]. Increased ASIC1a expression has been found in the spinal
dorsal horn neurons following peripheral inflammation, and
antagonizing this channel reduced pain-related behavior in
rodents [22, 58]. Psalmotoxin 1 (PcTx1), a tarantula toxin,
blocks the ASIC1a channel [87] and inhibits ASIC1a/2b cur-
rent [41]. When administered intrathecally or intraventricular-
ly, it reduced acute pain and pain-related behavior in two
chronic pain models in rats [31]. Mambalgin-1, another
ASICla antagonist but from the venom of a black mamba
snake, also reduced pain behaviors in a rodent model [88].
Studies have shown that mambalgins inhibit homomeric
ASICla, homomeric ASIC1b, and heteromeric ASICla +
ASIC2a, ASICla+ ASIC2b, and ASIC1a+ ASICI1b receptors
[89]. The heteromeric ASICla + ASIC2 receptor decreased
acute pain and inflammatory pain in the rodent model, which
was resistant to reversal by naloxone, suggesting a nonopioid
analgesic effect [88]. Despite the ASIC expression and noci-
ceptive role here being primarily spinal, there may be some
role higher in the trigeminal pathway (see “New Animal
Studies” section below).

In the peripheral nervous system, ASICs are expressed on
sensory neurons responsible for signaling pain [23]. ASIC3 is
one of the major ASICs expressed peripherally and is in-
volved in pain originating from visceral organs such as the
heart [90] and colon [59]. ASIC3 antagonists have been
shown to reduce pain associated with cutaneous inflammation
and pain arising from joints and muscles [45, 91].

Given that in nociceptive models, ASICs can sense acidic
extracellular pH and cause pain as a result, it is feasible that
this mechanism may be involved with the sensing of reduced
meningeal pH in migraine [92]. Historical animal studies have
demonstrated that dural afferents respond to acidic pH
[93-95]. It has also been shown that dural stimulation leads
to vasodilatation and therefore afferent trigeminal nucleus
caudalis (TNC) activity, which can be blocked by amiloride,
anonselective ASIC antagonist [96]. Additionally, dural acid-
ity leads to calcitonin gene-related peptide (CGRP) release
from dural and trigeminal cell bodies and the release from
trigeminal cell bodies can be blocked by a specific ASIC3
antagonist [97], suggesting a potential ASIC3-mediated role
in migraine.

There is a clear role for ASICs in mediating dural afferent
activity, especially since studies have shown that 80% of dural
afferents will produce ASIC-like currents in response to acidic
pH [98]. When low pH is directly applied to the dura of awake
animals, they display headache-related behaviors which can
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be blocked at lower pHs by amiloride or at higher pHs by
APETx2 (natural venom toxin from the sea anemone
Anthopleura elegantissima, an ASIC3 antagonist) [94].

The mechanisms by which decreased dural pH may come
about during the migraine process are unclear. The idea of
neurogenic inflammation (a sterile meningeal inflammatory
process involving several neuropeptides) occurring during mi-
graine is a debated area [99]. However, mast cell degranula-
tion within the dura can activate and sensitize dural afferents
[100], and this degranulation is triggered by stress and CGRP
release, following infusion of the nitric oxide (NO) donor
nitroglycerin (NTG), and with increased estrogen [99].
Interestingly, these factors are all well-recognized potent mi-
graine triggers in humans and one of these triggers, NO, has
been shown to directly modulate ASIC activity. Cortical
spreading depression (discussed below) can also lead to mast
cell degranulation [101]. Mast cell granules contain acidic
contents [102], and mast cell degranulation leads to the release
of various proinflammatory cytokines such as interleukin-6
[103] and TNF-alpha [104], which can increase the activity
and sensitivity of dural afferents to this reduction in pH sur-
rounding the afferent nerve endings.

Cortical Spreading Depression (CSD)

Migraine is a complex disorder, which causes nonpainful
symptoms including aura in a proportion of sufferers [105].
Aura is characterized by a reversible neurological disturbance,
which may accompany a migraine attack, or may occur in
isolation in the absence of headache. It has been established
in the literature that the electrophysiological correlate of mi-
graine aura is cortical spreading depression or CSD [106],
which consists of a wave of neuronal excitation of the cortex,
followed by a more prolonged process of neuronal depression
[107]. The process of CSD leads to ion flux, neurotransmitter
release, and changes in cerebral blood flow and oxygenation
levels [108, 109]. It is therefore feasible that acid-sensing ion
channels may be involved in meditating this phenomenon.

It is unclear how CSD is related to the pain mechanisms in
migraine, as subcortical areas and the brainstem seem to be
vital to the pain of the migraine attack [9], yet the connection
between CSD and such areas is disputed. Only a small pro-
portion of migraineurs experience aura, so there are likely
additional mechanisms involved in mediating migraine head-
ache, unless CSD is clinically asymptomatic in the majority of
migraineurs. Indeed, CSD can occur in other conditions and
lead to aura-like symptoms in the absence of pain, including
following traumatic brain injury, subarachnoid hemorrhage,
epilepsy, and stroke [110], suggesting that CSD may be a
process which is not immediately connected to the trigeminal
pain network in migraine, but happens to be more common in
migraineurs.

@ Springer

Preclinical studies have shown that CSD can cause cortical
blood flow changes, as well as neuronal activity within the
TNC, an area where trigeminal afferent input from the face
converges in the brain [111]. It has also been shown that CSD
can cause increased trigeminal ganglion activity, as well as
increased activity in the C1 to C2 part of the trigeminal nucle-
us [112, 113], suggesting that CSD may lead to activation
within the trigeminovascular pathway and therefore lead to
migraine headache. It has also been found that the release of
high-mobility group box 1 (HMGBI1) from cortical neurons
could link CSD leading to meningeal afferent activity [101,
114]. Additionally, connections between the cortex and the
TNC, a brain area vital in migraine, can modulate TNC activ-
ity, providing a mechanism by which cortical activity could
impact TNC activity and therefore pain signaling through the
trigeminal system [115]. However, in animal models, CSD
models are not able to produce behavior consistent with head
pain [116—118]. It therefore remains unclear what connection
if any CSD has with pain in migraine.

It has been suggested that a reduced pH from CSD could
lead to the propagation of the CSD across a cortical area [119,
120]. This reduced pH could arise from hypoxia or ischemia
from vessel changes associated with the phenomenon. A study
in 2006 demonstrated the ability of amiloride (a nonspecific
ASIC blocker) and psalmotoxin 1 (PcTx1), a blocker at the
ASIClaand ASIC1a/2b receptors, to inhibit CSD in a needle-
prick rat CSD model. This effect was reduced in ASIC1 (—/-)
knockout mice compared with wild type. Amiloride was also
able to reduce cerebral vasodilatation in the rat model in re-
sponse to electrical stimulation over the cranium, as well as to
reduce electrophysiological responses to dural stimulation. As
a result of this study, the authors gave amiloride, which is a
licensed diuretic drug in humans, to 7 patients with treatment
refractory migraine with aura and monitored them for clinical
efficacy. Amiloride was able to reduce aura and headache
symptoms in 4 out of 7 patients with otherwise intractable
aura, suggesting a possible role for ASIC1 in migraine despite
the nonselectiveness of amiloride for these channels [96].

The Hypothalamus

The role of the hypothalamus in migraine is being increasingly
appreciated, following animal studies [121-123] and more re-
cent functional imaging studies in humans [124—127]. Its role in
cluster headache has been more historically established, given
the cyclical nature of the disorder [128], and this role formed the
basis of the research into neuromodulation and deep brain stim-
ulation of the hypothalamus as a treatment modality for cluster
headache [129-135]. It has been hypothesized that the hypo-
thalamus could be involved in mediating some of the premon-
itory and endocrinological disturbances which can accompany
a migraine attack, such as yawning, thirst, and altered sleep
patterns, through various connections and neuromodulators
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and neurotransmitters such as orexin and somatostatin [9]. It is
also well recognized that alterations in sleep patterns can trigger
migraine, and this association may be mediated by the hypo-
thalamus [122]. Serum levels of hormones investigating the
hypothalamic—tuberoinfundibular system (prolactin, growth
hormone), the hypothalamic—hypophyseal-adrenal axis (corti-
sol), and pineal gland function (melatonin) were studied and
shown to be altered in chronic migraine [136].

It is also clear from animal studies that the connections
from the hypothalamus terminate in recognized regions of
the trigeminovascular pain pathway. There are ascending
and descending connections between the hypothalamus and
the trigeminocervical complex (TCC), the periaqueductal gray
(PAG), the rostroventral medulla (RVM), the nucleus tractus
solitarius, and the nucleus raphe magnus [137], as well as the
superior salivatory nucleus (SSN) [138]. Through these vari-
ous connections and brain areas, the hypothalamus is able to
convey ascending nociceptive input to higher structures for
processing and also to modulate descending input.

ASIC3 is expressed throughout the hypothalamus [50], and
ASIC1- and ASIC3-like currents have been demonstrated in
hypothalamic neurons in culture [139]. Hypothalamic neurons
also express the mRNA for various ASIC subtypes [140, 141].
Recently, it has been demonstrated that ASICla is expressed
in lateral hypothalamic orexinergic neurons [142] and can
modulate respiratory drive in a way that is blocked by ASIC
antagonists. Orexinergic drugs have been researched in early
trials for migraine treatment given the association between
migraine and sleep and the postulated role of the hypothala-
mus in migraine [143]. Given the channel expressions within
the hypothalamus, and the potential impact on hypothalamic
function via orexinergic neurons, there is the suggestion that
ASICs may play some role in migraine via the hypothalamus.

The Emerging Role of ASICs in Migraine

We have discussed above the potential ways in which ASICs
could be involved in the migraine process. The majority of the
data presented has been preclinical, and apart from the small
open-label amiloride study in seven subjects [96], we have
limited supportive human evidence for ASICs playing a role
in migraine, despite convincing animal studies.

New Animal Studies

Most of the work that has been done on ASICs in migraine has
focused on ASICI, namely, ASICla, because of its wide-
spread CNS expression. Emerging work which is currently
unpublished but abstracted has used the demonstrated
ASIC3-expressing neuronal projections to the TCC to study
the role of ASIC3 inhibitors in trigeminovascular nociception.
Trigeminal afferents were activated via middle meningeal

artery stimulation, and extracellular recordings from the
TCC were carried out. The authors demonstrated that
APETx2 was able to reduce nociceptive firing in the TCC
significantly more than saline with a prolonged 60-min effect
at a 100-mcg/kg dose but not at a lower dose [144]. This data
suggests that ASIC3 may also be a target for migraine
therapeutics.

Additional indirect support for the role of ASIC3 in mi-
graine comes from another study in which the authors tested
for the expression of ASICI, ASIC2a, and ASIC3 in the tri-
geminal ganglion of rats and that there was upregulation when
the rats were exposed to a formalin orofacial pain inflamma-
tory model. Migraine can involve facial pain, and indeed can
present with facial pain alone. This upregulation could be
reversed with pharmacological ASIC blockade and with ge-
netic deletion of ASIC1 [72]. This is supported in another
study which showed a positive correlation between periodon-
tal ASIC3 expression in rats following experimental tooth
movement (which was conducted through springs and
deemed painful on a rat grimace score) [145]. This evidence
is supportive that ASIC3 may be involved broadly in trigem-
inal pain. Additionally, a study in 2013 showed that ASIC3 is
the predominant ASIC responding to a reduced meningeal pH
and in the context of inflammation; dural afferents are respon-
sive to even smaller pH changes within the meninges, sug-
gesting a role in headache [94]. These effects can be blocked
with ASIC3 antagonism.

Further, it has recently been shown that the dural pH nec-
essary to cause migraine-like behavioral responses is substan-
tially higher if animals are first sensitized, or “primed,” by
prior exposure to a noxious dural stimulus. In this study, cy-
tokine interleukin-6 (IL-6) was applied to the dura and follow-
ing resolution of the initial IL-6 behavioral responses, animals
were then sensitive to stimulation of the dura with a pH 7.0
solution. Even after sensitization, the responses to dural
pH 7.0 were blocked by APETxX2 indicating a role for
ASIC3. Control animals did not respond to dural pH 7.0,
which demonstrates that the meninges can be sensitized to
modest pH changes after a priming event. These findings sug-
gest that ASIC-dependent signaling from the meninges is like-
ly to be even more important in the context of sensitization,
such as that occurring during the development of a migraine
attack or even potentially in migraine patients between attacks
[146] .

Human Imaging Work

Acid-base changes within the brain can be detected using
modern brain imaging, namely, MR proton spectroscopy.
This has been used in migraine, in a hypoxia versus sham
triggering model [147]. It has been known for some time that
hypoxia has the potential to trigger migraine attacks [148,
149], and it has been demonstrated that hypoxia can induce
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CSD in mice and that the threshold to CSD is lower with
increased CSD duration in response to potassium [150]. In
healthy volunteers, hypoxia is associated with increased brain
lactate [151], and this rise in lactate in association with hyp-
oxia has also been shown in migraine with aura interictally
[152]. The authors of this most recent migraine spectroscopy
study therefore aimed to study the ability of hypoxia to trigger
migraine with visual aura attacks; they subsequently used im-
aging and blood tests to measure the visual cortex concentra-
tions of glutamate and lactate and serum metabolites in re-
sponse to hypoxia versus sham in both migraine with aura
and healthy controls. In both population groups, hypoxia
caused increased visual cortex lactate and dilatation of the
cranial vasculature, and in the migraine with aura group, hyp-
oxia triggered aura attacks in 7 subjects out of 15. The serum
lactate was increased after hypoxia more in patients than in
sham and in controls. The authors hypothesized that in mi-
graine with aura, hypoxia may lower the threshold for CSD
via lactate increases, and cause prolonged CSD. It is unclear
how the increase in lactate is mediated, be it through mito-
chondrial dysfunction or other mechanisms. The brain re-
sponses to lactate may be mediated through ASICs, but more
work is clearly necessary to address this possibility directly.

This demonstrated increase in brain lactate in response to a
recognized migraine trigger suggests again that ASICs may be
involved in mediating the response to lactate and therefore in
mediating CSD and possibly other migraine mechanisms.
Two interictal MRI studies have found increased brain lactate
in patients with migraine with aura [152, 153] in small patient
groups using 1.5-T MRI, and such findings have not been
reproduced at 3 T in migraine without aura [154, 155].
Additionally, a recent MRI study has demonstrated an
undisrupted blood—brain barrier during spontaneous migraine
with aura [156], and another study has demonstrated that a
potent anti-migraine drug, dihydroergotamine (DHE), does
not bind in the brain when administered in migraine without
aura, suggesting that the main effect is outside of the blood—
brain barrier and that the blood—brain barrier remains intact
during triggered migraine attacks [157]. These studies suggest
that metabolite changes during CSD do not cause blood—brain
barrier changes, and are therefore unlikely to cause the
brainstem changes that occur before and during migraine
headache, and that effective anti-migraine treatments do not
necessarily need to penetrate the blood—brain barrier to be
efficacious.

ASIC Pharmacology and Reference
to Migraine

In recent years, awareness has increased about the pharmacol-

ogy of ASICs and potential novel spider and venom toxins
which have proved useful in experimental research to
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understand the role of these channels in disease. These studies
are reviewed in detail in references [158, 159]. A selection of
pharmaceutical agents targeting these channels is discussed
here briefly, in particular those with clinical significance for
human disease.

Amiloride, which is a diuretic agent which spares potas-
sium, was the first recognized blocker of ASICs, with broad
anti-ASIC action with no differentiation between channel
subtypes [74, 160]. At higher concentrations, amiloride is
able to have the paradoxical effect of opening ASIC3
homomeric and heteromeric channels at a normal pH, and
enhances the channel activation in response to mild acido-
sis [161]. This activity is possibly mediated at a central site
between the three extracellular domains of ASIC subunits
where other guanidine-containing compounds have shown
efficacy [46, 162].

A-317567 is another ASIC antagonist that affects ASICla,
2a, and 3. Furthermore, this antagonist has shown higher af-
finity for ASICla and ASIC3 compared with ASIC2a [163].
Additionally, this compound may have non-ASIC effects sug-
gesting that other may protein targets can interact with the
compound. In animals that received A-317567 in pain studies,
sedation was observed. Sedation is not thought to be an ASIC-
mediated effect, suggesting that the A-317567 compound in-
teracts with other central nervous system receptors and has the
potential for unwanted side effects [164].

Several categories of drugs that are classically used for pain
can have actions at ASICs. Nonsteroidal anti-inflammatory
drugs (NSAIDs) have anti-ASICla and ASIC3 properties
[165]. Diclofenac and ibuprofen antagonize ASICs expressed
in rat hippocampal interneurons [166]. However, these anti-
ASICla and ASIC3 effects are at higher concentrations than
the effects observed with lower concentrations of amiloride.
Whereas most local anesthetics exert their anti-nociceptive
effect through sodium channels, some have been shown to
have anti-ASIC properties, including tetracaine on ASIC3
[167], lidocaine on ASICla [168], and the general anesthetic
propofol on ASICla and ASIC3 [169].

Clinically approved and available compounds for other
diseases may also have ASIC modulatory effects. One ex-
ample is the drug memantine, a hydrophobic monoamine
that targets ionotropic glutamate receptors for treating de-
mentia associated with Alzheimer’s disease [82].
Memantine inhibits ASICla in both neurons and cultured
cells [170]. Furthermore, memantine was shown to antago-
nize the channel at hyperpolarized voltages but potentiated
(increased) ASICla-mediated current at zero voltage [82].
Modeling data suggests that memantine blocks the channel
deep within the ASICla pore. However, the site within
ASIClaresponsible for potentiation by memantine remains
unclear.

Finally, there are compounds that perhaps surprisingly
have effects at ASICs, and these effects may not play a role
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in their primary mechanism of action. For example, the
anti-protozoan compound diminazene exhibited anti-
hyperalgesic activity in models of chronic inflammatory
pain [171]. Diminazine acts as a channel blocker for
ASICs [81, 171], and although this action may contribute
to its efficacy for pain, it is unclear whether this mediates its
effects on protozoa. Nonetheless, this example illustrates
the possibility that modulators of ASICs will be discovered
through screening of currently existing compounds that are
used for other purposes.

ASICs in Migraine Drug Development

We have outlined in this review the preclinical and clinical
evidence supporting the role of ASICs in migraine. From the
evidence presented so far, it is likely that there are two pre-
dominant roles, 1) in the modulation of CSD and therefore
migraine aura, in particular with the evidence supporting
ASICla, and 2) in the modulation of nociceptive signaling
from the meninges, in which there is the emerging role for
ASIC3 in trigeminovascular nociception. It is clear that this
is an evolving field, and more understanding and research is
needed to understand the various ASIC subtypes and their
potential roles in human disease.

Unfortunately, there are currently no ASIC subtype-
specific antagonists which are available for safe use in
humans, and the use of amiloride is limited by its lack of
specificity; it has actions at non-ASIC receptors, as well as
broad ASIC antagonism. However, understanding brain me-
tabolism during migraine attacks using functional imaging,
and further imaging of aura in migraineurs, may provide us
with additional understanding of how changes in pH and sub-
sequently ASIC activity may contribute to CSD. Additionally,
further preclinical models of both aura and trigeminovascular
activation and use of ASIC subtype-selective antagonists are
likely to provide further valuable insights into the mechanisms
by which these channels may be involved in migraine
headache.

As discussed earlier, their wide CNS and PNS expression
makes ASICs attractive therapeutic targets. However, simul-
taneous disruption of various channel subtypes may lead to
unexpected effects. Targeted therapies (perhaps against
ASICla and ASIC3) are likely to be more useful and yield
fewer unwanted adverse effects. Peripherally acting agents
may be sufficient in migraine, given recent evidence from
the DHE study which suggests no or limited blood-brain bar-
rier permeability of this efficacious abortive in migraine ther-
apy [157], and the likely peripheral sites of action of the novel
anti-calcitonin gene-related peptide (CGRP) therapies, which
have shown clinical efficacy both acutely and preventively
and are in late-phase clinical trials [172].

Conclusions

We have discussed here the broad range of preclinical and
clinical research which supports a potential role of ASICs in
nociception, as well as other neurological conditions. There is
increasing evidence for their role in migraine, and it is likely
that further animal work, human genetics, and functional im-
aging in migraine patients may help us refine the contribution
of these channels to the disorder. In an era in which there is an
ever-increasing need for effective therapies for migraine,
which is a disabling condition usually affecting otherwise fit
and well young individuals, ASICs provide an attractive po-
tential therapeutic target, perhaps particularly so in migraine
with aura. Their role in migraine, once better understood,
could well be extrapolated to other CNS conditions which
may share some common mechanisms, such as symptomatic
CSD following traumatic brain injury or stroke, providing a
useful treatment strategy for these conditions also.
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