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SUMMARY

Protein turnover maintains the recycling needs of the proteome and its malfunction has been 

linked to aging and age-related diseases. However, not all proteins turnover equally and the factors 

that contribute to accelerate or slow down turnover are mostly unknown. We measured turnover 

rates for 3,160 proteins in exponentially growing yeast and analyzed their dependence on physical, 

functional, and genetic properties. We found that functional characteristics including protein 

localization, complex membership, and connectivity, have greater effect on turnover than sequence 

elements. We also found that protein turnover and mRNA turnover are correlated. Analysis under 

nutrient perturbation and osmotic stress revealed that protein turnover highly depends on cellular 

state, and is faster when proteins are being actively used. Finally, stress-induced changes in protein 

and transcript abundance correlated with changes in protein turnover. This study provides a 

resource of protein turnover rates and principles to understand the recycling needs of the proteome 

under basal conditions and perturbation.

eTOC blurb

Turnover measurements of the yeast proteome reveal co-regulation with mRNA stability and 

dependence on protein functional attributes, including protein active state.
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INTRODUCTION

The balance between protein synthesis and degradation, also known as protein turnover, is 

vital for setting protein abundance and for maintaining proteostasis. Loss of proteostasis 

leads to the accumulation of damaged proteins and is a hallmark of aging (López-Otín et al., 

2013). Neurodegenerative disorders like Parkinson’s and Alzheimer’s diseases, as well as 

other age-related diseases like cancer and diabetes have also been linked to dysfunctions in 

protein turnover (Balch et al., 2008). Characterizing protein turnover can help understanding 

the recycling needs of different proteins within a cell, and deciphering the molecular 

mechanisms involved in aging and age-related diseases.

Despite the importance of protein turnover, our knowledge of what drives protein turnover is 

still limited. Previous studies in yeast began to explore the dependence of turnover on 

protein characteristics such as abundance, size, and amino acid composition, with no general 

agreement (Belle et al., 2006; Christiano et al., 2014; Helbig et al., 2011; Martin-Perez and 

Villen, 2015; Pratt et al., 2002). Turnover studies in human and mammalian cells have 

interrogated additional properties and found that highly disordered proteins and proteins 

containing degron motifs have faster turnover (Boisvert et al., 2012; Cambridge et al., 2011; 

Doherty et al., 2009; Schwanhäusser et al., 2011). Several of these studies show that proteins 

sharing function or localization have similar turnover rates. However, there is not a single 

study where many factors are explored in a systematic way.

To fill this gap of knowledge, we applied metabolic labeling and mass spectrometry to 

compile a comprehensive dataset of protein half-lives in yeast and used this dataset to 

systematically interrogate the contribution of many different molecular attributes to protein 

turnover, from sequence elements to functional characteristics. This resource illuminates the 

dynamic behavior of proteins and highly complements mRNA and protein abundance 

measurements that reflect cellular state. In addition to the resource of protein turnover rates 
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on basal steady-state conditions, we examined how turnover is regulated upon change in 

nutrient availability or environmental stress, as a first step towards understanding the 

mechanisms underlying protein turnover dynamics.

RESULTS

A comprehensive resource of protein half-lives in Saccharomyces cerevisiae

To obtain protein half-life values in S. cerevisiae, defined as the time to replace 50% of the 

protein, we conducted a pulsed SILAC experiment and measured the rate of incorporation of 

heavy lysine into proteins by mass spectrometry (Doherty et al., 2009; Schwanhäusser et al., 

2009) (Figure 1A). A prototrophic yeast strain was cultured in duplicate and samples were 

collected during exponential growth phase at 6 time points between 1 and 6 hours after 

heavy media switch. Within this range, protein expression remained constant (Figure S1A, 

S1B), and few proteins (~1%) showed extreme (i.e. near 0 or 1) relative isotopic abundance 

(RIA) values (Figure 1A). We reproducibly measured half-lives for 3,160 proteins (Data S1, 

Figure S1C). Most half-lives were calculated by curve fitting of heavy label incorporation 

over time. However, when curve fitting was not possible because of insufficient number of 

high-quality quantifications (i.e. at least two quantified peptide ratios per protein), protein 

half-lives were estimated by single-point measurements using heavy and light peptide 

intensities, as described elsewhere (Pratt et al., 2002). Single-point half-life estimates 

showed good correlation and acceptable reproducibility when compared to half-lives 

calculated by curve fitting (Figure S1D, S1E). Importantly, single-point measurements 

enabled a larger dynamic range for our study, obtaining half-life values for 40% additional 

proteins, mostly in the low abundance range (Figure S1F). Protein half-lives ranged from a 

few minutes to over a hundred hours, spanning three orders of magnitude and being non-

normally distributed (Kolmogorov–Smirnov test, p < 5.2E-34) as previously described in 

yeast (Christiano et al., 2014) and human cells (Doherty et al., 2009). The median half-life 

was 2.18 h, similar to our previous study (Martin-Perez and Villen, 2015). This value also 

matches the cellular doubling-time (2.0 ± 0.1 h), in agreement with previous turnover studies 

in human cells (Boisvert et al., 2012; Gawron et al., 2016), suggesting that generally protein 

replacement is driven by dilution due to cell division.

Protein expression levels in our study correlated strongly (Pearson’s r = 0.70 – 0.86) with 

previous reports (de Godoy et al., 2008; Helbig et al., 2011; Kulak et al., 2014; Wang et al., 

2012) (Figure S2A); and although protein half-lives were significantly correlated with some 

previous turnover studies (Belle et al., 2006; Christiano et al., 2014; Helbig et al., 2011; 

Martin-Perez and Villen, 2015), the overall agreement with, and among other turnover 

studies was poor (Figure S2B), similar to what had already been described for mRNA 

turnover studies (Geisberg et al., 2014). Despite the differences in individual turnover rates, 

there were conserved trends. For instance, several individual proteins known to be short (e.g. 

anti-oxidant proteins Spe1, Nce3) and long-lived (e.g. histones) showed the expected 

turnover behavior across studies. In addition, a subset of proteins that have been reported as 

long-lived proteins in yeast (Thayer et al., 2014) also showed longer half-lives in our study 

(Figure S2C).
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Comparisons with other yeast turnover studies

We found that the disagreement between half-lives was mostly due to the approach used. 

The most discordant dataset was Belle et al., which used cycloheximide arrest and western 

blot, whereas the other studies used pulse labeling and mass spectrometry, yet not exactly in 

the same way. To test whether protocol differences may affect turnover measurements we 

conducted an experiment in duplicate comparing side-by-side our protocol, where unlabeled 

cells were directly diluted into heavy media, and the protocol used by Christiano et al., 

where pre-labeled cells were washed three times by centrifugation at 4°C before switching 

to light media (Data S2). Protein abundances were very similar when comparing both 

protocols, whereas protein half-lives were less correlated (Figure S2D). We used two-

dimensional (2D) enrichment analysis of GO terms (Cox and Mann, 2012) to assess 

differences in protein turnover at the pathway level. This statistical method integrates high-

throughput omics datasets to detect those terms whose members show consistent values (e.g. 

high or low) in one or both compared datasets. Main differences in protein turnover were 

found in ribosomal, mitochondrial and stress responsive proteins (Figure S2E). Using our 

protocol, we observed faster turnover of ribosomal proteins and slower of mitochondrial 

ones, which agrees with previous reports in flies and mammals (Lam et al., 2007; Price et 

al., 2010; Vincow et al., 2013). These differences could be attributed to the various washing 

steps reducing growth and activating a stress response, as has been previously suggested 

(Schade et al., 2004; Soto et al., 2007).

When comparing the results from this experiment to the results from our main experiment 

using the same protocol, we obtained good correlation (Figure S2F). However, the 

correlation between the half-lives measured using the alternative protocol on a yeast 

prototroph with the results from the original publication on an auxotrophic strain (Christiano 

et al., 2014) was mediocre (Figure S2G), possibly due to differences in protein metabolism 

between yeast strains (Alam et al., 2016). Thus, other factors contributing to the 

discrepancies between turnover studies may be differences in the genetic background and 

growth conditions.

Finally, in addition to the poor correlation there were differences in absolute half-life values 

between studies, which resulted from using different half-life definitions and calculation 

methods. This fact, however, did not alter the observed correlations (Figure S2H, see STAR 

Methods).

Effects of sequence properties on protein turnover

To systematically examine the effects of protein sequence attributes on turnover, we first 

classified proteins into three groups according to the distribution of protein half-lives 

(unstable: lower quartile, <25%; intermediate: interquartile range, 25–75%; stable: upper 

quartile, >75%), and then conducted sequence, correlation, and comparative statistical 

analyses. Among the 36 physicochemical properties studied by correlation analysis, we 

found significant dependence of protein turnover on structuredness, hydrophobicity 

(aliphatic index, GRAVY, and aromaticity scores), isoelectric point, and C:N content (Figure 

1B, Figure S3), although some protein groups (e.g. HSPs and histones) deviated from the 
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general trends (Figure S3C). We obtained comparable results when conducting the same 

analysis using data from a previous study (Christiano et al., 2014) (Figure S3).

The presence of certain amino acids in the N-terminus of a protein can be destabilizing and 

has been proposed as a predictor of the protein’s half-life (Bachmair et al., 1986; Gawron et 

al., 2016). Protein N-termini sequence analysis revealed a significant enrichment of alanine 

and serine residues in the position immediately adjacent to the initiator methionine on short-

lived proteins (Figure S4A). Their small size typically promotes methionine cleavage and 

subsequent N-terminal acetylation, which may be recognized by the N-end rule pathway, 

acting therefore as degradation signals (Bachmair et al., 1986; Gibbs et al., 2014). This 

would explain the faster turnover observed for proteins with experimentally detected 

acetylation at their N-termini (Mommen et al., 2012) (Figure S4B). Short-lived proteins also 

showed a significant enrichment of lysine residues on their C-terminal sequences (Figure 

1C, Figure S4A). Notably, many post-translational modifications (PTMs) target this amino 

acid, bestowing regulatory properties that could be related to degradation. In fact, the 

presence of multiple lysine residues in the C-terminus of mammalian proteins has been 

proposed as a mechanism to control protein levels under normal conditions via 

ubiquitylation and proteasomal degradation (Rodriguez et al., 2000). The analysis of PTMs 

along yeast protein sequences confirmed a bias of ubiquitylation and phosphorylation sites 

around the C-terminus (Figure S4C).

To assess the effect of PTMs on protein turnover we calculated PTM occupancies for each 

protein and looked for differences among the three protein turnover groups. We define PTM 

occupancy as the percentage of modifiable residues for which an actual modification has 

been reported (e.g. for phosphorylation: percentage of phosphosites over total number of 

Ser, Thr, and Tyr). We observed that proteins with fast turnover had higher occupancy of 

ubiquitylation sites, and no significant differences were detected for other PTMs (Figure 

1D). Next, we asked whether combinations of different PTMs may regulate protein turnover, 

as we proposed (Swaney et al., 2013). By integrating data from our previous study with 

protein half-lives measured here, we found that co-occurrence of phosphorylation and 

ubiquitylation events within the same molecule accelerates the turnover of the protein to 

greater extent than the ubiquitin modification alone, especially when these events occur at 

the protein’s C-terminus (Figure 1E). This result underscores the importance of C-terminal 

sequences in degradative signaling.

Several short linear sequence motifs can also facilitate protein degradation. These degron 

motifs include D-box, KEN-box, and PEST sequences. Protein turnover analysis revealed 

that proteins containing at least one degron motif were significantly less stable than average 

(Figure S4D), as previously observed in mammalian cells (Boisvert et al., 2012; Cambridge 

et al., 2011), suggesting that their function is conserved across eukaryotes. The occurrence 

of multiple degrons within the same protein, however, did not increase its turnover any 

further, ruling out additive or synergistic effects. When analyzed individually, PEST motifs 

showed the greatest effect on protein turnover (Figure 1F). PEST sequences have also been 

related to alternative degradation pathways like calpain proteases (Shumway et al., 1999), a 

family of Ca2+-dependent cysteine proteases conserved across eukaryotes. This led us to 

interrogate the influence of protease cleavage sites on protein turnover. We observed 
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significantly higher frequency of calpain cleavage sites in the sequence of short-lived 

proteins (Figure 1G). Caspase 3, 6 and 8-like activities have also been reported on yeast 

(Wilkinson and Ramsdale, 2011). In our data, we observed increase of Cas6 cleavage sites in 

short-lived proteins. Together, these results suggest that sequence properties associated with 

both proteasomal and proteolytic degradation contribute to protein turnover.

Effects of protein abundance and functional characteristics on protein turnover

We did not find a correlation between protein abundance and turnover (Figure S4E). To 

examine the influence of protein function on the half-life of proteins, we mapped all the 

proteins with measured half-lives to GO annotations representing major biological 

processes, molecular functions, and cellular components; and compared the half-live 

distributions between the different groups (Figure 2A, S5A, S5B). We found that protein 

turnover is heavily organized according to cellular compartmentalization, cellular processes, 

and molecular functions. For example, nuclear and ribosomal proteins had faster turnover 

than structural, membrane and organelle-specific ones (e.g. mitochondrion). Also, proteins 

related with energy production pathways, and with proteasome or other mechanisms of 

protein degradation (e.g. autophagy), contributed significantly to the fraction of long-lived 

proteins. Comparison with previous turnover studies in yeast (Christiano et al., 2014) using 

2D enrichment analysis showed similar behavior for many protein groups (Figure S5C), as 

observed before when comparing experimental protocols.

Next, we investigated if different subunits within the same protein complex also exhibited 

similar turnover. To do this, we mapped proteins from our dataset to protein complexes from 

a curated database in yeast (Pu et al., 2009). For more robust statistical analysis, we 

restricted our analysis to complexes for which we had calculated half-lives for at least 50% 

of its members (259 out of 408 complexes) (Figure 2B, Data S3). Most complexes, such as 

the ribosome, the proteasome, and most complexes of electron transport chain, showed very 

homogenous turnover (median CV = 10.4% in the half-lives of their members), suggesting 

that the synthesis and degradation of the different subunits are highly coordinated (Figure 

2B, 2C). This homogeneity is higher than expected by random chance (Mann-Whitney test, 

p = 5.2E-21). In other macromolecular complexes, such as the mitochondrial ribosome and 

the mitochondrial respiratory complex IV, the turnover of the different subunits diverged 

substantially. This variance may arise from the non-concatenated complex assembly process 

due to the presence of mitochondrial and nuclear encoded proteins, or to the different 

location of the various subunits as described for mammalian complex IV (Kim et al., 2012). 

According to complex membership, we identified some outlier half-lives: ribosomal Rps9a, 

Rpl15b and Mrpl4; proteasomal Pre9; and respiratory chain Atp19 and Cox5a. Most of these 

subunits are dispensable for the complex functionality, suggesting either a different function 

or a transitory membership.

To rule out any effect of the protein complex and GO terms interdependence in the analysis 

of protein turnover, we compared the half-lives of the proteins belonging to two 

representative complexes (the ribosome and the proteasome) with a randomly generated set 

of proteins selected from their related GO biological process term (‘cytoplasmic translation’ 

for the ribosome and ‘proteolysis involved in cellular protein catabolic process’ for the 
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proteasome) (Figure S5D). In both cases the variability in the original complexes is much 

lower than in the randomly generated sets, which corroborates a tight coordinated turnover 

of the different complex subunits. To address the reciprocal question (i.e. whether the results 

with GO terms could be explained by co-complex membership) we compared the 

distribution of half-lives within GO terms when protein complex members were included or 

not (Figure S5E, S5F). The distribution of GO terms was not significantly changed, ruling 

out any dependence of co-complex membership on the correlation of protein turnover rates 

with their function or subcellular localization.

Next, we reasoned that essential proteins might impose strict fidelity requirements and lower 

threshold to damage, and hence be more frequently renewed than non-essential. To test this 

hypothesis, we classified proteins as essential or non-essential and looked for differences 

between the distributions of half-lives of the two groups. Indeed, essential proteins had 

significantly shorter half-lives (Figure 2D). We also compared pairs of paralogs that resulted 

from the whole-genome duplication event and found an inverse correlation between 

paralogs’ abundance and half-life (Figure 2D). Diverging expression patterns of redundant 

paralogs may indicate differences in their active state (Prince and Pickett, 2002) and thus in 

their turnover. We then asked whether protein connectivity (i.e. number of protein 

interaction partners) influenced protein turnover, reasoning that a bound state may protect 

proteins from rapid degradation (Cambridge et al., 2011). We used binary interaction maps 

from yeast two-hybrid analysis (Yu et al., 2008) to classify proteins according to their 

number of protein interactors, and observed that highly connected proteins (i.e. protein hubs) 

tended to have longer half-lives (Figure 2D). This is consistent with our previous results on 

essentiality, given that protein connectivity is not related to essentiality but to pleiotropy (Yu 

et al., 2008).

Finally, analysis of protein function within protein complexes revealed that catalytic subunits 

turnover faster than their regulatory counterparts (Figure 2D), suggesting that their direct 

involvement in enzymatic reactions may cause faster attrition and thus require faster 

replacement (Gracy et al., 1998). To experimentally test that proteins have faster turnover 

when are actively used, we conducted two experiments in which we tuned protein activity in 

a pathway-specific manner and measured changes in turnover rates. We used 2D enrichment 

analysis of GO terms to assess protein turnover at the pathway level. In the first experiment, 

we altered the activity of proteins involved in arginine biosynthesis by growing cells in the 

presence or absence of this amino acid. In absence of arginine, cells require the activation of 

enzymes in the arginine biosynthetic pathway to synthesize it metabolically. Cells grew 

similarly in both conditions (doublings at 1.85 ± 0.07 h and 1.89 ± 0.03 h for arginine rich 

and depleted media respectively) and protein half-lives were mostly unaffected, except for 

proteins related to arginine biosynthesis which, as we expected, had significantly faster 

turnover in the absence of the amino acid (Figure 3A, Data S4). In the second experiment, 

we changed the main source of carbon in the growth media. Cells were initially grown in 

raffinose, a trisaccharide composed of galactose, glucose, and fructose, as their only carbon 

source. Cells were then split into two cultures; one was grown in the raffinose media, and the 

other in galactose media. Growth rate was similar in both media (doubling at 2.83 ± 0.10 h 

for raffinose and 3.02 ± 0.20 h for galactose), but protein turnover rates were very different, 

indicative of a dramatic metabolic rewiring after changing the energy-yielding carbon source 

Martin-Perez and Villén Page 7

Cell Syst. Author manuscript; available in PMC 2018 September 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Figure 3B, Data S5). Cells growing in galactose slowed down the turnover of proteins 

required to metabolize raffinose, such as those related with glucose uptake (i.e. hexokinases 

and glucokinases) and extracellular polysaccharide cleavage (i.e. glucosidase activity). 

Contrarily, proteins involved in galactose metabolism had faster turnover. These results 

support a correlation between protein use and turnover. Taken together, our results indicate 

that several layers of functional organization contribute to protein turnover, including 

protein’s subcellular localization, functional characteristics, interactions with other proteins, 

and protein activity.

Effects of mRNA on protein turnover

There is an ongoing debate as to whether protein expression is transcriptionally determined, 

or it is translationally controlled. Recent studies have shown that protein abundance 

correlates well with mRNA abundance (Csárdi et al., 2015; Lu et al., 2007). Can protein 

turnover be similarly correlated to mRNA turnover? To address this question, we correlated 

protein abundances and half-lives from our study with published mRNA expression (Miura 

et al., 2008) and half-life data (Geisberg et al., 2014). We observed a significant correlation 

between protein and mRNA half-lives (Pearson’s r = 0.65) mirroring that between mRNA 

and protein levels (Pearson’s r = 0.67) (Figure 4A, 4B). We also observed that protein levels 

spanned a much broader range than transcript levels (Csárdi et al., 2015), but protein and 

mRNA half-lives spanned in similar ranges. Further investigation would be required to 

assess whether this latter result may be due to technical limitations regarding dynamic range 

when measuring half-lives, or to the contribution of the dilution rate.

To investigate whether the correlation between mRNA and protein turnover (and 

abundances) occurs only on specific biological processes, we performed 2D enrichment 

analysis of GO terms. This analysis indicated that mRNA and protein turnover (and 

abundances) were consistently regulated across the different processes since most biological 

process terms are placed right on the diagonal (Figures 4C, 4D). In contrast, when 

considering mRNA and protein separately, their abundances and turnover were clearly 

uncoupled (Figures 4E, 4F). Notably GO terms related to protein translation (e.g. 

cytoplasmic translation and rRNA processing) were inversely correlated. Collectively, our 

results suggest that the turnover of proteins and mRNAs are co-regulated in exponentially 

growing yeast but are independent of their respective abundances.

Predictive models of protein turnover

Our analyses suggest that multiple factors, including physicochemical and functional 

properties, contribute to different extent to protein turnover; and that mRNA turnover seems 

the best predictor of protein turnover rates. To further improve the predictability of protein 

turnover we considered combinations of different properties through multiple linear 

regression analysis (Figure S6). We generated several predictive models using combinations 

that: i) included only physicochemical properties, ii) also added functional properties (e.g. 

protease cleavage sites, post-translational modifications, etc.) and/or iii) added mRNA 

turnover. We observed that the predictability of protein half-lives (defined as the correlation 

between predicted and measured half-lives) improved when including (all “quantifiable”) 

biological variables to the model (Pearson’s r = 0.54) compared to only physicochemical 
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properties (r = 0.39 with all, r = 0.18 with only the best (% of carbon)); and the correlation 

was the highest (r = 0.72) when including mRNA turnover into the models (Figure S6). The 

predictive models of protein turnover using half-lives from previous studies showed no 

improvement when adding biological information (Figure S6).

To further evaluate the performance of the single and multiple variable models we used 

Receiver Operating Characteristic (ROC) curves, which represent the true positive rate 

against the false positive rate of a binary classifier system. To construct the curves, we 

selected the 25% proteins with fastest turnover (shortest half-lives) from our dataset and 

tested the ability of the different models to correctly classify these proteins into this quartile. 

All the models tested yielded some signal (AUC > 0.5), and models including all 

physicochemical properties could correctly classify a significant number of proteins (AUC = 

0.71) (Figure 5). We also observed that under basal conditions mRNA turnover is better 

determinant of protein turnover than all protein physicochemical properties combined (AUC 

≥ 0.8 vs. AUC 0.71). To restate the strong association between mRNA and protein turnover, 

we included analysis with mRNA turnover data from two independent studies (Geisberg et 

al., 2014; Presnyak et al., 2015). In both cases the correlations were high and the ROC AUC 

at 0.8–0.84 illustrate the excellent predictability of protein turnover using mRNA turnover 

data. However, in the absence of mRNA turnover data, physicochemical and biological 

properties combined are almost as good of a predictor of protein half-lives. Comparable 

results were obtained when constructing ROC curves for the 25% proteins with longest half-

lives (Figure 5).

Dynamic regulation of protein turnover upon osmotic stress

All protein turnover results described so far refer to unperturbed steady-state conditions. To 

test how environmental changes affect protein turnover in yeast we exposed cells to high 

osmolarity (500 mM NaCl) for three hours and measured global changes in protein half-

lives (Figure 6A, Data S6). We observed an overall decrease in protein turnover, probably 

driven by a slowdown in cellular growth (Figure 6B). Regardless of cell growth differences, 

osmotic stress altered the turnover rate of a significant portion of the proteome while 

maintaining similar distribution of protein half-lives (Figure 6C). To understand the nature 

of this remodeling we compared stress-induced changes in protein half-life with reported 

changes at the protein and mRNA levels (Lee et al., 2011; Martin-Perez and Villen, 2015). 

Overall changes in protein half-life showed a much narrower distribution than mRNA and 

protein abundance changes, suggesting that turnover changes amplified to protein output 

(Figure 6D). As expected, changes in protein half-lives were inversely correlated with 

changes in mRNA and protein abundances (i.e. increases in mRNA and protein levels 

correlated with shortened protein half-lives) (Figure 6E). Proteins with increased turnover 

rates upon the salt stress were enriched in osmotic stress response pathways (e.g. trehalose 

metabolism), while those with decreased turnover were mostly related to protein synthesis 

processes (Figure 6E). Similarly, turnover changes in protein complexes were consistent 

with mRNA and protein abundance changes, and with the concept that increased activity 

leads to shorter half-lives (Figure 6F). For example, we observed an increase in turnover of 

mitochondrial complex V relative to the ribosome that is concomitant to increased activity of 

the energy production machinery to face the osmotic challenge, and a slowdown of the 
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protein synthesis machinery. In contrast, increased turnover rates were also observed in 

cases where mRNA decreases and protein increases (bottom of heatmap, Figure 6E). This 

group of proteins was enriched in amino acid synthesis and chromatin organization 

processes.

To characterize in detail the dynamic response to osmotic stress, we mapped changes in 

mRNA, protein and half-life to the central carbohydrate metabolism in yeast (Figure 6G). 

Alterations to protein and mRNA focused on the increased abundance of enzymes involved 

in glycerol and trehalose metabolism while enzymes in the glycolytic/gluconeogenic 

pathway remained practically unaltered. In contrast, changes in protein half-life clearly 

reflect a ‘two-speed’ system. While the turnover of enzymes involved in stress-activated 

ATP-consuming cycles was accelerated, the turnover of the main glycolytic enzymes 

decayed. This dual dynamic behavior would reflect the level of activity supported by the 

distinct parts of the system in response to osmotic insult. Some paralog genes (e.g. HXK1/

HXK2, PGM1/PGM2, ENO1/ENO2, GPD1/GPD2) change their turnover rate in opposite 

directions likely due to their functional separation and different activity under stress 

conditions. In contrast, PFK1/PFK2 the two subunits of hetero-octameric 

phosphofructokinase showed an identical behavior.

DISCUSSION

We compiled a comprehensive dataset of protein turnover rates in S. cerevisiae and 

investigated diverse molecular attributes that can contribute to protein turnover. We show 

that the bulk replacement rate of the proteome is dominated by cell division and growth, as 

evidenced by the similarity between the proteome median half-life and the cell doubling 

time. However, not all proteins turnover at equal rates, and factors such as protein sequence, 

structure, physiological function, subcellular localization, activity level, and mRNA stability, 

contribute to protein turnover to different extent.

Our results suggest that short-lived proteins contain specific sequence elements that may 

serve as degradation signals, but the individual contributions of each of these elements to 

protein turnover are generally small. These elements include degron motifs and an increased 

content of lysine residues, which may be targeted by ubiquitin modification. Both of these 

elements are more prominent at the protein C-terminus, suggesting that this typically 

disordered region is targeted by degradation pathways. We also found that unstructured 

proteins tend to have faster turnover rates, likely by their exposure to proteases and 

degradative post-translational modifications. Other conserved degradation mechanisms such 

as the N-end rule pathway and protease systems seem to contribute to protein turnover as 

well. For example, we found an enrichment of cleavage sites for calpain and other protease 

activities in short-lived proteins, suggesting that these mechanisms can be as relevant as the 

proteasome in maintaining proper recycling of certain proteins.

More than being influenced by protein attributes that are genetically encoded, we found that 

protein turnover is strongly determined by properties directly related to protein function, 

such as protein-protein interactions and protein activity; suggesting that protein turnover 

may drive system adaptability. For instance, we found faster turnover of catalytic subunits 
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compared to regulatory ones, proteins from ‘used’ paralog genes compared to ‘unused’, and 

essential proteins compared to non-essential. As an additional support to these findings, we 

have experimentally demonstrated that an increase of protein usage results in faster turnover. 

For example, we showed that the turnover of proteins in the arginine biosynthetic pathway 

increases when cells are grown in the absence of arginine and thus forced to produce the 

amino acid endogenously. This same trend is also present at higher levels of biological 

organization. On complex multicellular organisms, tissue-specific proteomes show very 

different turnover rates (Hammond et al., 2016; Hsieh et al., 2012), and in general those 

tissues considered to be most active show faster turnover. For example, liver has high 

metabolic rate and global faster protein turnover than tissues with lower metabolic rate like 

muscle. This same trend is also observed when comparing the turnover rates of a given 

protein on different tissues (Hsieh et al., 2012). While an association between protein 

activity and turnover had not been suggested on previous proteomic studies, protein-centric 

studies had linked protein activity to faster attrition and turnover rates in diverse enzyme 

families. These studies suggest a mechanism in which catalysis and ligand binding cause 

conformational changes that promote protein modifications (deamidation, oxidation and/or 

ubiquitination) that destabilize the protein (Goldberg and Boches, 1982; Gracy et al., 1998; 

Harris et al., 1999).

Protein levels are mostly modulated by transcript levels and translation rates (Csárdi et al., 

2015; Lu et al., 2007; Thayer et al., 2014). However, we were surprised to find a correlation 

between protein turnover and mRNA turnover, given that earlier studies in mouse fibroblasts 

found these were independently regulated (Schwanhäusser et al., 2011). Indeed, we found 

mRNA stability to be the best individual predictor of protein half-lives of all the parameters 

examined here. This intriguing result poses some questions. First, is the correlation 

condition-dependent? Our central experiment was conducted under nutrient-rich lab growth 

conditions where protein levels are in steady state and protein recycling is not limited or 

driven by metabolic or bioenergetic constraints. But growth under nutrient-limited 

conditions, acute stimuli or stress, such as those experienced in the wild, may result in 

different protein dynamics, which might be mostly uncoupled of mRNA, as has been 

observed for global transcript and protein abundances (Cheng et al., 2016; Lee et al., 2011). 

Second, is the correlation between mRNA and protein turnover exclusive to yeast with 

additional regulation masking this synchrony in higher eukaryotes? Mammals are inherently 

more complex. Notably, their nuclear genome contains multiple introns on each protein-

coding gene, yielding a higher number of protein isoforms. Their non-coding RNA regions 

(UTRs) are also longer and contain more regulatory elements, permitting further fine-tuning 

(Baek et al., 2008). Additional regulation at the protein level could be explained by an 

increased complexity of regulatory signaling networks, and therefore higher number of 

PTMs and degron motifs. Third, what is the molecular mechanism that maintains mRNA 

and protein stabilities in synchrony? Is there a feedback mechanism between protein 

degradation and mRNA turnover? We postulate that the coupling of both processes may 

serve as an energetically saving mechanism in exponentially growing cells. In this sense, a 

co-evolution of turnover mechanisms in both molecules may happen, for instance transcripts 

with short half-lives would have evolved to contain shorter UTR regions, as recently 

suggested (Mishima and Tomari, 2016); whereas short lived proteins would have increased 
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the content of degrons and/or ubiquitination sites. Supporting this idea, we found a positive 

correlation between protein turnover and median UTR length (Figure S4F). Deciphering the 

origins and circumstances of this co-regulation requires conducting new experiments 

addressing these fundamental questions.

We also measured protein turnover rates under osmotic stress and revealed that protein 

turnover adaptations upon this insult are driven by transcriptional changes in stress-induced 

pathways (e.g. trehalose and glycerol metabolism). However, pathways related with basal 

cellular functions (e.g. glycolysis) diminishing in activity (in our case by competition for 

intermediate metabolites) were primarily regulated at the protein turnover level without 

significant changes in protein and mRNA abundance. A change in protein turnover could 

then be attributed to activity status, which is supported by the selective turnover increase of 

known stress activated paralogs (e.g. HXK1 and ENO1) (Eden et al., 2011; Petti et al., 

2011). Similar regulatory profile has been recently described for dendritic cells following 

lipopolysaccharide stimulation where the activation of immune response is dominated by 

transcriptional changes but regulation of core functions is mostly happening through 

changes to protein synthesis and degradation rates (Jovanovic et al., 2015). Additional 

studies are needed to understand the extent of these dynamic changes and whether they 

become permanent after cells face the stress, as recently suggested (Cheng et al., 2016).

The dependence of protein turnover on protein activity, and the turnover dynamics observed 

in the nutrient and stress perturbation experiments suggests that protein turnover is very 

dependent on cellular state, and that variations in growth conditions can significantly alter 

turnover. It seems alarming that none of the previous protein turnover studies in yeast 

correlate well with each other. In particular we found ribosomal and mitochondrial proteins 

to be the most different. But this result should be taken with a grain of salt, since the studies 

were conducted differently, with multiple variables that could alter cellular state. Also, a 

close comparison between studies showed similar trends for some of the properties 

analyzed. The way half-lives were defined and calculated, whether as the time to replace or 

to degrade 50% of the protein, affects the absolute half-live values, but not their relative 

ranking. In our study we tried to be cautious about interfering with metabolism and cell 

growth by using a prototrophic S. cerevisiae strain and keeping the culture at constant 

temperature throughout the experiment. Our recommendation for future studies is not as 

much on the strain or protocol to use, as on consistency, keeping in mind that protein 

turnover is sensitive to perturbations. This sensitivity can be leveraged in future comparative 

studies where turnover can be used as a functional marker associated to cellular state.

Protein turnover still remains largely unexplored. Studies such as the one presented here 

provide basic principles for better understanding protein turnover but additional conditional 

studies are needed to increase the knowledge about its complex regulation and to assess its 

importance in cellular function. Protein turnover measurements can provide significant 

information about the cellular state and protein function, being complementary to other 

molecular readouts and likely more sensitive to physiological adaptations than just protein 

levels.
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STAR METHODS

Contact for reagent and resource sharing

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Judit Villén (jvillen@u.washington.com).

Experimental model and subject details

Yeast strains—The wild-type Saccharomyces cerevisiae diploid strain DBY10144 

(MATa/α) from the FY (S288C) background (parental strains FY4H and FY3G) and 

prototroph for lysine, was used in all experiments and was kindly provided by the Dunham 

Lab from the Department of Genome Sciences at the University of Washington. Yeast strains 

were stored at −80°C in glycerol stocks.

Method details

Yeast growth—Yeast cells from DBY10144 strain were cultured overnight at 30°C in 5 ml 

of synthetic complete medium containing 6.7 g/l yeast nitrogen base, 2 g/l of drop-out mix 

with all amino acids except lysine and 2% glucose and supplemented with 0.436 mM of L-

lysine. Then cells were inoculated into 400 ml of heavy medium containing 13C6,15N2-

lysine at OD600 = 0.02. Cells were grown for 6h in heavy medium, collecting samples at 1, 

1.5, 2, 3, 4 and 6 h into the labeling phase (Figure 1A). OD600 was measured at each time 

point and cells were harvested by centrifugation (10,000g for 5 min at 4°C). Cell pellets 

were washed twice with ice-cold water, snap frozen and stored at -80°C. A duplicate 

experiment was conducted a week after and samples were similarly collected before 

analytical processing. For additional turnover experiments prototroph cells were initially 

grown in media with no lysine before being pulsed with heavy lysine (final concentration of 

0.436 mM) and chased at a single time point following the same harvesting procedures 

explained above. Growth was monitored in all cases. For arginine availability experiments, 

two cell cultures were grown overnight in either arginine containing (0.436 mM L-arginine) 

or deficient (0 mM L-arginine) media, and then each culture was inoculated per triplicate at 

OD600 = 0.1 in the same media. After two hours, cells were pulsed with heavy lysine and 

grown for two more hours before harvesting them. For raffinose and galactose experiments, 

cells were grown overnight in media containing 2% raffinose instead of glucose and then 

inoculated per triplicate at OD600 = 0.025 in media containing either 2% raffinose or 2% 

galactose. After four hours, cells were pulsed with heavy lysine and grown for two more 

hours before harvesting. For osmotic stress experiments, cells were grown overnight in 

synthetic complete media without lysine and then inoculated in triplicate to OD600 = 0.5 into 

heavy lysine media containing 500 mM NaCl. Cells were grown for 3h and harvested at this 

point. A triplicate control experiment with no salt addition was performed in parallel.

Sample preparation—Cell pellets were resuspended in lysis buffer composed of 8M 

urea, 75mM NaCl, 50mM Tris, pH 8.2, protease and phosphatase (50mM NaF, 50mM β-

glycerophosphate, 10mM Na-pyrophosphate, 1 mM Na-orthovanadate) inhibitors. Cells 

were lysed by 4 rounds of bead beating (1 min beating, 1.5 min rest) with zirconia/silica 

beads. Lysate protein concentration was measured by Bradford assay. Protein was reduced 

with 5mM dithiothreitol (DTT) for 30 min at 55°C and alkylated with 15mM iodoacetamide 
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in the dark for 30 min at room temperature. The alkylation reaction was quenched by 

incubating with additional 5 mM DTT for 15 min at room temperature. Samples were 

diluted two-fold with 50mM Tris pH 8.9 and 2mM calcium chloride. Proteolytic digestion 

was performed by addition of lysyl endopeptidase (LysC), 1:50 enzyme to protein ratio, and 

incubated at room temperature overnight. The digestion was quenched by addition of formic 

acid to pH ~ 2.5. Peptides were desalted and fractionated by high pH reverse phase in 

StageTips (Rappsilber et al., 2007; Swaney et al., 2013). Briefly, in-house made StageTips 

containing 14-gauge four-layered Empore SDB-XC material plugs, were conditioned first 

with methanol and then with 70% acetonitrile, 0.1% ammonium hydroxide, and equilibrated 

with 0.1% formic acid. Samples were loaded into the StageTips, washed three times with 

0.1% formic acid and eluted into 4 fractions with increasing concentrations of acetonitrile 

(6, 12, 18 and 80%) in 0.1% ammonium hydroxide. Peptide fractions were immediately 

acidified with 10% formic acid, 75% acetonitrile, dried by vacuum centrifugation, and stored 

at −20°C until LC-MS/MS analysis. For the nutrient availability and salt stress experiments 

no fractionation was performed, and digested peptides were directly loaded into StageTips 

containing four-layered C18 material plugs, desalted by three washes with 0.1% acetic acid, 

eluted into a MS vial with 80% acetonitrile in 0.1% acetic acid, dried and stored at −20°C 

until analysis.

LC-MS/MS analysis—Peptides were resuspended in 4% formic acid, 3% acetonitrile and 

analyzed by nLC-MS/MS analysis in a hybrid quadrupole-orbitrap (QExactive) mass 

spectrometer (Thermo Fisher, Bremen, Germany) equipped with an Easy1000 nanoLC 

(Thermo Fisher, Odense, Denmark) system as follows: peptides were first loaded onto a 

100-μm ID × 3-cm precolumn packed with Reprosil C18 3-μm beads, and separated by 

reverse phase chromatography on a 100-μm ID × 30-cm analytical column packed with 1.9-

μm beads of the same material and housed into a column heater set at 50°C. The average 

separation gradient ranged from 9 to 32% acetonitrile in 0.125% formic acid over 94 min, 

with minor adjustments for low, medium and high hydrophobic fractions. The total duration 

of the method, including column wash and equilibration was 120 min. All spectra were 

collected with Orbitrap detection. Full MS scans were acquired in centroid mode from 300 

to 1500 m/z at 70,000 FWHM resolution with fill target of 3E6 ions and maximum injection 

time of 100 ms. The 20 most abundant ions on the full MS scan were selected for 

fragmentation using a 2.0 m/z precursor isolation window and beam-type collisional-

activation dissociation (HCD). MS/MS spectra were collected at 17,500 FWHM resolution 

with fill target of 5E4 ions and maximum injection time of 50 ms. Fragmented precursors 

were dynamically excluded from selection for 40 s.

Quantification and statistical analysis

MS data analysis—MS/MS spectra were searched with MaxQuant (Boisvert et al., 2012; 

Cambridge et al., 2011; Cox and Mann, 2008) against the SGD Saccharomyces cerevisiae 
protein sequence database (downloaded January 2015, 6713 entries) with common 

contaminants added. The precursor mass tolerance was set to 6 ppm, and the fragment ion 

tolerance was set to 20 ppm. A static modification on cysteine residues and variable 

modifications of methionine oxidation and protein N-terminal acetylation were used for all 

searches. LysC was the specified enzyme allowing for up to two missed cleavages. The 
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minimum required peptide length was seven residues. The target-decoy database search 

strategy was used to guide filtering and estimate false discovery rates (FDR). All data was 

filtered to 1% FDR at both peptide and protein levels. Proteins with at least two peptides 

(one of them unique to the protein) were considered identified. The “match between runs” 

option was enabled with a time window of 0.7 min to match identifications between 

replicates. The “requant” option of MaxQuant was disabled.

Protein abundance and half-life estimation—Absolute protein abundances as copies 

per cell were calculated by applying the “proteomic ruler” plugin (Pu et al., 2009; 

Wiśniewski et al., 2014) in Perseus software (Kim et al., 2012; Tyanova et al., 2016) using 

the aggregated intensities of both heavy and light versions for each protein group excluding 

contaminants and reverse hits.

Protein half-lives were calculated according to the procedure we previously described 

(Martin-Perez and Villen, 2015; Shumway et al., 1999). Briefly, heavy to light intensity 

ratios from the MaxQuant protein groups output table were used to calculate the proportion 

of heavy label incorporation (i.e. Relative Isotope Abundance, RIA) at each time point 

(Figure 1A). Then, we fitted the RIA values for each protein over time using the formula of 

an exponential curve:

RIAt = 1 − exp( − k • t)

From this formula, we calculated the turnover rate constant (k) and use it to obtain half-lives 

(t1/2) as follows:

t1/2 = ln(2)/k

Thus, the half-life for each protein is defined as the time when the protein is half labeled and 

corresponds to the time it takes for half of the protein to turn over (Boisvert et al., 2012; 

Eden et al., 2011; Gawron et al., 2016; Wilkinson and Ramsdale, 2011). Only proteins with 

a significant goodness of fit (Pearson’s chi-squared test p ≤ 0.05, and R2 > 0.5) were kept in 

the final dataset. If curve fitting was not possible due to insufficient data points or poor 

quality of fitting, half-lives were estimated by single-point measurements as described 

(Christiano et al., 2014; Pratt et al., 2002), with minor modifications. RIA values determined 

at a single time point (RIAt) using heavy and light protein intensities were used to calculate 

the protein half-live according to the following equation and assuming an incorporation 

plateau value of 1:

t1/2 = t • ln(2)/ − ln(1 − RIAt)

If more than one single point measurement were calculated for a protein, the median of all of 

them was used as the final estimated value. Next, protein half-lives were normalized by the 

cell doubling time of each replicate to minimize the experimental variability (e.g. cell 

inoculum, media preparation, etc.) which may lead to slight differences in growth and 
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therefore in the incorporation rates between replicates. Then, to get absolute time values, 

normalized half-life values were multiplied by the averaged doubling time in each 

experiment/condition. For the additional experiments, protein half-lives were calculated by 

the single-point method using heavy to light intensity ratios. The measurements of the half-

lives for the control groups of these experiments correlated well with our central multi-point 

experiment (Pearson’s r = 0.70 and 0.80, for the arginine availability and salt stress 

experiments respectively).

Differences in half-life calculation methods—In addition to the poor correlation 

between individual half-lives values among different turnover studies, the median half-life 

was also very different. We attribute this disagreement to the way half-lives were defined 

and calculated in each study. Our study, as most protein turnover studies based on pulse-

chase with labeled amino acids, rely on fitting labeling trajectories to first order kinetic 

curves. Essentially, we fitted the % of labeling incorporation (i.e. relative isotope abundance 

or RIA) for each protein over time using the formula of an exponential curve to obtain the 

turnover rate constant and used this rate to calculate half-lives. The same approach has been 

used by others to calculate protein half-lives, defined as the time for removal of half of the 

protein (Eden et al., 2011), as well as ‘turnover times’ which corresponds to the time it takes 

for 50% of the protein to turn over and is defined as the mean time for 50% incorporation of 

labeling for all peptides from that protein (Boisvert et al., 2012; Gawron et al., 2016). 

However, many other studies, used the protein degradation rate (i.e. K degradation = K 

turnover -K growth) to calculate half-lives which represents the time taken for 50% of the 

pool of each preexisting protein species to be degraded. Using different definition of protein 

half-lives (whether subtracting or not the growth rate) affects the absolute half-live values, 

but not their relative ranking. For this reason, when using the degradation rates to calculate 

protein half-lives, we obtained comparable median protein half-lives with previous studies 

(Christiano et al., 2014), but the correlation remained essentially unaltered (Figure S2H). 

One problem that we anticipate is the effect of inaccurate growth rates measurements on the 

calculation of ‘degradative half-lives’, especially for long-lived proteins or proteins with 

half-lives close to the cellular doubling-time, which would either tend to infinity or could not 

be calculated if degradation rates were lower than growth rate. For this reason, estimated 

half-lives using protein turnover values can reflect more directly both protein synthesis and 

degradation rates and be measured more accurately (Boisvert et al., 2012).

Data analysis, bioinformatics, and statistics—Datasets were normality tested by 

using Kolmogorov-Smirnov test. Statistical comparisons were performed by t-test or 

nonparametric Mann-Whitney test depending on whether the data was normally distributed 

or not, respectively. Significant differences were established at the level of p<0.05 in both 

cases. Boxplots represents 25 and 75 percentiles and whiskers 10 and 90 percentiles unless 

otherwise stated. Spearman’s and Pearson’s correlation coefficients were calculated using 

OriginPro software package with missing values excluded in a pairwise manner.

Hierarchical clustering for heatmap and 2D annotation enrichment analysis were performed 

in Perseus, similarly to described elsewhere (Cox and Mann, 2012; Prince and Pickett, 

2002). GOrilla webtool (http://cbl-gorilla.cs.technion.ac.il/) (Cambridge et al., 2011; Eden et 
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al., 2009) was used to identify enriched GO terms in selected heatmap clusters. Pathway 

analysis was performed using WikiPathways (http://www.wikipathways.org) (Kutmon et al., 

2016; Yu et al., 2008) and Cytoscape (http://www.cytoscape.org/) (Shannon et al., 2003).

Protein physicochemical properties, PTMs (type and localization) and GO slim terms in 

yeast were obtained from the SGD Project (www.yeastgenome.org) (Cherry et al., 2012). 

Sequence analysis of the N and C protein terminus was performed with pLogo (http://

plogo.uconn.edu/) (O’Shea et al., 2013). SitePrediction website (http://

www.dmbr.ugent.be/prx/bioit2-public/SitePrediction/index.php) (Verspurten et al., 2009) 

was used for structure prediction, potential PEST sequence analysis and cleavage site 

predictions of most proteases (average score >99.9%). GPS-CCD (Liu et al., 2011) and 

GPS-ARM (Liu et al., 2012) software tools were used to predict calpain cleavage sites, and 

D- and KEN-boxes, respectively, using the highest cutoff threshold in both cases.

Predictive models of protein half-lives were derived by means of multiple linear regression 

analyses using OriginPro software, and adjusted correlation coefficients (Adj. R2) were 

calculated. Input data from the different variables employed was log-transformed to ensure 

normality. To test the models for overfitting, the data was randomly divided in halves, and 

each half was used to cross-validate the regression derived from the other half of the data. 

Receiver operator characteristic (ROC) curves analysis was performed with OriginPro 

software to determine the sensitivity and specificity of each predictor / model on classifying 

a set of proteins. From this information, the predictor’s ROC area under the curve (AUC) 

was determined.

Data and software availability

All raw mass spectrometry data files from this study are available at MassIVE 

(MSV000079673) and ProteomeXchange (PXD004028) repositories.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank Dr. Maitreya Dunham and Samuel Lancaster from the Department of Genome Sciences at the University 
of Washington for providing the S. cerevisiae strains used in this study. We also thank all members of the Villén 
laboratory and Masanao Yajima for valuable feedback on the manuscript. This work was supported by a Junior 
Award from the Nathan Shock Center of Excellence in Basic Biology of Aging at the University of Washington 
(NIH/NIA 3P30AG013280), an Ellison Medical Foundation New Scholar Award (AG-NS-0953-12), and a grant 
from the National Institutes of Health (1R35GM119536).

References

Alam MT, Zelezniak A, Mülleder M, Shliaha P, Schwarz R, Capuano F, Vowinckel J, Radmaneshfar E, 
Krüger A, Calvani E, et al. The metabolic background is a global player in Saccharomyces gene 
expression epistasis. Nat Microbiol. 2016; 1:15030. [PubMed: 27572163] 

Bachmair A, Finley D, Varshavsky A. In vivo half-life of a protein is a function of its amino-terminal 
residue. Science. 1986; 234:179–186. [PubMed: 3018930] 

Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein 
output. Nature. 2008; 455:64–71. [PubMed: 18668037] 

Martin-Perez and Villén Page 17

Cell Syst. Author manuscript; available in PMC 2018 September 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.wikipathways.org
http://www.cytoscape.org/
http://www.yeastgenome.org
http://plogo.uconn.edu/
http://plogo.uconn.edu/
http://www.dmbr.ugent.be/prx/bioit2-public/SitePrediction/index.php
http://www.dmbr.ugent.be/prx/bioit2-public/SitePrediction/index.php


Balch WE, Morimoto RI, Dillin A, Kelly JW. Adapting proteostasis for disease intervention. Science. 
2008; 319:916–919. [PubMed: 18276881] 

Belle A, Tanay A, Bitincka L, Shamir R, O’Shea EK. Quantification of protein half-lives in the 
budding yeast proteome. Proc Natl Acad Sci USA. 2006; 103:13004–13009. [PubMed: 16916930] 

Boisvert FM, Ahmad Y, Gierlinski M, Charrière F, Lamont D, Scott M, Barton G, Lamond AI. A 
quantitative spatial proteomics analysis of proteome turnover in human cells. Mol Cell Proteomics. 
2012; 11 M111.011429. 

Cambridge SB, Gnad F, Nguyen C, Bermejo JL, Krüger M, Mann M. Systems-wide proteomic 
analysis in mammalian cells reveals conserved, functional protein turnover. J Proteome Res. 2011; 
10:5275–5284. [PubMed: 22050367] 

Cheng Z, Teo G, Krueger S, Rock TM, Koh HW, Choi H, Vogel C. Differential dynamics of the 
mammalian mRNA and protein expression response to misfolding stress. Mol Syst Biol. 2016; 
12:855. [PubMed: 26792871] 

Cherry JM, Hong EL, Amundsen C, Balakrishnan R, Binkley G, Chan ET, Christie KR, Costanzo MC, 
Dwight SS, Engel SR, et al. Saccharomyces Genome Database: the genomics resource of budding 
yeast. Nucleic Acids Res. 2012; 40:D700–D705. [PubMed: 22110037] 

Christiano R, Nagaraj N, Fröhlich F, Walther TC. Global Proteome Turnover Analyses of the Yeasts S. 
cerevisiae and S. pombe. Cell Rep. 2014; 9:1959–1965. [PubMed: 25466257] 

Cox J, Mann M. 1D and 2D annotation enrichment: a statistical method integrating quantitative 
proteomics with complementary high-throughput data. BMC Bioinformatics. 2012; 13(Suppl 
16):S12.

Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass 
accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008; 26:1367–1372. 
[PubMed: 19029910] 

Csárdi G, Franks A, Choi DS, Airoldi EM, Drummond DA. Accounting for experimental noise reveals 
that mRNA levels, amplified by post-transcriptional processes, largely determine steady-state 
protein levels in yeast. PLoS Genet. 2015; 11:e1005206. [PubMed: 25950722] 

de Godoy LMF, Olsen JV, Cox J, Nielsen ML, Hubner NC, Fröhlich F, Walther TC, Mann M. 
Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. 
Nature. 2008; 455:1251–1254. [PubMed: 18820680] 

Doherty MK, Hammond DE, Clague MJ, Gaskell SJ, Beynon RJ. Turnover of the human proteome: 
determination of protein intracellular stability by dynamic SILAC. J Proteome Res. 2009; 8:104–
112. [PubMed: 18954100] 

Eden E, Geva-Zatorsky N, Issaeva I, Cohen A, Dekel E, Danon T, Cohen L, Mayo A, Alon U. 
Proteome half-life dynamics in living human cells. Science. 2011; 331:764–768. [PubMed: 
21233346] 

Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. GOrilla: a tool for discovery and visualization of 
enriched GO terms in ranked gene lists. BMC Bioinformatics. 2009; 10:48. [PubMed: 19192299] 

Gawron D, Ndah E, Gevaert K, Van Damme P. Positional proteomics reveals differences in N-terminal 
proteoform stability. Mol Syst Biol. 2016; 12:858. [PubMed: 26893308] 

Geisberg JV, Moqtaderi Z, Fan X, Ozsolak F, Struhl K. Global analysis of mRNA isoform half-lives 
reveals stabilizing and destabilizing elements in yeast. Cell. 2014; 156:812–824. [PubMed: 
24529382] 

Gibbs DJ, Bacardit J, Bachmair A, Holdsworth MJ. The eukaryotic N-end rule pathway: conserved 
mechanisms and diverse functions. Trends Cell Biol. 2014; 24:603–611. [PubMed: 24874449] 

Goldberg AL, Boches FS. Oxidized proteins in erythrocytes are rapidly degraded by the adenosine 
triphosphate-dependent proteolytic system. Science. 1982; 215:1107–1109. [PubMed: 7038874] 

Gracy RW, Talent JM, Zvaigzne AI. Molecular wear and tear leads to terminal marking and the 
unstable isoforms of aging. J Exp Zool. 1998; 282:18–27. [PubMed: 9723162] 

Hammond DE, Claydon AJ, Simpson DM, Edward D, Stockley P, Hurst JL, Beynon RJ. Proteome 
Dynamics: Tissue Variation in the Kinetics of Proteostasis in Intact Animals. Mol Cell Proteomics. 
2016; 15:1204–1219. [PubMed: 26839000] 

Harris KF, Shoji I, Cooper EM, Kumar S, Oda H, Howley PM. Ubiquitin-mediated degradation of 
active Src tyrosine kinase. Proc Natl Acad Sci USA. 1999; 96:13738–13743. [PubMed: 10570142] 

Martin-Perez and Villén Page 18

Cell Syst. Author manuscript; available in PMC 2018 September 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Helbig AO, Daran-Lapujade P, van Maris AJA, de Hulster EAF, de Ridder D, Pronk JT, Heck AJR, 
Slijper M. The diversity of protein turnover and abundance under nitrogen-limited steady-state 
conditions in Saccharomyces cerevisiae. Mol Biosyst. 2011; 7:3316–3326. [PubMed: 21984188] 

Hsieh EJ, Shulman NJ, Dai DF, Vincow ES, Karunadharma PP, Pallanck L, Rabinovitch PS, MacCoss 
MJ. Topograph, a software platform for precursor enrichment corrected global protein turnover 
measurements. Mol Cell Proteomics. 2012; 11:1468–1474. [PubMed: 22865922] 

Jovanovic M, Rooney MS, Mertins P, Przybylski D, Chevrier N, Satija R, Rodriguez EH, Fields AP, 
Schwartz S, Raychowdhury R, et al. Immunogenetics. Dynamic profiling of the protein life cycle 
in response to pathogens. Science. 2015; 347:1259038. [PubMed: 25745177] 

Kim TY, Wang D, Kim AK, Lau E, Lin AJ, Liem DA, Zhang J, Zong NC, Lam MPY, Ping P. 
Metabolic labeling reveals proteome dynamics of mouse mitochondria. Mol Cell Proteomics. 
2012; 11:1586–1594. [PubMed: 22915825] 

Kulak NA, Pichler G, Paron I, Nagaraj N, Mann M. Minimal, encapsulated proteomic-sample 
processing applied to copy-number estimation in eukaryotic cells. Nat Methods. 2014; 11:319–
324. [PubMed: 24487582] 

Kutmon M, Riutta A, Nunes N, Hanspers K, Willighagen EL, Bohler A, Mélius J, Waagmeester A, 
Sinha SR, Miller R, et al. WikiPathways: capturing the full diversity of pathway knowledge. 
Nucleic Acids Res. 2016; 44:D488–D494. [PubMed: 26481357] 

Lam YW, Lamond AI, Mann M, Andersen JS. Analysis of nucleolar protein dynamics reveals the 
nuclear degradation of ribosomal proteins. Curr Biol. 2007; 17:749–760. [PubMed: 17446074] 

Lee MV, Topper SE, Hubler SL, Hose J, Wenger CD, Coon JJ, Gasch AP. A dynamic model of 
proteome changes reveals new roles for transcript alteration in yeast. Mol Syst Biol. 2011; 7:514. 
[PubMed: 21772262] 

Liu Z, Cao J, Gao X, Ma Q, Ren J, Xue Y. GPS-CCD: a novel computational program for the 
prediction of calpain cleavage sites. PLoS ONE. 2011; 6:e19001. [PubMed: 21533053] 

Liu Z, Yuan F, Ren J, Cao J, Zhou Y, Yang Q, Xue Y. GPS-ARM: computational analysis of the 
APC/C recognition motif by predicting D-boxes and KEN-boxes. PLoS ONE. 2012; 7:e34370. 
[PubMed: 22479614] 

López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013; 
153:1194–1217. [PubMed: 23746838] 

Lu P, Vogel C, Wang R, Yao X, Marcotte EM. Absolute protein expression profiling estimates the 
relative contributions of transcriptional and translational regulation. Nat Biotechnol. 2007; 25:117–
124. [PubMed: 17187058] 

Martin-Perez M, Villen J. Feasibility of protein turnover studies in prototroph Saccharomyces 
cerevisiae strains. Anal Chem. 2015; 87:4008–4014. [PubMed: 25767917] 

Mishima Y, Tomari Y. Codon Usage and 3′ UTR Length Determine Maternal mRNA Stability in 
Zebrafish. Mol Cell. 2016; 61:874–885. [PubMed: 26990990] 

Miura F, Kawaguchi N, Yoshida M, Uematsu C, Kito K, Sakaki Y, Ito T. Absolute quantification of the 
budding yeast transcriptome by means of competitive PCR between genomic and complementary 
DNAs. BMC Genomics. 2008; 9:574. [PubMed: 19040753] 

Mommen GPM, van de Waterbeemd B, Meiring HD, Kersten G, Heck AJR, de Jong APJM. Unbiased 
selective isolation of protein N-terminal peptides from complex proteome samples using phospho 
tagging (PTAG) and TiO(2)-based depletion. Mol Cell Proteomics. 2012; 11:832–842. [PubMed: 
22729381] 

O’Shea JP, Chou MF, Quader SA, Ryan JK, Church GM, Schwartz D. pLogo: a probabilistic approach 
to visualizing sequence motifs. Nat Methods. 2013; 10:1211–1212. [PubMed: 24097270] 

Petti AA, Crutchfield CA, Rabinowitz JD, Botstein D. Survival of starving yeast is correlated with 
oxidative stress response and nonrespiratory mitochondrial function. Proc Natl Acad Sci USA. 
2011; 108:E1089–E1098. [PubMed: 21734149] 

Pratt JM, Petty J, Riba-Garcia I, Robertson DHL, Gaskell SJ, Oliver SG, Beynon RJ. Dynamics of 
protein turnover, a missing dimension in proteomics. Mol Cell Proteomics. 2002; 1:579–591. 
[PubMed: 12376573] 

Martin-Perez and Villén Page 19

Cell Syst. Author manuscript; available in PMC 2018 September 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Presnyak V, Alhusaini N, Chen YH, Martin S, Morris N, Kline N, Olson S, Weinberg D, Baker KE, 
Graveley BR, et al. Codon optimality is a major determinant of mRNA stability. Cell. 2015; 
160:1111–1124. [PubMed: 25768907] 

Price JC, Guan S, Burlingame A, Prusiner SB, Ghaemmaghami S. Analysis of proteome dynamics in 
the mouse brain. Proc Natl Acad Sci USA. 2010; 107:14508–14513. [PubMed: 20699386] 

Prince VE, Pickett FB. Splitting pairs: the diverging fates of duplicated genes. Nat Rev Genet. 2002; 
3:827–837. [PubMed: 12415313] 

Pu S, Wong J, Turner B, Cho E, Wodak SJ. Up-to-date catalogues of yeast protein complexes. Nucleic 
Acids Res. 2009; 37:825–831. [PubMed: 19095691] 

Rappsilber J, Mann M, Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and 
storage of peptides for proteomics using StageTips. Nat Protoc. 2007; 2:1896–1906. [PubMed: 
17703201] 

Rodriguez MS, Desterro JM, Lain S, Lane DP, Hay RT. Multiple C-terminal lysine residues target p53 
for ubiquitin-proteasome-mediated degradation. Molecular and Cellular Biology. 2000; 20:8458–
8467. [PubMed: 11046142] 

Schade B, Jansen G, Whiteway M, Entian KD, Thomas DY. Cold adaptation in budding yeast. Mol 
Biol Cell. 2004; 15:5492–5502. [PubMed: 15483057] 

Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M. Global 
quantification of mammalian gene expression control. Nature. 2011; 473:337–342. [PubMed: 
21593866] 

Schwanhäusser B, Gossen M, Dittmar G, Selbach M. Global analysis of cellular protein translation by 
pulsed SILAC. Proteomics. 2009; 9:205–209. [PubMed: 19053139] 

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. 
Cytoscape: a software environment for integrated models of biomolecular interaction networks. 
Genome Res. 2003; 13:2498–2504. [PubMed: 14597658] 

Shumway SD, Maki M, Miyamoto S. The PEST domain of IkappaBalpha is necessary and sufficient 
for in vitro degradation by mu-calpain. J Biol Chem. 1999; 274:30874–30881. [PubMed: 
10521480] 

Soto T, Núñez A, Madrid M, Vicente J, Gacto M, Cansado J. Transduction of centrifugation-induced 
gravity forces through mitogen-activated protein kinase pathways in the fission yeast 
Schizosaccharomyces pombe. Microbiology (Reading, Engl). 2007; 153:1519–1529.

Swaney DL, Beltrao P, Starita L, Guo A, Rush J, Fields S, Krogan NJ, Villen J. Global analysis of 
phosphorylation and ubiquitylation cross-talk in protein degradation. Nat Methods. 2013; 10:676–
682. [PubMed: 23749301] 

Thayer NH, Leverich CK, Fitzgibbon MP, Nelson ZW, Henderson KA, Gafken PR, Hsu JJ, 
Gottschling DE. Identification of long-lived proteins retained in cells undergoing repeated 
asymmetric divisions. Proc Natl Acad Sci USA. 2014; 111:14019–14026. [PubMed: 25228775] 

Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J. The Perseus 
computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016; 
13:731–740. [PubMed: 27348712] 

Verspurten J, Gevaert K, Declercq W, Vandenabeele P. SitePredicting the cleavage of proteinase 
substrates. Trends Biochem Sci. 2009; 34:319–323. [PubMed: 19546006] 

Vincow ES, Merrihew G, Thomas RE, Shulman NJ, Beyer RP, MacCoss MJ, Pallanck LJ. The PINK1-
Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo. Proc 
Natl Acad Sci USA. 2013; 110:6400–6405. [PubMed: 23509287] 

Wang M, Weiss M, Simonovic M, Haertinger G, Schrimpf SP, Hengartner MO, von Mering C. PaxDb, 
a database of protein abundance averages across all three domains of life. Molecular & Cellular 
Proteomics. 2012; 11:492–500. [PubMed: 22535208] 

Wilkinson D, Ramsdale M. Proteases and caspase-like activity in the yeast Saccharomyces cerevisiae. 
Biochem Soc Trans. 2011; 39:1502–1508. [PubMed: 21936842] 

Wiśniewski JR, Hein MY, Cox J, Mann M. A “proteomic ruler” for protein copy number and 
concentration estimation without spike-in standards. Mol Cell Proteomics. 2014; 13:3497–3506. 
[PubMed: 25225357] 

Martin-Perez and Villén Page 20

Cell Syst. Author manuscript; available in PMC 2018 September 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Yu H, Braun P, Yildirim MA, Lemmens I, Venkatesan K, Sahalie J, Hirozane-Kishikawa T, Gebreab F, 
Li N, Simonis N, et al. High-quality binary protein interaction map of the yeast interactome 
network. Science. 2008; 322:104–110. [PubMed: 18719252] 

Martin-Perez and Villén Page 21

Cell Syst. Author manuscript; available in PMC 2018 September 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• Protein functional characteristics have greater impact on protein turnover than 

sequence properties

• Protein turnover is faster when proteins are actively used

• mRNA stability and protein turnover are correlated in exponentially growing 

yeast

• Protein turnover is highly sensitive to changes in cellular state
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Figure 1. Global analysis of protein turnover in exponentially growing yeast
(A) Experimental design. Pulsed SILAC and dynamics of global protein labeling (RIA: 

relative isotopic abundance; dots: median values at each time point, shadow: standard 

deviations) and cell growth (OD600) for replicate 2. (B) Heatmap of Z-score transformed 

median values of physicochemical properties for proteins with fast, medium and slow 

turnover representing the lower (<25%), intermediate (25–75%), and upper (>75%) quartile 

ranges, respectively, of the protein half-life distribution. Only properties having significant 

Spearman’s correlations with protein turnover are shown (Bonferroni corrected p<0.01) (see 

also Figure S3). (C) Sequence analysis of the last 7 amino acids at the protein C-terminus 

(red lines indicate p<0.05 significance level, C-termini from all ORFs present in the SGD 

proteome were used as background) (see also Figure S4). (D) Comparison of PTMs 

occupancy (i.e. percentage of modifiable residues for which an actual modification has been 

reported) (P: phosphorylation; Ub: ubiquitylation; Suc: succinylation; Ac: acetylation). (E, 

F) Half-life distributions for proteins containing phosphorylation and ubiquitylation sites 

(modification information from (Christiano et al., 2014; Swaney et al., 2013)) (E) and 

specific degron motifs (F) compared to all proteome half-lives (Ø indicates no degrons). 

Median proteome half-life is represented by a grey dotted line in both plots (see also Figure 

S4). (G) Comparison of calpain and caspase cleavage sites density.
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Figure 2. Analysis of cellular localization, complex membership and protein activity on protein 
turnover
(A) Distribution of protein half-lives within the different GO cellular component slim terms 

(see also Figure S5). (B) CVs distribution of half-lives in complete protein complexes (i.e. 

half-life measurements for all members, n = 183 complexes) and in a simulated distribution 

using random half-lives from the entire proteome. The grey arrow indicates the half-live CV 

for the whole proteome. Inner graph shows the distribution of protein complexes according 

to the number of members and the completion percentage of half-life measurements within 

each complex. (C) Half-life distribution for protein complex members: cytoplasmic (RPS 

and RPL) and mitochondrial (MRPS and MRPL) ribosome subunits, proteasome subunits 

(20S and 19/22S), and respiratory chain complexes (C-II, C-III, C-IV and C-V). Bold lines 

indicate average values, and coverage for each complex is indicated at the bottom. (D) 

Protein turnover analysis comparing traits related to essentiality (essential (E) vs. 

nonessential (NE) proteins), duplicity (high (H) vs. low (L) expressed paralog genes, 
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considering >5-fold difference in protein abundance), connectivity (≤5 vs. >5 protein 

interactions), and protein function (catalytic (C) vs. regulatory (R) subunits). Median half-

life of the proteome is represented by a grey dotted line.
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Figure 3. Effects of active protein usage on turnover
(Top) 2D annotation enrichment analysis (p<0.01) of GO terms comparing protein half-life 

values between cells growing in arginine rich or deficient media (A) and in raffinose or 

galactose as the only carbon source (B). Identity function is represented by a diagonal grey 

dotted line. (Bottom) Boxplots comparing the protein half-lives of members from selected 

GO terms showing significant differences.
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Figure 4. Comparison of transcriptome and proteome abundance and turnover in exponentially 
growing yeast
(A) Logarithmic scale correlation between mRNA (from (Bachmair et al., 1986; Gawron et 

al., 2016; Miura et al., 2008)) and protein abundances (n = 2720). (B) Logarithmic scale 

correlation between mRNA turnover (from (Bachmair et al., 1986; Geisberg et al., 2014; 

Gibbs et al., 2014)) and protein turnover (n = 2143; curve-fitting estimates are used). (C, D) 

2D annotation enrichment analysis (FDR<0.01) of GO biological process (GOBP) terms 

comparing yeast transcriptome and proteome values for expression (C) and turnover (D). (E, 
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F) 2D annotation enrichment analysis (FDR<0.01) of GOBP terms comparing turnover and 

expression values for mRNA (E) and protein (F). Red dots exemplify representative GOBP 

terms, while identity function is represented by a diagonal grey dotted line.
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Figure 5. Receiver operating characteristic (ROC) curves illustrating the performance of 
different protein turnover predictor models
Plot of the true positive rate (sensitivity) against the false positive rate (1-specificity) for the 

different predictive MLR-derived models classifying proteins with fast (25% quartile with 

the shortest half-lives, left panel) and slow (25% quartile with the longest half-lives, right 

panel) turnover (see also Figure S6). ROC curves for protein carbon percentage (the 

physicochemical parameter showing the highest correlation with protein turnover), and 

mRNA half-life (from (Geisberg et al., 2014; Mommen et al., 2012; Presnyak et al., 2015)) 

as single predictors of protein turnover are also shown. The area under the curve (AUC) for 

each ROC curve, indicative of the discrimination capacity of each model, is shown in 

parenthesis within the series labeling legend. The diagonal dotted line indicates no-

discrimination.
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Figure 6. Protein turnover changes during osmotic stress
(A) Experimental design. (B) Comparison of growth rate and median half-life in control 

(CT) and salt treatment (NA). Bars represent mean ± SD of three replicates. (C) Multi-

scatter plots in log scale and Pearson’s correlations of relative half-life measurements 

(normalized by median value). (D) Distribution of median log2 changes in mRNA, protein 

and half-life (mRNA and protein values correspond to 0.5 and 4 hours after salt treatment 

respectively, times at which most changes occur, and were obtained from (Lee et al., 2011; 

Rodriguez et al., 2000)). (E) Heatmap of log2 changes in mRNA, protein and half-life. Only 
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those genes with at least 2 (out of 3) replicate values for each variable are shown (n = 1150). 

Pearson’s correlations between median values are indicated on the right. Representative 

enriched processes of selected clusters are shown with corresponding FDR q-value. (F) 

Examples of changes in protein complexes (circles represent individual proteins and bold 

lines indicates average complex values). (G) mRNA, protein and half-life changes in yeast 

cytoplasmic carbon metabolism pathways. Enzymes from these pathways identified in our 

study are colored according to the significance of the observed change.
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