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The basic problem that causes the frequent failure of a standard randomized parallel placebo-controlled
clinical trial with a high placebo response rate is the underestimation of the treatment effect by the
observed relative treatment difference. A two-period sequential parallel enrichment design has been
proposed where the first period is a standard parallel design and at the end of the first period, the
placebo non-responders are identified and re-randomized in the second period. Based on such a design,
available methods have primarily focused on testing either the first period treatment null hypothesis or
the global null hypothesis defined as the joint period 1 and period 2 treatment effect null hypothesis by a
test statistic which is either derived from a combined statistic or defined directly as a weighted z-score
where the weights are functions of some population and design parameters satisfying certain power
optimality criterion. However, in some cases, it is not clear what their combined statistics are estimating
and in others, the combined statistics are estimating the apparent treatment effect; but generally, there is
no discussion of the need to provide a proper assessment of the treatment effect for the intended study
population. It should be clear that an appropriate assessment of the treatment effect for the intended
study population is critical for the benefit/risk analysis as well as the proper dosage recommendation.
Any benefit/risk analysis and dosage recommendation that are based on an apparent treatment effect
from a standard parallel design such as the first period of a sequential parallel enrichment design tend to
underestimate the benefit/risk ratio which in turn may lead to overdosing recommendation. It is the
purpose of this paper to introduce the concept of an adjusted treatment effect which is derived by
adjusting the apparent treatment effect from the first period of a sequential parallel enrichment design
with information from the second period subject to a consistency condition. The adjustment properly
compensates for the high placebo response rate. It is proposed that this adjusted treatment effect should
be used to assess the treatment effect for the intended study population and should be the basis for the
benefit/risk analysis and the dosage recommendation.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The basic reason for the failure of many standard randomized
parallel placebo-controlled clinical trials with high placebo
response rate is that the observed relative treatment difference
only provides an estimate of an apparent treatment effect since the
treatment effect has been diminished by the presence of a
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substantial proportion of placebo responders in the population. The
full treatment effect cannot be directly estimated by the relative
treatment difference. An appropriate assessment of the full treat-
ment effect is critical for making a risk/benefit analysis and dosage
recommendation. The primary purpose of this paper is to propose a
method for adjusting the apparent treatment effect to account for
the high placebo response rate within the framework of a doubly
randomized delayed start (DRDS) design as discussed in Liu et al.
[1] which improves upon the earlier sequential parallel design
(SPD) of Fava et al. [2].

2. Background

2.1. The sequential enrichment design
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occurs in several therapeutic areas, but it is most often observed in
trials involving subjects with psychiatric disorders. In these pop-
ulations of subjectswith psychiatric disorders, the placebo response
rate has been estimated to vary from 30% to 50%. Trials in these
therapeutic areas often failed because in a standard randomized
parallel placebo-controlled trial, the observed relative treatment
difference only provides an estimate of an apparent treatment effect
which does not reflect the full treatment effect due to the dilution
resulting from the presence of a substantial proportion of placebo
responders. This problem has been known for quite some time.
Temple [3] had suggested an enrichment design whereby subjects
responding to placebo in a run-in period are excluded froma second
period during which placebo non-responders are re-randomized to
treatment and placebo in a parallel design. The purpose of Temple's
enrichment design is merely to show that the treatment is effective
in some subpopulation and in this case in the subpopulation of
placebo non-responders. However, one problem with this enrich-
ment design is that the claim of treatment effectiveness cannot be
readily extended to the entire intended study population. Another
problemwith this design is that if the treatment is tobe indicated for
the enriched subpopulation, then in actual clinical practice, a patient
has to be givenplacebofirst to verify his/her placebo response status
before the treatment can be prescribed; however, this would entail
an ethical dilemma.

Fava et al. [2] proposed a SPD design where subjects are ran-
domized to a treatment group and two placebo groups in the first
period. At the end of the first period, the non-responders in one
placebo group will be given treatment in the second period, while
the non-responders in the other placebo group will continue with
placebo in the second period. The subjects in the treatment group
in the first period will continue on the treatment in the second
Period. It should be noted that in the original proposed SPD design,
the randomization in Period 2 refers to the original randomization
conducted at the beginning of the first period. The lack of a re-
randomization in the second period poses potential imbalance in
key covariates between the two placebo non-responder groups at
the end of the second period if there is a differential placebo
dropout rate between the two placebo arms. Such imbalance may
introduce bias and cause difficulty in the statistical inference. Liu
et al. [1] proposed a doubly randomized delayed start (DRDS)
design which was presented earlier at the 2010 BASS Conference.
This DRDS design involves randomizing the subjects to treatment
and placebo in the first period and then re-randomizing the
Fig. 1. A basic DRDS design for assessing treatment effect in trials with a high placebo
response rate.
placebo non-responders identified at the end of the first period
based on some pre-specified response threshold to treatment and
placebo in the second period. The terms “delayed start” were used
for the obvious application of this design to trials involving pro-
gressive diseases. A simple diagram of such a design is depicted in
Fig. 1.

Chen et al. [4] considered a SPD designwith re-randomization in
the second period which they termed a SPD-ReR design. Now, the
original SPD design has since also been revised to include re-
randomization in the second period. In this paper, the DRDS
design may refer to a SPD ReR design or a SPD design with re-
randomization if found appropriate, and for convenience, some of
the terminologies and notations used in Liu et al. [1] are adopted.
The DRDS design has been accepted by the regulatory agencies as
an innovative design. However, the regulatory agencies have raised
issues with various proposed methods of analysis. In order to
address these issues, a new statistical methodology is proposed
here that includes the DRDS design and a statistical approach for
this design that differs from the currently available methods.

2.2. Some key issues associated with the current methods for a
DRDS design

There are a few important conceptual and technical issues
related to the problem of a high placebo response rate in a DRDS
design that have not beenmentioned nor discussed by the previous
authors. These basic issues need to be satisfactorily resolved before
a DRDS design can be applied to phase 3 trials to obtain the evi-
dence of effectiveness required. These issues will now be discussed
and they will be addressed in the new approach to be proposed in
Section 4.

2.2.1. Issue 1
The customary view considers the standard randomized parallel

double blind placebo-controlled design as the design of choice
because the relative treatment difference from such a design re-
flects the net treatment effect over and beyond what is expected of
a placebo which should be minimal for this view to be valid. In a
study population that has a substantial proportion of placebo re-
sponders, the relative treatment difference is only an apparent
treatment difference, because it ignores the mitigating effect of the
presence of a high placebo response rate on this treatment differ-
ence. This is the primary reasonwhymany such trials have failed in
the past. In a DRDS design, this same problem is present in the first
period. Therefore, clearly the apparent treatment effect from the
first period would be underestimating the full treatment effect.
Another problem inherent in the above view is that even if
perchance the apparent treatment effect shows the treatment is
superior to placebo, any dosage recommendation based on an
apparent doseeresponse relationship would likely lead to over-
dosing. Hence, for these two reasons alone, an appropriate
assessment of the treatment effect adjusting for high placebo
response rate is needed.

2.2.2. Issue 2
A problem that is born of the above view is present in the cur-

rent proposed methods of analysis of a DRDS design. These
methods variously proposed to estimate the apparent treatment
effect of Period 1 by a combined statistic, which is defined as a
weighted combination of the apparent treatment effect of Period 1
and the enriched treatment effect of Period 2 under some as-
sumptions. For example, in Huang and Tamura [5], a score test is
derived under the constancy assumption which requires that the
enriched treatment effect of Period 2 be equal to the apparent
treatment effect of Period 1, while for binary outcome, in Tamura
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and Huang [8], the combined statistic is derived under the mono-
tonicity condition which assumes that each placebo responder is
also a treatment responder. In each instance, the assumption may
be invalid or unnecessarily stringent. Furthermore, the combined
statistic is used to derive a combination test for testing either the
apparent treatment null hypothesis of Period 1, or a global null
hypothesis which is defined as the joint apparent treatment null of
Period 1 and the enriched treatment null of Period 2. Even if these
assumptions are appropriate, the rejection of these null hypotheses
by these combination tests would not have solved the problem
discussed under Issue 1 above.

2.2.3. Issue 3
A problem that arises as a result of the two issues discussed

above is that the weights used in the combined statistics are
functions not only of the population parameters, but also some
DRDS design parameters, in particular the placebo to treatment
allocation ratios in Period 1 and Period 2. One can place more
weight on Period 2 treatment effect estimate in the combined
statistic by simply increasing the allocation ratio in Period 1. Such
bias is present evenwhen the allocation ratio in Period 1 is equal to
2 as is the case in most of the DRDS designs used in these earlier
papers. Such potential bias causes concern over these combined
statistics and is interpreted as biasing the estimate of the apparent
treatment effect of Period 1. Such misleading use of the Period 2
result and a misleading interpretation of the purpose of the second
period of a DRDS design is unfortunate and should be corrected.

2.2.4. Issue 4
Assuming for the moment that a combined statistic with

weights that are independent of the allocation ratios has been
defined. Then, one needs to know what this combined statistic is
estimating and how to interpret it. Is the combined statistic esti-
mating a treatment effect for the intended study population? Does
the treatment effect represent an appropriate assessment of the full
treatment effect in the intended study population? Does the
treatment effect adjust for the presence of placebo responders in
the intended study population? Interpretability of the estimate of a
combined statistic is crucial in its acceptability as an estimate of the
full treatment effect for the intended study population. Such
interpretation is lacking for the combined statistics in most of the
current available methods, except for those cases where the com-
bined statistics are meant to estimate the apparent treatment effect
of Period 1 as discussed in Issue 2 above.

2.2.5. Issue 5
Assuming that a combined statistic is estimating the true

treatment effect for the intended study population as discussed in
Issue 4, one problem that may arise is that it is possible for the
combined statistic to show a positive combined treatment effect,
yet the estimate of the apparent treatment effect from Period 1may
be negative. This kind of inconsistency is not a desirable outcome,
since it suggests that the treatment effect may be substantially
worse than placebo among the placebo responders. This issue is
also not addressed relative to the combined statistics in the current
available methods in addition to their problems as discussed above
although it is related to the monotonicity condition introduced in
Tamura et al. [8].

2.2.6. Issue 6
In all of the currently available methods, Period 2 of a DRDS

design is simply viewed as a trial independent of Period 1. However,
realistically, the probability structure underlying Period 2 in a DRDS
design is conditional in nature. The sample cohorts in Period 2
represent placebo non-responders in Period 1 who are re-
randomized in Period 2 into treatment and placebo groups.
Therefore, the distributions of the response variables for these co-
horts in Period 1 and Period 2 are singly truncated bivariate normal
distributionswhere the Period 1 placebo responses of these cohorts
have been truncated at some pre-specified threshold. Hence, the
distributions of these cohorts in Period 2 are conditional distribu-
tions with the condition specified by the truncation of their placebo
response in Period 1 at some threshold. Thus, the treatment effect
at the end of Period 2 will be conditional in nature which has some
interesting and useful properties that are not available or apparent
under the unconditional probability structure.

To address the above issues, a new approach is proposed in this
paper. The probability structure underlying a DRDS design is first
developed in Section 3. Then, in Section 4, the key concept of an
adjusted treatment effect will be defined as a specific weighted
treatment effects from Period 1 and Period 2 where the weights are
independent of the allocation ratios and any design parameters.
This adjusted treatment effect can be interpreted as an adjustment
of the apparent treatment effect from Period 1 by appropriately
accounting for the presence of placebo responders in the intended
study population. Period 2 of a DRDS design provides the infor-
mation needed to make this adjustment possible. Therefore, this
adjusted treatment effect provides an appropriate assessment of
the full treatment effect for the intended study population. Then, in
Section 5, a new combined statistic can be derived directly from the
definition of the adjusted treatment effect so that it will provide an
unbiased estimate of the adjusted treatment effect. The combina-
tion test derived from this combined statistic will then be used to
test the adjusted treatment null hypothesis. In addition to this
combination test, a new consistency measure is introduced in
Section 6, which can be viewed as a natural generalization of the
monotonicity condition for a continuous outcome. A consistency
null hypothesis is defined from this consistency measure and a
consistency test is derived to test the consistency of the treatment
effects from the two periods which is now a condition needed for
excluding the situation where the adjusted treatment effect is
positive while the apparent treatment effect of Period 1 is negative.
Finally, in Section 7, a joint test, which is defined as the simulta-
neous testing of both the adjusted treatment null by the combi-
nation test and the consistency null by the consistency test, is
proposed for demonstrating that a treatment is effective for the
intended study population. It is shown that this joint test controls
the type I error strongly undermost of the scenarios encountered in
practice. In addition, it is shown that if a particular application
scenario appears to fall in certain range that suggests potential
inflation in type I error may be expected, then one can control the
expected inflation of this type I error by increasing the allocation
ratio r1 to a level >2. It should be noted that since the weights used
to define the combined statistic is independent of the allocation
ratios, a DRDS design is free to choose any allocation ratios in Period
1 and Period 2 as long as they satisfy certain inequalities that are
usually met in any practical application. Once the joint null has
been rejected, then the estimated adjusted treatment effect derived
from the combined statistic should represent an appropriate
assessment of the full treatment effect for the intended study
population. In Section 8, a simulated DRDS designed trial is pre-
sented for illustration. A summary discussion concludes the paper
in Section 9.

3. The DRDS design and its underlying probability structure

Before introducing the adjusted treatment effect, it is important
to first discuss the probability structure underlying a DRDS design.
The previous authors have essentially adopted the view that the
two periods in a DRDS design may be considered as two
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independent trials. In this section, a trial using the basic DRDS
design is described and the probability structure behind this design
is discussedwhich forms the basis for the proposedmethodology. It
will become clear that this underlying probability structure is
crucial in establishing the needed properties for the proposed test
statistics. In addition, it will be relevant at the study design stage.

Consider a trial with a DRDS design as shown in Fig. 1. LetU¼U1
denote the intended study population, and assume that there is a
subpopulation of placebo responders UR even though this sub-
population can't be characterized prior to the start of the trial. Let
UNR denote the placebo non-responder subpopulation. Let T denote
an experimental treatment and P the placebo. In Period 1, n1 sub-
jects are randomly assigned to T and P in a placebo-to-treatment
allocation ratio of r1 � 1 with n1,T subjects assigned to treatment T
and n1,P ¼ r1n1,T subjects assigned to placebo P, where
n1¼ n1,Pþ n1,T. Let X1 denote a continuous clinical response variable
of interest, X1,T and X1,P the response variables under the treatment
T and the placebo P respectively. Let X1;P � Nðm1;P ; s21;PÞ and
X1;T � Nðm1;T ; s21;T Þ be normally distributed with the mean and
variance (m1,P, s21;PÞ and (m1,T, s21;T Þ respectively. For simplicity and
without much loss in generality, it will be assumed
that s21;P ¼ s21;T ¼ s21. Let D1 ¼ m1,T � m1,P denote the relative treat-
ment difference in Period 1.

Let {x1,P,i, i ¼ 1,2,. . . , n1,P} and {x1,T,j, j ¼ 1,2,. . . , n1,T} denote the
observed sample responses from the placebo and treatment

groups respectively. Then, bD1 ¼ ðbm1;T � bm1;PÞ � NðD1; s
2
1=n1;TR1Þ,

where bm1;P ¼ 1=n1;P
Pn1;P

i¼1x1;P;i , bm1;T ¼ 1=n1;T
Pn1;T

j¼1x1;T ;j , and

R1 ¼ r1=ð1 þ r1Þ ¼ n1;P=ðn1;P þ n1;T Þ is the fraction of placebo
subjects among the entire sample of n1 subjects.

When the variances s21 and s22 for bD1 and bD2 from Period 1 and
Period 2 are considered unknown as is usually the case, then one
may estimate these unknown variances by their respective pooled
sample variances given bybs2
1 ¼ ðð n1;T � 1Þ bS21;T þ ðn1;P � 1Þ bS21;PÞ = n1;T þ n1;P � 2

� �
and

bs2
2 ¼ n2;T � 1

� � bS22;T þ n2;P � 1
� � bS22;P� �

= n2;T þ n2;P � 2
� �

where

bS21;T ¼ 1�
n1;T � 1

� Xn1;T

i¼1

�
X1;T ;i � X1;T

�2
;

bS21;P ¼ 1�
n1;P � 1

� Xn1;P

i¼1

�
X1;P;i � X1;P

�2

bS22;T ¼ 1�
n2;T � 1

� Xn2;T

i¼1

�
X2;T ;i � X2;T

�2
;

bS22;P ¼ 1�
n2;P � 1

� Xn2;P

i¼1

�
X2;P;i � X2;P

�2
At the end of Period 1, a pre-specified criterionwill be applied to

determine the response status of each placebo subject who
completed the trial. This criterion may be translated into a
threshold c in the range of the response variable X1. At the end of
Period 1, placebo subjects who are identified as responders, that is,
if X1,P > c, and along with the placebo dropouts will be excluded
from the second period of the study. Those placebo subjects clas-
sified as non-responders, that is, X1,P < c, will be re-randomized to
treatment and placebo at the start of Period 2 in a placebo-to-
treatment allocation ratio of r2 � 1. For practical consideration, r2
is set to the value 1 in the present paper as is the case in most
applications for obvious reason. It will also be assumed that the
proportion of placebo non-responders among the placebo dropouts
in Period 1 is similar to their population proportion. For simplicity,
it is assumed here that there were no placebo dropouts. Let
t ¼ ðc � m1;PÞ=s1;P be the placebo response threshold standard-
ized relative to the placebo response distribution in Period 1. Let n2
equal the number of placebo non-responders who completed
Period 1 of the study and g ¼ F tð Þ ¼ F ðð c � m1;PÞ=s1;PÞ denote the
population proportion of placebo non-responders in U ¼ U1. Then,
the ratio bg ¼ n2=n1;P should be a consistent estimate of the
parameter F(t) in the absence of placebo dropouts, or under the
above assumption if placebo dropouts are present.

At the start of Period 2, the n2 placebo non-responders
from Period 1 will be re-randomized to treatment and placebo
under equal allocation r2 ¼ 1. Then, it follows that
n2;T ¼ n2;P ¼ n2=ð1þ r2Þ ¼ gn1;P=ð1þ r2Þ ¼ gn1;T r1=ð1þ r2Þ ¼ n

1;TgR1;2, where R1;2 ¼ r1=ð1þ r2Þ.
Now without loss in generality and for obvious reason, consider

relabeling the entire placebo sample in Period 1 as follows:�
X1;P;i; i ¼ 1;2; : : : ; n2;T ; n2;T þ 1; n2;T þ 2; : : : ;n2; n2 þ 1;n2

þ 2; : : : ; n1;P
�

where the first n2,T placebo subjects {X1,P,i, i ¼ 1,2,. . . , n2,T} are
placebo non-responders that have been re-randomized in Period 2
to treatment, and the next set of n2,P placebo subjects
{X1,P,i, i ¼ n2,T þ 1, n2,T þ 2,. . . ,n2,} are placebo non-responders that
have been re-randomized in Period 2 to placebo, while the
remainder of the placebo sample {X1,P,i, i ¼ n2 þ 1,n2 þ 2, . . . , n1,P}
are the placebo subjects who were placebo responders (or placebo
dropouts if any, although it is assumed none here) in Period 1. Note
that under equal allocation in Period 2, n2;P ¼ n2;T ¼
ðn2;P þ n2;T Þ=2 ¼ n2=2 ¼ gn 1;P=2.

Assuming that the randomization in Period 1 holds, the
placebo sample should be representative of the population
U ¼ U1. If the entire placebo sample at the end of Period 1 were re-
randomized in Period 2 to treatment, then the pair of response var-
iables (X1,P,X2,T) should follow a bivariate normal distribution

ðX1;P ;X2;T Þ � Nðm12;T ; S12;T Þ, where m12;T ¼
�
m1;P
m2;T

�
and S12;T ¼ 

s21;P rTs1;Ps2;T

rTs1;Ps2;T s22;T

!
upon assuming that s21;P ¼ s21;T ¼ s21,

s22;P ¼ s22;T ¼ s22, and rT is the correlation corr(X1,P, X2,T), where X2,T

is the response variable in Period 2 under the treatment T. Similarly,
if the entire placebo sample at the end of Period 1 were re-
randomized in Period 2 to placebo, then the pair of response vari-
ables (X1,P, X2,P) should follow a bivariate normal distribution

ðX1;P ;X2;PÞ � Nðm12;P ; S12;PÞ, where m12;P ¼
�
m1;P
m2;P

�
and S12;P ¼ 

s21;P rPs1;Ps2;P

rPs1;Ps2;P s22;P

!
upon assuming that s21;P ¼ s21;T ¼ s21,

s22;P ¼ s22;T ¼ s22, and rP is the correlation corr(X1,P, X2,P), where X2,P

is the response variable in Period 2 under the placebo P. Indeed, in
this case, one may even assume that s21;P ¼ s22;P ; s

2
1;T ¼ s22;T and

hence s21 ¼ s22. It should be pointed out that if the treatment is not
effective, then it is likely that rP¼rT, i.e., rP� rT¼ 0. Otherwise, if the
treatment is more effective than placebo, then one should expect
that rP�rT, i.e., rP�rT � 0.

3.1. Truncated distributions of the two placebo non-responder
cohorts in period 2

However, in a DRDS design, since only the placebo non-
responders at the end of Period 1 are re-randomized to placebo
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and treatment in Period 2. Therefore, for the cohort of placebo non-
responders who were re-randomized to treatment in Period 2
denoted by (P / T), the sample pairs {(X1,P,i, X2,T,i), i ¼ 1, 2, . . ., n2,T}
would follow a singly truncated bivariate normal distribution

��
X1;P

��X1;P < c
�
;
�
X2;T

��X1;P < c
�� � N

	
m12;TjX1;P < c ; S12;TjX1;P < c



where

m12;TjX1;P < c ¼
�
m1;PjX1;P < c
m2;TjX1;P < c

�
¼

0BBB@
m1;P � s1;P

�
4ðtÞ
FðtÞ

�
m2;T � rTs2;T

�
4ðtÞ
FðtÞ

�
1CCCA

Sð12;TjX1;P<cÞ¼
�

var
�
X1;P

��X1;P<c
�

cov
�
X1;P ;X2;T

��X1;P<c
�

cov
�
X1;P ;X2;T

��X1;P<c
�

var
�
X2;T

��X1;P<c
� �

¼
 
s2ð1;PjX1;P<cÞ rðTjX1;P<cÞsð1;PjX1;P<cÞsð2;TjX1;P<cÞ
rðTjX1;P<cÞsð1;PjX1;P<cÞsð2;TjX1;P<cÞ s

2
ð2;TjX1;P<cÞ

!

where the elements of the variance-covariance matrix are given by

s21;PjX1;P < c ¼ var
�
X1;P jX1;P < c

� ¼ "1� t
4ðtÞ
FðtÞ �

�
4ðtÞ
FðtÞ

�2
#
s21;P

s22;TjX1;P < c ¼ var
�
X2;T

��X1;P < c
�

¼
 
r2T

"
1� t

4ðtÞ
FðtÞ �

�
4ðtÞ
FðtÞ

�2
#
s21;P þ

	
1� r2T


!
s22;T

s22;PjX1;P < c ¼ var
�
X2;P

��X1;P < c
�

¼
 
r2P

"
1� t

4ðtÞ
FðtÞ �

�
4ðtÞ
FðtÞ

�2
#
s21;P þ

	
1� r2P


!
s22;P

cov
�
X1;P ; X2;T jX1;P < c

� ¼ rT

"
1� t

4ðtÞ
FðtÞ �

�
4ðtÞ
FðtÞ

�2
#
s1;Ps2;T

and rTjX1;P < c is the correlation for the truncated (P / T) cohort
given by

rTjX1;P < c ¼
cov
�
X1;P ; X2;T jX1;P < c

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var
�
X1;P jX1;P < c

�q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var
�
X2;T jX1;P < c

�q
¼ rTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi0B@r2Ts

2
1;P þ

ð1�r2TÞ"
1�t

4ðtÞ
FðtÞ�

�
4ðtÞ
FðtÞ

�2
#
1CA

vuuuuut
Now in practice, the variances var(X1,PjX1,P<c), var(X2,TjX1,P<c)

and the cov(X1,P, X2,TjX1,P<c) may be estimated by their respective
sample variances and the sample covariance given by
S2X
1;PjX1;P < c

¼ 1
n2;T � 1

Xn2;T

i¼1

	
X1;P;i � bX ð1;PjX1;P < cÞ


2
S2X

2;TjX1;P < c
¼ 1

n2;T � 1

Xn2;T

i¼1

	
X2;T ;i � bX ð2;TjX1;P < cÞ


2
and

SðX1;P ; X2;T jX1;P < cÞ ¼
1

n2;T � 1

Xn2;T

i¼1

X*
1;P;iX

*
2;T ;i; where

X*
1;P;i ¼ X1;P;i � bX ð1;PjX1;P < cÞ ; X*

2;T ;i ¼ X2;T;i � bX ð2;TjX1;P < cÞ and

bX1;PjX1;P < c ¼
1

n2;T

Xn2;T

i¼1

�
X1;P;i

��X1;P < c
�
and

bX2;TjX1;P < c ¼
1

n2;T

Xn2;T

i¼1

�
X2;T ;i

��X1;P < c
�
:

The sample correlation is given by brTjX1;P < c ¼ SðX1;P ; X2;T jX1;P < cÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2X

1;PjX1;P < c

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2X

2;TjX1;P < c

r
.

Similarly, for the cohort of placebo non-responders who are re-
randomized to placebo, denoted by, (P/ P) in Period 2, the sample
pairs fðX1;P;n2;Tþi;X2;P;iÞ; i ¼ 1; 2; : : :; n2;Pg also follows a singly
truncated bivariate normal distribution with

��
X1;P

��X1;P < c
�
;
�
X2;P

��X1;P < c
�� � N

	
m12;PjX1;P < c; S12;PjX1;P < c



where

m12;PjX1;P < c ¼
�
m1;PjX1;P < c
m2;PjX1;P < c

�
¼

0BBB@
m1;P � s1;P

�
4ðtÞ
FðtÞ

�
m2;P � rPs2;P

�
4ðtÞ
FðtÞ

�
1CCCA

S12;PjX1;P < c ¼
�

var
�
X1;P

��X1;P < c
�

cov
�
X1;P ;X2;P

��X1;P < c
�

cov
�
X1;P ;X2;P

��X1;P < c
�

var
�
X2;P

��X1;P < c
� �

the expressions for the elements of the above variance-covariance
matrix S12;PjX1;P < c are similar to the previous expressions derived
for the (P / T) cohort and will not be repeated here.

Now, with the underlying conditional probability structure for a
DRDS design as described above, the Period 2 expected treatment
effect is now given by the conditional (truncated) mean difference

�
D2jX1;P < c

� ¼ m2;T jX1;P < c � m2;PjX1;P < c ¼
�
m2;T � rTs2;T

�
4ðtÞ
FðtÞ

�


�
�
m2;P � rPs2;P

�
4ðtÞ
FðtÞ

�


¼ �m2;T � m2;P
�þ �rPs2;P � rTs2;T

��4ðtÞ
FðtÞ

�
(1)

which may be estimated by the observed mean difference given by

�bD2
��X1;P < c

� ¼ bm2;T j X1;P < c � bm2;P j X1;P < c

where
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bm2;T j X1;P < c ¼ bX2;TjX1;P < c ¼
1

n2;T

Xn2;T¼n2;P

i¼1

�
X2;T ;i

��X1;P < c
�

and

bm2;P j X1;P < c ¼ bX2;PjX1;P < c ¼
1

n2;P

Xn2;P¼n2;T

i¼1

�
X2;P;i

��X1;P < c
�

Thus,

E
�bD2

��X1;P < c
� ¼ E

	bm2;T j X1;P < c � bm2;P j X1;P < c



¼ �D2

��X1;P < c
�

¼ �m2;T � m2;P
�þ �rPs2;P � rTs2;T

� 4ðtÞ
FðtÞ

Note that in the above expression for EðbD2
��X1;P < cÞ or Eq. (1), if

the duration of Period 1 is relatively short, then the first term
(m2,T � m2,P) ¼ (m1,T � m1,P) which is the apparent treatment effect
from Period 1, and hence the increase in the expected treatment
effect in Period 2 would come from the second term
ðrPs2;P � rTs2;T Þ4ðtÞ=FðtÞ which is 0 when there is no treatment
effect and should be positive when the treatment is effective, since
in that case, one expects that (rPs2,P � rTs2,T) > 0. Eq. (1) will be
important as will be seen later.

Some of the above expressions are well-known (see e.g., John-
son and Kotz [9], Gajjar and Subrahmaniam [10], Rosenbaum [11],
Shah and Parikh [12] and Tallis [13]) and others can be derived from
them.
3.2. The joint distribution of ðbD1; ðbD2
��X1;P < cÞÞ

Now with the above derivation of the expressions for the
various distribution parameters for the conditional distributions as
a function of the distribution parameters of their underlying un-
conditional distributions for the two cohorts (P/ T) and (P/ P) in
Period 2, one can establish the following lemma within the
framework of a DRDS design.

Lemma. For a DRDS design, the treatment effect estimates bD1 and
ðbD2

����X1;P < cÞ from Period 1 and Period 2 follow an asymptotically
normal bivariate distribution ðbD1; ðbD2

��X1;P < cÞÞ � Fðm12;S12Þ,
where the means are given by

m12 ¼
�

D1�
D2
��X1;P < c

�� ¼
�

m1;T � m1;P
m2;TjX1;P < c � m2;PjX1;P < c

�

¼

0B@ m1;T � m1;P�
m2;T � m2;P

�þ �rPs2;P � rTs2;T
� 4ðtÞ
FðtÞ

1CA
and the variance-covariance matrix is given by

S12 ¼
 

var
�bD1

�
cov
�bD1;

�bD2
��X1;P < c

��
cov
�bD1;

�bD2
��X1;P < c

��
var
�bD2

��X1;P < c
� !

where

var
�bD1

� ¼ s21
n1;TR1

; assuming that s21;T ¼ s21;P ¼ s21 (2)
var
�bD2

��X1;P < c
� ¼ var

	bm2;T j X1;P < c � bm2;P j X1;P < c



¼ 1

n2;T

�
var
�
X2;T

��X1;P < c
�þ var

�
X2;P

��X1;P < c
��
(3)

where

var
�
X2;T

��X1;P < c
� ¼  r2T

"
1� t

4ðtÞ
FðtÞ �

�
4ðtÞ
FðtÞ

�2
#
s21;P

þ
	
1� r2T


!
s22;T (4)

var
�
X2;P

��X1;P < c
� ¼  r2P

"
1� t

4ðtÞ
FðtÞ �

�
4ðtÞ
FðtÞ

�2
#
s21;P

þ
	
1� r2P


!
s22;P (5)

and

cov
�bD1;

�bD2
��X1;P < c

�� ¼ cov
	�bm1;T � bm1;P

�
;
	bm2;T j X1;P < c

� bm2;P j X1;P < c




¼ 1

n1P

�
cov
�
X1;P ; X2;P

�� X1;P < c
�

� cov
�
X1;P ; X2;T

�� X1;P < c
��
/0 (6)

asymptotically where the covariance terms cov(X1,P,X2,PjX1,P<c) and
cov(X1,P, X2,Tj X1,P<c) are as given previously.

The proof of this lemmawill be omitted since these expressions
can be directly derived from the preceding conditional distribution
parameters for the two cohorts (P / P) and (P / T).

Note that for the conditional (truncated) variances and covari-
ance, one can use their sample variance and covariance as
estimates.
3.3. An example of a DRDS design

Table 1 displays a summary of the data from a very small
completed phase II study based on a DRDS design as described in
Fig. 1. Using the conditional probability structure described above,
the data fromPeriod 1 of this studywill be used later as the basis for
illustrating the proposed method with a simulated trial using a
DRDS design. In addition, selected power and sample size calcula-
tions for the combination and consistency tests will also be based
on the data from this table.

4. The adjusted treatment effect

4.1. The reason for adjusting the apparent treatment effect D1

In a trial with high placebo response rate, the first problem
encountered is the inability to characterize the subpopulation of
placebo responders UR. Therefore, if a traditional randomized par-
allel design is used, such as the first period of a DRDS design, then
the high placebo response rate in the intended study population
U ¼ U1 would obviously reduce the treatment effect because it is
measured as a relative difference D1 ¼ m1,T � m1,P between the



Table 1
Hypothetical Distributions of a HDRS17 Subscale Score based on an Early Phase 2 Major Depressive Disorder Trial using a DRDS Designwith Parameter Values: r1 ¼ 2, p ¼ 0.60,
g ¼ 0.40, r2 ¼ 1.

Period 1

m1T s1T m1P s1P D1 s1

3.30 2.44 3.00 2.40 0.30 2.42

Period 2

m2T s2T m2P s2P D2 s2

3.90 1.95 2.80 2.00 1.10 1.98
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treatment and placebo groups, a problem that is all too familiar in
an active control trial. If placebo responders are present in sub-
stantial proportion, then this relative difference will become much
smaller. This reduced treatment effect termed the apparent treat-
ment effect in a parallel design is the reason why many such trials
had failed in the past.

To further elaborate on this problem, assume for the moment
that one is able to characterize the placebo responders UR and the
placebo non-responders UNR relative to a response variable
X ~ N(m, s2) and a response threshold c, where larger values of the
response variable X represent better outcomes. Let t ¼ ðc � mÞ=s ,
then aNR ¼ F(t) would be the proportion of placebo non-
responders in U ¼ U1. Let XR;T � NðmR;T ; s2R;T Þ and
XR;P � NðmR;P ; s2R;PÞ denote the response distribution for treat-
ment T and placebo P respectively in UR, and
XNR;T � NðmNR;T ; s2NR;T Þ and XNR;P � NðmNR;P ; s2NR;PÞ denote the
response distribution for treatment T and placebo P respectively in
UNR. Furthermore, let DR ¼ mR,T � mR,P and DNR ¼ mNR,T � mNR,P denote
the respective treatment effects in UR and UNR. Under homogeneity,
the apparent treatment effect D1 in Period 1 of a DRDS design can
be defined as a simple weighted average of DR and DNR given by
D1 ¼ aRDR þ aNRDNR. Clearly, when the proportion of placebo re-
sponders aR is low, then the apparent treatment effect D1 is close to
DNR and the impact of DR would be small. On the other hand, when
the placebo response rate aR is relatively high, then the impact ofDR

would be great on the apparent treatment effect D1. In this latter
case, the apparent treatment effect DR due to the placebo response
in UR results in the apparent treatment effect D1. Therefore, this
suggests that one should adjust the weights aR and aNR in
D1 ¼ aRDR þ aNRDNR in an objective manner to account for the high
placebo response rate in UR which is reflected in the apparent
treatment effect DR. In the next section, an adjusted treatment ef-
fect is defined which represents an adjustment of the weights in
D1 ¼ aRDR þ aNRDNR to account for the impact of the presence of
placebo responders in U ¼ U1.
4.2. An adjusted treatment effect

Recall that for simplicity and without loss in generality, one may
assume that s21;P ¼ s21;T which is also suggested by the first period

data in the example given in Table 1. Denote this common variance
by s21, and hence s2bD1

¼ s21=ðn1;TR1Þ Similarly, one may assume that

in Period 2, the conditional variances are equal, i.e.,
s2
2;TjX1;P < c

¼ varðX2;T jX1;P < cÞ ¼ s2
2;PjX1;P < c

¼ varðX2;P jX1;P < cÞ ¼ s22,

which is also suggested by the data in the example given in Table 1,
although it was not assumed to be so in the earlier expression for
s2
ðbD2jX1;P < cÞ

, and hence here one has s2 bD2

���X1;P < c
	 
 ¼ s22=ðn2;TR2Þ. If

one were to combine the treatment effect estimate bD1 from Period

1 and ðbD2
��X1;P < cÞ ¼ ðbm2;T j X1;P < c � bm2;P j X1;P < cÞ from Period 2
using weights defined through their inverse variances following
the method of weighted least square [14], then the least square
estimator of the treatment effect is given by

bD ¼ a1 bD1 þ a2
�bD2

��X1;P < c
�

(7)

where the coefficients a1 and a2 are given in general by

a1 ¼ 1� a2

where

a2 ¼
s2
1

n1;TR1
� cov

�bD1;
�bD2

�� X1;P < c
��

s2
1

n1;TR1
þ s2

2
n2;TR2

� 2cov
�bD1;

�bD2
�� X1;P < c

�� (8)

Now, since covðbD1; ðbD2
�� X1;P < cÞÞ/0 asymptotically as noted

earlier, hence under large sample, a2 may be approximately given by

a2 ¼
s2
1

n1;TR1

s2
1

n1;TR1
þ s2

2
n2;TR2

¼
n1;TgR12R2

s2
2

n1;TR1

s2
1

þ n1;TgR12R2

s2
2

¼ 1

1þ
�
s2
s1

�2
1
g

�
R1

R12R2

�
where under a DRDS design, n2,T ¼ n1,TgR12 and g ¼ F(t) is the
population proportion of placebo non-responders which can be
consistently estimated by the fraction of placebo subjects remained
at the end of Period 1 who are placebo non-responders exclusive of
the placebo responders and placebo dropouts and under the pre-
vious assumptions.

Now, in a DRDS design, for practical reasons, the following re-
strictions on the allocation ratios are expected 1 � r2 � r1. Hence,
based on this restriction, the ratio R1=ð ðR12R2ÞÞ in the above
expression for a2 achieves its maximum value of 2 which is the
value actually attained under the case of equal allocations, when
r1 ¼ r2 ¼ 1.

Therefore, one can define

a2 ¼ 1

1þ
�
s2
s1

�2
2
g

and a1 ¼ 1� a2 (9)

which will minimize the weight placed on D2jX1;P < c, the expected
treatment effect from Period 2.

The coefficients in Eq. (9) are the weights that will be used to
define the adjusted treatment effect in the following definition.

Definition 1: Under a DRDS design, the adjusted treatment effect
is defined as the convex combination

D ¼ a1D1 þ a2
�
D2
��X1;P < c

�
(10)

where the coefficients a1 ¼ a1(g,s1,s2) and a2 ¼ a2(g,s1,s2) are as
defined in Eq. (9).
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Note that the weights as defined above assumes that
covðbD1; ðbD2

�� X1;P < cÞÞ/0 and it would be valid in a DRDS design
with the conditional probability structure discussed above under
large sample as shown in the Lemma. However, for small samples,
the weights may not be appropriate and the combined statistics as
defined may not be valid and should be interpreted with caution,
particularly when the covariance covðbD1; ðbD2

�� X1;P < cÞÞ is negative
suggesting that the Period 1 apparent treatment effect and the
Period 2 treatment effect are not consistent. This inconsistency will
be discussed later under a consistency condition to be introduced.

In addition, the weights defined in Eq. (9) for the adjusted
treatment effect as defined in Eq. (10) are dependent on the pop-
ulation parameters g; s1 and s2, but they are independent of any
design parameters particularly the allocation ratios r1 and r2. This is
important because if the weights are dependent on the allocation
ratios, then one can easily bias the results in favor of the treatment
by increasing the allocation ratio r1 and thus placing greater and
greater weights on the Period 2 results. In fact, when the weights
are dependent on the allocation ratios, the combined statistic will
provide an estimate that is biased in favor of the treatment even
when r1 ¼ 2 and r2 ¼ 1 which are the allocation ratios used in the
SPD design of Fava et al. [3] and the DRDS design of Liu et al. [1].

Remark 1: It is important to emphasize again that the adjusted
treatment effect is independent of the allocation ratios in the class
of DRDS designs that are subject to the restriction 1 � r2 � r1. More
importantly, the coefficient a2 represents the smallest possible
weight assigned to D2 under a DRDS design subject to the above
restriction and a2 is actually attained under the case of a DRDS
design with equal allocation. Also, with a2 so defined, the actual
DRDS design can still assume allocation ratios other than equal
allocation provided the allocation ratios satisfy the above restric-
tion. Therefore, with the weights a1 and a2 as defined in Eq. (9),
there is no possibility for a DRDS design that is subject to the above
allocation ratio restriction to introduce bias into the adjusted
treatment effect by over-weighting the treatment effect (D2jX1,P<c)
from the enriched subpopulation of the placebo non-responders
from Period 2 by increasing the allocation ratio r1 in favor of pla-
cebo in Period 1 and thereby overweighting the Period 2 results.
Even though the coefficient a2 is the weight actually attained under
equal allocations r1 ¼ r2 ¼ 1 which does not involve overweighting
the Period 2 results, it would be an unlikely configuration to be
adopted in practical applications. Thus, if a given DRDS design
adopts an allocation ratio r1> 1, it will only improve the precision of
estimates, but will not affect the estimate of the adjusted treatment
effect as defined in Eq. (10) above.

The weights used in the current combined statistics are
implicitly dependent on the allocation ratios, although they are not
noted as such. However, Tamura et al. [8] discussed the combined
statistic with a view to estimating the treatment effect. But the
authors' combined statistic is actually defined as an estimate of the
apparent treatment effect D1 which is not solving the basic problem
at hand. Furthermore, the authors prefer weights that are depen-
dent on the allocation ratios which are clearly not appropriate.
Therefore, with any allocation r1 > 1, these combined statistics
would tend to bias the results in favor of the treatment by placing
more weight on (D2jX1,P < c) from Period 2.

Remark 2: The weights defined in Eq. (9) for the adjusted
treatment effect as defined in Eq. (10) are independent of the
allocation ratios r1 and r2 as long as they satisfy the constraint
1� r2 � r2. This property allows one to freely choose a DRDS design
with any allocation ratios r1 and r2 as long as they satisfy the
constraint 1 � r2 � r2. This flexibility has a very interesting, unin-
tended and useful property in assuring type I error control of the
joint test which will be discussed in Section 7.2.
Note: It is important to point out that the combined statistic as
given in Eq. (7) will not necessarily retain the efficiency property of
a least square estimator in light of the weights as defined in Eq. (9)
unless it is a DRDS design with equal allocation ratios. But this may
be the trade-off that one has to consider if one wishes to be able to
define an adjusted treatment effect where the weights are inde-
pendent of the DRDS design parameters, particularly, the allocation
ratios, so that the adjusted treatment effect is not biased in favor of
the treatment by placing more weights on the enriched treatment
effect from Period 2. This latter seems to be a more important issue
than optimal efficiency consideration, because an appropriate
definition of adjusted treatment effect is critical and would allow a
proper assessment of the treatment effect for the intended study
population.
4.3. Interpretation of the adjusted treatment effect

As noted earlier, if one were able to characterize the subpopu-
lation UR of placebo responders and the subpopulation UNR of
placebo non-responders, then for the overall study population U in
Period 1 of a DRDS design, the overall apparent treatment effect D1
can be expressed as

D1 ¼ aRDR þ aNRDNR (11)

Then, the adjusted treatment effect given by Eq. (10) becomes

D ¼ a1D1 þ a2
�
D2
��X1;P < c

�
¼ a1½aRDR þ aNRDNR� þ a2

�
D2
��X1;P < c

�
under the assumption that the distribution of the placebo
responders/non-responders among the placebo dropouts, if any, is
the same as its population distribution, which implies that
(D2jX1,P < c) y DNR. Hence, it follows that

Dya1aRDR þ ða2 þa1aNRÞDNR
yð1� a2ÞaRDR þ ða2 þð1� a2ÞaNRÞDNR; since a1 ¼ ð1� a2Þ
yðaR � a2aRÞDR þ ðaNR þ a2ð1� aNRÞÞDNR
yðaR � a2aRÞDR þ ðaNR þ a2aRÞDNR; since aR ¼ 1�aNR

(12)

Upon comparing Eq. (11) and Eq. (12), one notes that the
adjusted treatment effect D as defined in Eq. (10) can be viewed as a
weighted average of DR and DNR as in Eq. (11) for D1 except the
weights now have been changed in the following manner: The
weight for DR has been decreased by the fractional amount a2aR
while the weight for DNR has been increased by the same fractional
amount a2aR. Therefore, Eq. (12) shows that the adjusted treatment
effect D can be viewed as aweighted average of the treatment effect
DR and DNR and hence represents a treatment effect for the inten-
dedMDD study population U¼ U1. The fraction a2aR represents the
amount of adjustment needed to account for the presence of pla-
cebo responders UR in U ¼ U1.

On the other hand, Eq. (12) can also be rearranged as follows:

DyðaR � a2aRÞDR þ ðaNR þ a2aRÞDNR
yðaRDR þ aNRDNRÞ þ a2½aRðDNR � DRÞ�
yD1 þ a2½aRðDNR � DRÞ�

(13)

Now from Eq. (13), one can see that if there are no placebo re-
sponders, i.e., UR ¼ Ø, then aR ¼ 0 and D ¼ D1. That is, the adjusted
treatment effect D and the apparent treatment effect D1 are iden-
tical and hence no adjustment is really needed.

Now if UR s Ø, then it is expected that DNR > DR. In this case,
then [aR(DNR � DR)] represents the total amount of expected
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treatment effect DNR that is not observed due to the placebo
response in UR. Now, because DNR ¼ D2, one can view
[aR(DNR � DR)] ¼ [aR(D2 � DR)] as the equivalent amount of treat-
ment effect from Period 2 that has been nullified by the placebo
response in UR. Then, it follows that a2[aR(D2 � DR)] represents the
appropriately weighted amount of [aR(D2� � DR)] from Period 2
that needs to be added to the apparent treatment effect D1 from
Period 1 to account for the presence of placebo responders UR.
Hence, the quantity a2[aR(DNR � DR)] represents the appropriate
adjustment that needs to be made to the apparent treatment effect
D1 to account for the presence of placebo responders.
5. The combination test

For a DRDS design, under large sample, consider the adjusted
treatment effect D ¼ a1D1 þ a2(D2jX1,P < c) as given in Definition 1
above. The adjusted treatment null hypothesis and its alternative
are defined as follows:

Ho;Adj : D ¼ a1D1 þ a2
�
D2
��X1;P < c

� � 0 vs: Ha;Adj : D

¼ a1D1 þ a2
�
D2
��X1;P < c

�
>0

(14)

It should be pointed out that the above adjusted null hypothesis
is a stronger null hypothesis than the global null hypothesis defined
by {(D1,(D2jX1,P < c))jD1�0& (D2jX1,P c)� 0}, because the parameter
space defined by the adjusted null is a half-space in the product
space D1 � (D2jX1,P < c) below a straight line that goes through the
origin (0,0) defined by a1D1 þ a2(D2jX1,P < c) ¼ 0 and it covers the
global null space which is the third quadrant of the product space
D1 � (D2jX1,P < c) as illustrated in Fig. 2.

Let the estimate of the adjusted treatment effect D be given by
the least square estimator as defined by Eq. (7) with weights
defined by Eq. (9):

bD ¼ a1 bD1 þ a2
�bD2

��X1;P < c
�

Then, it follows that

E
�bD� ¼ a1E

�bD1
�þ a2E

��bD2
��X1;P < c

�� ¼ a1D1 þ a2
�
D2
��X1;P < c

�
¼ D

and

var
�bD� ¼ S2bD

¼ a21var
�bD1

�þ a22var
�bD2

��X1;P < c
�

þ 2a1a2cov
�bD1;

�bD2
��X1;P < c

��
where varðbD1Þ, varðbD2

��X1;P < cÞ and covðbD1; ðbD2
��X1;P < cÞÞ are as

given in the earlier lemma.
Fig. 2. Region of the parameter space for the adjusted treatment null.
The combination test for testing the adjusted null hypothesis is
then given by

bZ ¼
�bD � D

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var
�bD��q ;

where bD, D and varðbDÞ are as given above.
Note: It is important to point out that the adjusted treatment

effect D and its estimate bD are independent of the allocation ratios
r1 and r2, but the variance of bD does depend on the allocation ratios.
This is fine, since the variance ofbD should take into account the
actual allocation ratios in the design. This will not affect the esti-
mate of the adjusted treatment effect, but only its precision.
5.1. The type I error for the combination test

The type I error for the combination test is given by

a ¼ P
	bZ > ca

��� Ho;Adj



¼ P

	bZo > ca



where

bZo ¼

0B@ ��
a1 bD1 þ a2

�bD2
��X1;P < c

���ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var
�
a1 bD1 þ a2

�bD2
��X1;P < c

��q
1CA

var
�
a1 bD1 þ a2

�bD2
��X1;P < c

�� ¼ a21ðg; s1; s2Þvar
�bD1

�
þ 2a1a2cov

�bD1;
�bD2

��X1;P < c
��

þ a22ðg; s1; s2Þvar
��bD2

��X1;P < c
��

Note that from the following relationship previously derived,

cov
�bD1;

�bD2
��X1;P < c

�� ¼ 1
n1P

�
cov
�
X1;P ; X2;P

�� X1;P < c
�

� cov
�
X1;P ; X2;T

�� X1;P < c
��

which may be estimated by the sample covariance from the two
cohorts (P / P) and (P / T).

The type I error control for the combination test is illustrated in
Table 8
5.2. The power and sample size for the combination test

The power of the combination test at a specified alternative (D1,
D2) in the first quadrant is given by

1� b ¼ P
	bZo > ca

.
Ha;Adj : ðD1; D2Þ in 1st Quadrant; rP > rT



¼ P

 bZa > ca �
a1D1 þ a2

�
D2
��X1;P < c

�
SbD;a

�����Ha;Adj

: ðD1; D2Þ in 1st Quadrant; rP > rT

!

wherebZa ¼ ða1 bD1 þ a2ðbD2
��X1;P < cÞÞ � ða1D1 þ a2ðD2

��X1;P < cÞÞ=SbD;a �
Nð0;1Þ and SbD;a

¼ SbD;o
.

From the above power function, one can derive the sample size
formula as follows:



Fig. 3. Rejection region of the combination test.
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n1T ¼
 

ca þ c1�b

a1D1 þ a2
�
D2
��X1;P < c

�!2 
a21

s21
R1

þ a22

s2bD2jX1P < c

gR12

þ 2a1a2r1;2
s1ffiffiffiffiffiffi
R1

p sbD2jX1P < cffiffiffiffiffiffiffiffiffiffiffi
gR12

p !
Note: Alternatively, insteadof the power and sample size formulas

given in the above equations, one can actually find the power and
sample size formulae via the bivariate normal probability integral
below:-

1�b¼R∞�∞4bV 1
ðxÞ

0BBBBBBBBBBB@
1�R

 
ca

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

 
a*
1

a*
2

!2
vuut �

 
a*
1

a*
2

U1þU2

!
�

a*
1

a*
2

x

!
�r1;2xffiffiffiffiffiffiffiffiffi

1�r2
1;2

p
�∞ 4ðyÞdy

1CCCCCCCCCCCA
dx

where a*1¼a1s1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1;TR1

p
, a*2¼a2s2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2;TR2

p
and4 andF represent

the standard normal density and cumulative distribution functions.
Table 2, .Tables 3 and 8 provide the power and sample size for

selected scenarios and DRDS design parameter values based on the
HDRS17 Anxiety and Somatization subscale score data given in
Table 1.
5.3. The monotonicity condition

The rejection region for the adjusted treatment null hypothesis
as defined by the combination test is depicted in Fig. 3 below.

Fig. 3 shows that there is still a small area shaded green in
Fig. 2 under the rejection region that is situated inside the second
quadrant. This suggests that even though the probability is small,
the adjusted treatment null may be rejected by the combination
test, but the Period 1 treatment effect D1 may be negative.
From Eq. (11), one can see that a negative D1 suggests that the
treatment may perform worse than placebo in the subpopulation
UR. Now in the subpopulation UR, the placebo acts like an active
control trial in a non-inferiority trial. In a non-inferiority trial, a
treatment is still considered effective if it performs no worse
Table 2
Selected Powers and Sample Sizes at One-sided a ¼ 0.025 for the Combination Test at th
HDRS17 Subscale Score under Treatment and Placebo as given in Table 1 (DRDS Design P

m1T m1P D1 s1 rP rT D2jC

3.30 3.00 0.30 2.42 0.80 0.20 1.43

0.80 0.50 0.88

Table 3
Selected Powers and Sample Sizes at One-sided a ¼ 0.025 for the Combination Test at th
HDRS17 Subscale Score under Treatment and Placebo as given in Table 1 (DRDS Design P

m1T m1P D1 s1 rP rT D2jC

3.50 3.10 0.40 2.42 0.80 0.20 1.48

0.80 0.50 0.96
than placebo by a given non-inferiority margin d > 0. So, what
would be an equivalent non-inferiority margin for assessing the
effectiveness of a treatment effect in the subpopulation UR of
placebo responders?

As a condition required for a treatment effectiveness claim to
be extendable to the intended study population, Tamura et al. [8]
introduced a monotonicity condition for the case under binary
outcome. This monotonicity condition simply requires each pla-
cebo responder also responds to treatment. Under binary
outcome, this monotonicity condition is equivalent to requiring
that the treatment be at least as effective as placebo. Now for
continuous outcome, this monotonicity condition does not rule
out the possibility that the treatment could perform worse than
the placebo. Therefore, what should then be the monotonicity
condition? Now if one were to require that the treatment should
perform at least as effective as placebo, then this is equivalent to
requiring the treatment to show superiority to an active control,
and hence would be too stringent. On the other hand, if one were
simply to require that each placebo responder also responds to
treatment, then under this condition, the treatment can still
perform worse than placebo. But then what would be a corre-
sponding non-inferiority margin in this case?

From Eq. (9), one can see that the condition that requires the
treatment to be at least as effective as placebo can be stated as the
following equivalent condition:
e Specified DRDS Design Parameter Values and the Hypothetical Distributions of a
arameter Values: r1 ¼ 2, r2 ¼ 1, c ¼ 2.50, g ¼ 0.42), D ¼ a1*D1 þ a2*D2jC.

s2jC D 1 � b N1 n1T n2T

3.18 0.42 80% 960 320 134
85% 1098 366 154
90% 1287 429 180

3.28 0.38 80% 1338 446 187
85% 1587 529 222
90% 1893 631 265

e Specified DRDS Design Parameter Values and the Hypothetical Distributions of a
arameter Values: r1 ¼ 2, r2 ¼ 1, c ¼ 2.75, g ¼ 0.44), D ¼ a1*D1 þ a2*D2|C.

s2jC D 1-b N1 n1T n2T

3.23 0.52 80% 636 212 93
85% 720 240 106
90% 838 280 123

3.32 0.46 80% 819 273 120
85% 936 312 137
90% 1095 365 161
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D1¼aRDRþaNRDNR>g
�
D2
��X1;P<c

�
or
�
D2
��X1;P<c

�
<
1
g
D1 (15)

since under the earlier assumptions on the placebo dropouts if any,
aNR¼ g¼F(t) and DNR¼ D2. This condition in Eq. (15) is depicted in
Fig. 4.

It is clear that this condition is quite stringent and besides this
superiority condition is also not required for a non-inferiority trial.
Therefore, a less stringent monotonicity condition is needed, a
condition that allows the treatment to perform no worse than
placebo by a non-inferiority margin. An obvious general mono-
tonicity condition is to require that

�
D2
��X1;P < c

�
< hD1; for some h>

1
g

(16)

The slope h can be viewed here as the equivalent of a non-
inferiority margin d. But how should h be determined? This
would be a challenging problem. But even the general mono-
tonicity condition as defined by Eq. (16) is very stringent if the
condition is required to be tested as illustrated in Fig. 5.

Note that in the general monotonicity conditions defined by Eq.
(16), a constraint is placed on the expected Period 2 treatment ef-
fect (D2jX1,P < c). This constraint is really not necessary because
from Eq. (1),
Fig. 4. Region defined by the general monotonicity condition.

Fig. 5. Rejection region under the combination test and the re
�
D2
��X1;P < c

� ¼ �m2;T � m2;P
�þ �rPs2;P � rTs2;T

��4ðtÞ
FðtÞ

�
yD1

þ �rPs2;P � rTs2;T
��4ðtÞ

FðtÞ
�

(17)

and it is seen from Eq. (17) that the magnitude of the expected
Period 2 treatment effect (D2jX1,P < c) is determined by the
magnitude of the Period 1 treatment effect D1 and the term
ðrPs2;P � rTs2;T Þ ð4ðtÞ=FðtÞÞ the magnitude of which in turn is
determined by the standard deviations s2,P¼s1,P, s2,T¼s1,T, the
correlations rP and rT and the hazard ratio ð4ðtÞ=FðtÞÞ, and it
cannot be arbitrarily large.

Therefore, if such constraint imposed by the above condition is
not necessary, then one should consider relaxing the condition by
letting h / ∞. Now as one lets h / ∞, the line
(D2jX1,P < c) ¼ hD1 / the (D2jX1,P < c) e axis. This then naturally
leads to the consistency condition which will be introduced in the
next section as the condition required for the treatment effective-
ness claim to be extendable to the intended study population U1 in
lieu of a general monotonicity condition defined by Eq. (16).
5.4. A measure of consistency

In a DRDS design, what is consistency and why is it necessary?
As discussed in Section 5.4, even if the combination test rejects
the adjusted null hypothesis, one may still not be able to claim
that the treatment is effective for the intended population
because the pair of treatment effect (D1,D2) may be located in the
second quadrant in the D1 � (D2jX1,P < c) parameter space
meaning that D1 could be negative. To remedy this problem, a
general monotonicity condition as defined by Eq. (16) can be
proposed. But as discussed in Section 5.4, this general mono-
tonicity condition is too stringent. In this section, an alternative
consistency test is introduced to test for the consistency between
the treatment effects D1 and (D2jX1,P < c). However, the consis-
tency test alone does not permit one to conclude that the treat-
ment effects are positive in both periods. It requires the joint
rejection of the adjusted null and the consistency null by their
respective tests. Therefore, the simultaneous rejection of the
adjusted null and the consistency null would be required for
one to conclude that the pair of treatment effect
jection region under the general monotonicity condition.
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(D1,(D2jX1,P < c)) lies in the first quadrant of the parameter
space D1 � (D2jX1,P < c).

This consistency test jointly with the combination test may
provide sufficient evidence for one to conclude that the pair of
treatment effect (D1,(D2jX1,P < c)) lies in the first quadrant, that is,
both D1 and (D2jX1,P < c) are positive. Once this is established,
then the treatment effectiveness claim as represented by the
adjusted treatment effect can be extended to the intended study
population and the adjusted treatment effect estimates can then
be used in the benefit/risk analysis and in proper dosage
recommendation.

Note that under finite samples, if the pair (D1,(D2jX1,P < c)) is
inconsistent with D1 < 0, then the optimal efficiency of the
combined statistic under equal allocation case may be lost.
However, as noted earlier, since in practice, equal allocation is
unlikely to be used, maintenance of efficiency may be a moot
point and is of secondary concern compared to a proper assess-
ment of the treatment effect. But in any case, one should inter-
pret the combined statistic with caution in light of such
inconsistency. This suggests that consistency is an important
condition needed for the validity and interpretability of the
combined statistic.
5.5. The consistency test

Let the consistency measure G between D1 and (D2jX1,P < c) be
defined as G ¼ D1(D2jX1,P < c). Then the consistency null and
alternative hypotheses are defined as:

Ho;C : G ¼ D1
�
D2jX1;P < c

� � 0 vs: Ho;C : G

¼ D1
�
D2jX1;P < c

�
>0 (18)

The consistency null hypothesis is depicted by the shaded re-
gion in Fig. 6.

Now consider the following statistic:

bG ¼ bD1
�bD2

��X1;P < c
��dcov�bD1;

�bD2
��X1;P < c

��
Then, one has

E
�bG� ¼ E

�bD1
�bD2

��X1;P < c
�� cov

�bD1;
�bD2

��X1;P < c
�� �

¼ D1
�
D2
��X1;P < c

�
The variance of bG is given approximately asymptotically by
Fig. 6. Region of the parameter space for the consistency null.
var
�bG� ¼ �var�bD1

�
var
�bD2

��X1;P < c
��þ cov2

�bD1;
�bD2

��X1;P < c
��

þ
h�
D2
��X1;P < c

�2
var
�bD1

�iþ hD2
1var

�bD2
��X1;P < c

�i
þ �4D1

�
D2
��X1;P < c

�
cov
�bD1;

�bD2
��X1;P < c

���
þ D2

1
�
D2
��X1;P < c

�2
The consistency test for the consistency hypothesis defined by

Eq. (18) is then given by

cW ¼
bG � E

�bG�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var
�bG�q ;

where bG; EðbGÞ and varðbGÞ are given above, with
covðbD1; ðbD2

��X1;P < cÞÞ estimated by dcovðbD1; ðbD2
��X1;P < cÞÞ ¼

1
n1P

ðSX1;P < c;X2;P jX1;P
� SX1;P < c;X2;T jX1;P

Þ where SX1;P < c;X2;PjX1;P
and

SX1;P < c;X2;T jX1;P
are the sample covariance estimates for

covðbm1;PjX1;P < c; bm2;PjX1;P < cÞ and covðbm1;PjX1;P < c; bm2;T jX1;P < cÞ for the two
cohorts ðP/PÞ and ðP/TÞ; since as previously noted,

cov
�bD1;

�bD2
��X1;P < c

�� ¼ 1
n1P

�
cov
�
X1;P ;

�
X2;P

�� X1;P < c
��

� cov
�
X1;P ;

�
X2;T

�� X1;P < c
���
5.6. The type I error for the consistency test

The type I error for the consistency test is given under asymp-
totic normality by

a¼P
	cW>ca;W

��Ho;C



¼P

0B@�bD1
�bD2

��X1;P<c
��dcov�bD1;

�bD2
��X1;P<c

����Gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var
�bG�q >ca;W

��Ho;C

1CA;

where varðbGÞ as derived above and G ¼ D1ðD2
��X1;P < cÞ.

Note that at the boundary of the consistency null, the type I
error assumes its maximum at (D1,(D2jX1,P<c)) ¼ (0,0)
and covðbD1; ðbD2

��X1;P < cÞÞ ¼ 0. Therefore, the type I error for the
consistency test evaluated at its maximum is given by

a ¼ P

0B@bD1
�bD2

��X1;P < c
��dcov�bD1;

�bD2
��X1;P < c

��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var
�bG��Ho;C

�q > ca;W

1CA

where

var
�bG�� Ho;C

� ¼�var�bD1
�
var
�bD2

��X1;P < c
��

þ
h�
D2jX1;P < c

�2
var
�bD1

�iþ hD2
1var

�bD2
��X1;P < c

�i

Analogously, the above type I error can also be evaluated
asymptotically via bivariate normal integral as
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a ¼ P bU1
bU2 > ca;W

	 

¼ P bU2 >

ca;WbU1

������Ho;C

0@ 1A
¼ P bU2 >

ca;WbU1

������ U1;U2ð Þ ¼ 0;0ð Þ; r1;2 ¼ 0

0@ 1A
¼ 1

2
þ
Z0
�∞

4 z1ð ÞF ca;W
z1

� �
dz1

�
Z∞
0

4 z1ð ÞF ca;W
z1

� �
dz1 ; with bU1

¼
bD1
s1ffiffiffiffiffiffiffiffiffiffi
n1;TR1

p ; bU2 ¼
bD2

����X1;P < c
� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var X

2jX1;P < c

� �s
ffiffiffiffiffiffiffiffiffiffi
n2;TR2

p

Since cWo ¼ bU1
bU2 is not normally distributed and has a distri-

bution with heavy tail, its critical values are somewhat larger for
the same significance level a as compared to the critical values from
a normal distribution. Critical values for selected levels of signifi-
cance are given in Table 4.

In light of the proposed procedure of testing both the adjusted
treatment null hypothesis by the combination test bZo and the
consistency null hypothesis by the consistency test cWo, a rejection
of the adjusted treatment null by the test bZo implies that
(D1,(D2jX1,P < c)) does not lie in the third quadrant which effectively
reduces the nominal a level of the consistency test cWo by half.
Therefore, it is suggested that the type I error rate for the consis-
tency testcWo be held at the one-sided significance level of a¼ 0.05
corresponding to a critical value of c0.05,W ¼ 1.60. This yields an
effective significance level of a ¼ 0.025 for the consistency test cWo

under the joint testing procedure. This is the significance level that
is used subsequently in generating the various sample size and
power calculations for the consistency test cWo.

Table 8 suggests that the type I error rate for the consistency test
is controlled at the one-sided 0.05 level.

The rejection region of the consistency test is depicted in Fig. 7. It
shows that the rejection region defined by the consistency test (re-
gion in thefirst andthirdquadrants) andthecombination test (region
in the first, second and fourth quadrants defined by the green line)
consists of the shaded parabolic region in brown in thefirst quadrant
which represents the intersection of the two rejection regions.

Fig. 8 shows that the rejection region under the combination
test and the consistency test is less stringent than the rejection
region required by the general monotonicity condition as defined
by Eq. (16). The consistency condition here may be viewed as
equivalent to a non-inferiority margin in an active control trial
Table 4
Critical values for the consistency test cWo at selected
significance level a.

a ca,W

0.001 5.08
0.005 3.60
0.010 2.98
0.025 2.18
0.050 1.60
0.075 1.26
0.100 1.03
(see the discussion in Section 5.4 where the consistency condi-
tion may be viewed as the limiting general monotonicity
condition).
5.7. The power and sample size for the consistency test

The Power of the Consistency Test is given by:

1�b¼ P
	cWo>ca

���Ha; C




¼ P

0BB@bD1
�bD2

��X1;P<c
��dcov�bD1;

�bD2
��X1;P<c

��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var
	cWo


r >ca;W

��������Ha;C

1CCA
where varðcWoÞ ¼ varðbD1ÞvarðbD2

��X1;P < cÞ.
Hence,

where

1� b ¼ P

0BBB@cWa >
ca;W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var
	cWo


r
� D1

�
D2jX1;P < c

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var
	cWa


r
��������Ha;C

1CCCA;

where

cWa¼
�bD1

�bD2
��X1;P<c

��dcov�bD1;
�bD2

��X1;P<c
���G

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var
	cWa


r
;

and G ¼ D1ðD2jX1;P < cÞ.
var
	cWa



¼ var

	cWo



þ cov2

�bD1;
�bD2

��X1;P < c
��

þ �D2
��X1;P < c

�2
var
�bD1

�þ D2
1var

�bD2
��X1;P < c

�
þ 4D1

�
D2
��X1;P < c

�
cov
�bD1;

�bD2
��X1;P < c

��
þ D2

1
�
D2
��X1;P < c

�2
Note that the power may be evaluated by viewingbD1 and ðbD2

��X1;P < cÞ as having an asymptotic bivariate normal dis-
tribution given by

1� b ¼ P

 bV 2 >
R � U1U2 � U2

bV 1

U1 þ bV 1

����� Ha;C

!

¼
Z∞
�∞

4bV 1
ðxÞ

Z∞
R� U1U2 � U2x� r1;2xðxþ U1Þ

ðxþ U1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r21;2

q
4ðyÞdydx

where

R ¼
�
ca;W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r21;2 þ U2

1 þ U2
2

q
þ r1;2

�

where Ui ¼ Di
siffiffiffiffiffiffiffi
ni;T Ri

p , i ¼ 1,2 and ( bV 1;
bV 2Þ � Nðm1;2;S

2
1;2Þ

where m1;2 ¼
�
0
0

�
and S2

1;2 ¼
�

1 r1;2
r1;2 1

�
and r1;2 ¼ corrðbD1;

ðbD2
��X1;P < cÞÞ ¼ rbD1;ðbD2jX1;P < cÞ as derived earlier.

By substituting the above expressions for Ui, i ¼ 1, 2 and noting
that n2,T ¼ n1,TgR12, then one can evaluate the above probability
integral for the power at a given sample size. n1,T.



Fig. 7. Rejection regions under the combination and consistency tests.

Fig. 8. Rejection regions in the alternative space.
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Conversely, to calculate the sample size, one can just solve the
above equation implicitly for n1,T at a given power (1 � b). Some
selected powers and sample sizes are given in Table 5, Tables 6 and
8 based on the example in Table 1.
6. The joint test

As mentioned in the preceding section, both the combination
test and the joint test are necessary for establishing the effec-
tiveness of a treatment for the intended study population U ¼ U1

in a DRDS design. A joint test is proposed here for simultaneously
testing the adjusted treatment null by the combination test and
Table 5
Selected Powers and Sample Sizes at One-sided a ¼ 0.05 for the Consistency Test cWo at t
HDRS17 Subscale Score under Treatment and Placebo as given in Table 1 (DRDS Design P

m1T m1P D1 s1 rP rT D2jC

3.50 3.10 0.40 2.42 0.80 0.20 1.48

0.80 0.50 0.96
the consistency null by the consistency test. Upon the simulta-
neous rejection of this pair of null hypotheses, one can then derive
an estimate of the adjusted treatment effect along with its confi-
dence interval, and an estimate of the consistency of the treatment
effects from Period 1 and Period 2 along with its confidence in-
terval. The adjusted treatment effect represents the apparent
treatment effect of Period 1 having been adjusted for the presence
of high placebo response rate. The consistency condition is viewed
as a generalization of the general monotonicity condition and a
rejection of the consistency null would permit the extension of the
effectiveness of the adjusted treatment effect to the intended
study population.
he Specified DRDS Design Parameter Values and the Hypothetical Distributions of a
arameter Values: r1 ¼ 2, r2 ¼ 1, c ¼ 2.75, g ¼ 0.44) G ¼ D1*D2.

s2jC G 1 � b N1 n1T n2T

3.23 0.59 80% 825 275 121
85% 954 318 140
90% 1083 361 159

3.32 0.38 80% 1032 344 151
85% 1176 392 172
90% 1389 463 204



Table 6
Selected Powers and Sample Sizes at One-sided a ¼ 0.05 for the Consistency Test cWo at the Specified DRDS Design Parameter Values and the Hypothetical Distributions of a
HDRS17 Subscale Score under Treatment and Placebo as given in Table 1 (DRDS Design Parameter Values: r1 ¼ 2, r2 ¼ 1, c ¼ 2.50, g ¼ 0.42) G ¼ D1*D2jC.

m1T m1P D1 s1 rP rT D2jC s2jC G 1 � b N1 n1T n2T

3.30 3.00 0.30 2.42 0.80 0.20 1.43 3.18 0.43 80% 1128 376 158
85% 1323 441 185
90% 1605 535 225

0.80 0.50 0.88 3.28 0.26 80% 1377 459 193
85% 1587 529 222
90% 1893 631 265
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Tables 9a, b and c provide the type I error, power and sample size
needed for some selected configurations for purpose of illustration.
These data can be generated by integrating the combination test and
the consistency test through the bivariate normal probability integral
since both tests are jointly defined in terms of D1 and (D1jX1,P<c).

6.1. The joint test ðbZo > c0:025; cWo > c0:05;W Þ

Since the test of the adjusted null hypothesis by the combination
test alone is deemednot sufficient to establish the effectiveness of the
treatment for the intendedpopulation inPeriod1, it is proposed that a
joint testing of the adjusted null hypothesis by the combination testbZo ata¼0.025and the consistencynullhypothesis by theconsistency
testcWo ata¼0.05shouldbeperformed.Whenboth theadjustednull
and the consistency null have been rejected by their respective
tests bZo and cWo, thenonemayconclude that the treatmenteffectpair
(D1,(D2jX1,P<c)) is located in the first quadrant and the treatment ef-
fects for both Period 1 and Period 2 are positive and consistent. The
combination test can then provide an estimate of the adjusted
treatment effect and its associated 95% confidence interval given bybD ¼ ba1 bD1 þ ba2ðbD2

��X1;P < cÞ where

�ba1 bD1 þ ba2
�bD2

��X1;P < c
��
±1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var
�ba1 bD1 þ ba2

�bD2
��X1;P < c

��q
where
Fig. 9. Estimate of the adjusted treat
var
�ba1 bD1 þ ba2

�bD2
��X1;P < c

�� ¼ ba2
1

s21
n1;TR1

þ ba2
2
var
��bD2

��X1;P < c
��

n2;T

þ 2ba1ba2cov
�bD1;

�bD2
��X1;P < c

��
where s21 and varððbD2

��X1;P < cÞÞ may be estimated by the sample

variances bs2
1 and dvarððbD2

��X1;P < cÞÞ , the latter via the sample var-
iances from the two cohorts (P/P) and (P/T) for var(X2,TjX1,P<c)
and var(X2,PjX1,P<c), the covariance covðbD1; ðbD2

��X1;P < cÞÞ can also
be estimated by the sample covariance for the two cohorts (P/P)
and (P/T), and the weights ai may be estimated bybai ¼ aiðbg; bs1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidvarððbD2
��X1;P < cÞÞ

q
Þ, for i ¼ 1, 2.

The magnitude of the consistency measure also provides sup-
portive information for the strength of the consistency.

Fig. 9 provides a graphical description of the estimate of the
adjusted treatment effect in relation to the joint test and the gen-
eral monotonicity condition. It shows that the estimated adjusted
treatment effect bD ¼ ba1 bD1 þ ba2ðbD2

��X1;P < cÞ appears as the co-
ordinates of the point ðbD; bDÞ which is the intersection of the lineba1D1 þ ba2ðD2

��X1;P < cÞ ¼ bD and the 45� diagonal line. The point
ðbD1; ðbD2

��X1;P < cÞÞ satisfies the general monotonicity condition
D2<hD1 as shown in Fig. 9, but if the slope h is smaller,
then ðbD1; ðbD2

��X1;P < cÞÞmay very well not satisfy the corresponding
monotonicity condition. In addition, if one is required to test the
general monotonicity condition, then it would be even more
ment effect under the joint test.
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stringent. Thus, it is clear from Fig. 9 that the general monotonicity
condition as defined by Eq. (16) is unnecessarily restrictive, and the
consistency condition should be preferred.

The power of the joint test (bZo > c0:025; cWo > c0:05;W Þ is given in
Table 7 and in the last column of Table 8. As expected, the power
will be relatively low.

6.2. The type I error control of the joint test

The control of the type I error of the joint test will be investi-
gated in this section.

It suffices to show that the type I error of the joint test is
controlled at the positive (D2jX1,P<c) e axis. Let (0, (D2jX1,P<c)) be a
point on the positive (D2jX1,P<c) e axis on the boundary of the joint
null.

It is desired to show that

a ¼ P
	bZa > ca �

a2
�
D2jX1;P < c

�ffiffiffiffiffiffiffiffi
VZa

p ; cWo > ca;W


� 0:025

where VZa ¼ varðba1 bD1 þ ba2ðbD2
��X1;P < cÞ��ð0; ðD2jX1;P < cÞÞÞ

First, consider the probability

P
	bZa > ca �

a2
�
D2jX1;P < c

�ffiffiffiffiffiffiffiffi
VZa

p 

(19)

where,

VZa ¼var
	ba1 bD1þba2

�bD2
��X1;P<c

���Ho; Adj :
�
0;
�
D2jX1;P<c

��

¼ ba2

1var
�bD1

�þba2
2var

�bD2
��X1;P<c

�
þ2ba1ba2cov

�bD1;
�bD2

��X1;P<c
��
Table 7
Selected Powers and Sample Sizes at One-sided a ¼ 0.025 for the Joint Test (bZo;cWo) at t
HDRS17 Subscale Score under Treatment and Placebo as given in Table 1 (DRDS Design P

m1T m1P D1 s1 rP rT D2jC

3.50 3.10 0.40 2.42 0.80 0.20 1.48

0.80 0.50 0.96

Table 8
Powers for the Combination, the Consistency and the Joint Tests at ca ¼ 1.96, c0.05, W ¼ 1.60
of a HDRS17 Subscale Score (DRDS Design Parameter Values: r1 ¼ 2, r2 ¼ 1, g ¼ 0.44, c ¼

m1T m1P D1 s1 rP rT D2jC s2jC N1

3.50 3.50 0.00 2.42 0.80 0.80 1.48 3.23 750
3.50 3.10 0.40 2.42 0.80 0.20 1.48 3.23 750

840
990

0.80 0.50 0.96 3.32 750
840
990

3.30 3.00 0.30 2.42 0.80 0.20 1.43 3.18 750
840
990

0.80 0.50 0.88 3.28 750
840
990
�
D2
��X1;P < c

� ¼ �m2;T � m2;P
�þ �rPs2;P � rTs2;T

� 4ðtÞ
FðtÞ yD1
� �
þ �rPs2;P � rTs2;T

��4ðtÞ
FðtÞ

�
Therefore, at the boundary point (0, (D2jX1,P<c)), sinceD1 ¼ 0,

one has�
D2
��X1;P < c

�
y
�
rPs2;P � rTs2;T

��4ðtÞ
FðtÞ

�
(20)
Now without loss in generality, it has been assumed
that s2,P ¼ s2,T ¼ s1,T ¼ s1,P ¼ s1, therefore Eq. (20) reduces to

�
D2
��X1;P < c

�
ys1ðrP � rT Þ

�
4ðtÞ
FðtÞ

�
(21)

Consider now the variance and covariance terms in the de-
nominator in Eq. (19).

var
�bD1

� ¼ s21
n1;TR1

; assuming that s21;T ¼ s21;P ¼ s21

var
�bD2

��X1;P < c
� ¼ var

	bm2;TjX1;P < c � bm2;PjX1;P < c



¼ 1

n2;T

�
var
�
X2;T

��X1;P < c
�þ var

�
X2;P

��X1;P < c
��

¼ s21
n2;T

 
2þ

 	
r2P þ r2T


 "
1� t

4ðtÞ
FðtÞ �

�
4ðtÞ
FðtÞ

�2
#
s21 � 1

!!!
;

which

follows from Eqn. (4) and Eqn. (5), since
he Specified DRDS Design Parameter Values and the Hypothetical Distributions of a
arameter Values: r1 ¼ 2, r2 ¼ 1, c ¼ 2.75, g ¼ 0.44) (D, G) ¼ a1*D1 þ a2*D2,D1D2jC).

s2jC (D, G) 1 � b N1 n1T n2T

3.23 (0.52, 0.59) 80% 951 317 139
85% 1056 352 155
90% 1194 398 175

3.32 (0.46, 0.38) 80% 1218 406 179
85% 1350 450 198
90% 1524 508 224

for the Specified DRDS Design Parameter Values and the Hypothetical Distributions
2.75 for First Scenario, g ¼ 0.42, c ¼ 2.50 for Second Scenario).

P (bZo>c0.025jHa) P (cWo>c0.05,WjHa) P (bZo>c0.025, cWo> c0.050,WjHa)

0.025 0.050 0.001
0.81 0.74 0.66
0.85 0.79 0.73
0.91 0.85 0.82

0.71 0.66 0.51
0.76 0.71 0.58
0.82 0.78 0.68

0.64 0.55 0.41
0.69 0.59 0.47
0.76 0.66 0.57

0.51 0.46 0.26
0.56 0.50 0.31
0.63 0.57 0.39
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var
�
X2;T

��X1;P<c
�¼ r2T

"
1�t

4ðtÞ�
�
4ðtÞ�2

#
s21;Pþ

	
1�r2T


!
s22;T
FðtÞ FðtÞ

var
�
X2;P

��X1;P<c
�¼ r2P

"
1�t

4ðtÞ
FðtÞ�

�
4ðtÞ
FðtÞ

�2
#
s21;Pþ

	
1�r2P


!
s22;P

and from the further assumptions that
s2;P ¼ s2;T ¼ s1;T ¼ s1;P ¼ s1.

Now,

cov
�bD1;

�bD2
��X1;P<c

��
¼ 1
n1P

�
cov
�
X1;P ; X2;P

��X1;P<c
��cov

�
X1;P ; X2;T

��X1;P<c
��
; since

bD1¼ bm1;T � bm1;P and
�bD2

��X1;P<c
�¼ bm2;T jX1;P<c� bm2;PjX1;P<c:

¼ 1
n1P

�
rPs2;P�rTs2;T

�"
1�t

�
4ðtÞ
FðtÞ

�
�
�
4ðtÞ
FðtÞ

�2
#
s1;P ; since

cov
�
X1;P ; X2;P

��X1;P<c
�¼rP

"
1�t

�
4ðtÞ
FðtÞ

�
�
�
4ðtÞ
FðtÞ

�2
#
s1;Ps2;P and

cov
�
X1;P ; X2;T

��X1;P<c
�¼rT

"
1�t

�
4ðtÞ
FðtÞ

�
�
�
4ðtÞ
FðtÞ

�2
#
s1;Ps2;T :

¼ 1
n1Tr1

�
rPs2;P�rTs2;T

�"
1�t

�
4ðtÞ
FðtÞ

�
�
�
4ðtÞ
FðtÞ

�2
#
s1;P

¼ s21
n1Tr1

ðrP�rT Þ
"
1�t

�
4ðtÞ
FðtÞ

�
�
�
4ðtÞ
FðtÞ

�2
#
; underthefurther

assumptions that s2;P ¼s2;T ¼s1;T ¼s1;P ¼s1

Hence,

a ¼ P
	bZa > ca �

a2
�
D2jX1;P < c

�ffiffiffiffiffiffiffiffi
VZa

p ���0; �D2jX1;P < c
��


¼ P

0@bZa > ca �
ffiffiffiffiffiffiffiffiffi
n1;T

p ðrP � rTÞ
�
4ðtÞ
FðtÞ

�
ffiffiffiffiffiffiffi
VZa

p
1A (22)
Table 9a
Type I Error Rate for Joint Test at a Boundary Point on the Positive (D2jc)-Axis for Selected P
G) ¼ (a1*D1 þ a2*(D2jX1,P < c), D1 (D2jX1,P < c)) P (bZa > c0.025 - a2 (D2jX1,P < c)/std (bD) &
rP rT s1 k t g

0.80 0.20 2.40 1.0 �0.60 0
�0.30 0
0.00 0
0.30 0
0.60 0

0.5 �0.60 0
�0.30 0
0.00 0
0.30 0
0.60 0

1.20 1.0 �0.60 0
�0.30 0
0.00 0
0.30 0
0.60 0

0.5 �0.60 0
�0.30 0
0.00 0
0.30 0
0.60 0
where now

VZa ¼
�
a1

a2

�2 1
R1

þ 1
gR12

	
2þ

		
r2T þ r2T


h
hðtÞs21 � 1

i


þ 2
�
a1

a2

�
1
r1

ðrP � rTÞhðtÞ

with hðtÞ ¼
"
1� t

4ðtÞ
FðtÞ �

�
4ðtÞ
FðtÞ

�2
#
.

The power given by Eq. (22) for the combination test is essen-
tially a function of the population parameters rP and rT from the
two cohorts (P / P) and (P / T), the variance s21, and the stan-
dardized response threshold t. The hazard ð4ðtÞ=FðtÞÞ and g¼ F(t)
are in turn influenced by the parameter t. The design parameters
may be considered as fixed.

Type I Error rate at a boundary point (0,(D2jX1,P < c)) on the
positive (D2jX1,P<c)- axis which is in the consistency null
space but in the alternative space of the adjusted treatment null
is given by

P
	bZa > ca �

a2
�
D2jX1;P < c

�ffiffiffiffiffiffiffiffi
VZa

p & cWo > ca;W
���0; �D2jX1;P < c

��

¼ P

	bZa > ca �
a2
�
D2jX1;P < c

�ffiffiffiffiffiffiffiffi
VZa

p ���0; �D2jX1;P < c
�� 


� P
	cWo > ca;W

����0; �D2jX1;P < c
��


since bZa and cWo are asymptotically independent.

� P

0@bZa > ca �
ffiffiffiffiffiffiffiffiffi
n1;T

p ðrP � rT Þ
�

4ðtÞ
FðtÞ

�
ffiffiffiffiffiffiffi
VZa

p
1A� 0:05;

where VZa is as given above.
Table 9a, Tables 9b and 9c provide the type I error rates for the

joint test at boundary points on the positive (D2jX1,P < c) e axis
derived from selected values of the parameters rP, rT, s1 ¼ s1,P, k ¼
s1;T=s1;P ¼ s2;T=s2;P and t with the allocation ratios fixed at r1 ¼ 2
and r2 ¼ 1 as in the Example given in Table 1.

It can be seen from the first panels of Tables 9a and 9b which
are based on the example given in Table 1 that the type I error
rates are controlled for various response thresholds. Under the
arameter Values of rT, rP,s1 and t (DRDS Design Parameter Values: r1¼2, r2¼1) (D,cWo> c0.025,W j(0, D2jX1,P < c)).

¼ F(t) f(t)/F(t) D2jX1,P < c Type I error rate

.274 1.215 1.75 0.0041

.382 0.998 1.44 0.0047

.500 0.798 1.15 0.0049

.618 0.618 0.89 0.0047

.726 0.459 0.66 0.0040

.274 1.215 2.04 0.0050

.382 0.998 1.68 0.0058

.500 0.798 1.34 0.0061

.618 0.618 1.04 0.0057

.726 0.459 0.77 0.0048

.274 1.215 0.87 0.0074

.382 0.998 0.72 0.0089

.500 0.798 0.57 0.0094

.618 0.618 0.44 0.0086

.726 0.459 0.33 0.0069

.274 1.215 1.02 0.0141

.382 0.998 0.84 0.0174

.500 0.798 0.67 0.0184

.618 0.618 0.52 0.0166

.726 0.459 0.39 0.0129



Table 9b
Type I Error Rate for Joint Test at a Boundary Point on the Positive (D2jc)-Axis for Selected Parameter Values of rT, rP, s1 and t (DRDS Design Parameter Values: r1 ¼ 2, r2 ¼ 1,
N1 ¼ 990) (D, G) ¼ (a1*D1 þ a2*(D2jX1,P < c), D1 (D2jX1,P < c)) P (bZa>c0.025 - a2 (D2jX1,P < c)/std (bD) & cWo> c0.025,W j(0, D2jX1,P < c)).

rP rT s1 k t g ¼ F(t) f(t)/F(t) D2jX1,P < c Type I error rate

0.90 0.10 2.40 1.0 �0.60 0.274 1.215 2.33 0.0054
�0.30 0.382 0.998 1.92 0.0064
0.00 0.500 0.798 1.53 0.0068
0.30 0.618 0.618 1.19 0.0063
0.60 0.726 0.459 0.88 0.0052

0.5 �0.60 0.274 1.215 2.48 0.0058
�0.30 0.382 0.998 2.04 0.0068
0.00 0.500 0.798 1.63 0.0072
0.30 0.618 0.618 1.26 0.0067
0.60 0.726 0.459 0.94 0.0055

1.20 1.0 �0.60 0.274 1.215 1.17 0.0124
�0.30 0.382 0.998 0.96 0.0153
0.00 0.500 0.798 0.77 0.0161
0.30 0.618 0.618 0.59 0.0146
0.60 0.726 0.459 0.44 0.0114

0.5 �0.60 0.274 1.215 1.24 0.0236
�0.30 0.382 0.998 1.02 0.0285
0.00 0.500 0.798 0.81 0.0296
0.30 0.618 0.618 0.63 0.0269
0.60 0.726 0.459 0.47 0.0210
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scenarios in the first panels of these tables, the type I errors are
controlled. The lower panels of Tables 9a and 9b show that when
the standard deviation s1 ¼ s1,P decreases, the type I error rate
increases and even more so when the ratio k ¼ s1,T/s1,P de-
creases. This is because the variance in the denominator of the
test statistic is getting smaller. However, in practical applica-
tions, the ratio k ¼ s1,T/s1,P is not expected to deviate too much
from 1 as shown by the example in Table 1. There are some
inflation when the correlations rP ¼ 0.90, rT ¼ 0.10 and
s1 ¼ s1,P ¼ 0.5 as shown in the bottom panel of Table 9b.
However, interestingly, as Table 9c below shows, the type I error
inflation under these scenarios can be controlled if one increases
Table 9c
Type I Error Rate for Joint Test at a Boundary Point on the Positive (D2jc)-Axis for Selected P
N1 ¼ 990) (D, G) ¼ (a1*D1 þ a2*(D2jX1,P < c), D1(D2jX1,P < c)) P (bZa>c0.025 - a2 (D2jX1,P <

rP rT s1 k r1 t

0.90 0.10 2.40 0.5 1.0 �0.60
�0.30
0.00
0.30
0.60

2.0 �0.60
�0.30
0.00
0.30
0.60

3.0 �0.60
�0.30
0.00
0.30
0.60

1.20 0.5 1.0 �0.60
�0.30
0.00
0.30
0.60

2.0 �0.60
�0.30
0.00
0.30
0.60

3.0 �0.60
�0.30
0.00
0.30
0.60
the allocation ratio r1.
As Table 9c illustrates, under these scenarios, the greatest

type I error inflation occurs under equal allocation ratios and the
type I error starts to decrease as the allocation ratio r1 increases
while holding r2 ¼ 1. The reason why the type I error starts to
decrease as the allocation ratio r1 increases is because for a fixed
total sample size N1, the sample size n1,T allocated to treatment
decreases as r1 increases. This results in a net decrease in the
second term on the right side of the power formula in Eq. (22)
and a corresponding reduction in power. This fact holds true
across all scenarios. Therefore, from these tables, it appears that
the type I error rate of the joint test is controlled at the one-sided
arameter Values of rT, rP,s1 and t (DRDS Design Parameter Values: r1¼1, 2, 3, r2¼1,
c)/std (bD) & cWo> c0.025,W j(0, D2jX1,P < c)).

g ¼ F(t) f(t)/F(t) D2jX1,P < c Type I error rate

0.274 1.215 2.48 0.0072
0.382 0.998 2.04 0.0086
0.500 0.798 1.63 0.0091
0.618 0.618 1.26 0.0083
0.726 0.459 0.94 0.0067
0.274 1.215 2.48 0.0058
0.382 0.998 2.04 0.0068
0.500 0.798 1.63 0.0072
0.618 0.618 1.26 0.0067
0.726 0.459 0.94 0.0055
0.274 1.215 2.48 0.0048
0.382 0.998 2.04 0.0056
0.500 0.798 1.63 0.0059
0.618 0.618 1.26 0.0056
0.726 0.459 0.94 0.0047
0.274 1.215 1.24 0.0298
0.382 0.998 1.02 0.0341
0.500 0.798 0.81 0.0359
0.618 0.618 0.63 0.0321
0.726 0.459 0.47 0.0251
0.274 1.215 1.24 0.0236
0.382 0.998 1.02 0.0285
0.500 0.798 0.81 0.0296
0.618 0.618 0.63 0.0269
0.726 0.459 0.47 0.0210
0.274 1.215 1.24 0.0186
0.382 0.998 1.02 0.0229
0.500 0.798 0.81 0.0241
0.618 0.618 0.63 0.0219
0.726 0.459 0.47 0.0170
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0.025 level under most reasonable scenarios where the correla-
tions are not too extreme and the ratio k ¼ s1,T/s1,P is expected
not to deviate too much from 1, when the allocation ratios are
fixed at r1 ¼ 2 and r2 ¼ 1. If in a given application, it appears that
it may fall into a neighborhood of some scenarios where the type
I error of the joint test may be inflated, one can consider
increasing the allocation ratio r1 from 2 to a higher level so that
the type I error will be under control. This is an interesting and
unexpected useful property which is a byproduct of the fact that
the weights in the adjusted treatment effect are independent of
the allocation ratios so a DRDS design has the flexibility in the
choice of the allocation ratios r1 and r2 as long as they satisfy the
constraint 1 � r2 � r1. Also note that the allocation ratio of r1 ¼ 1
is unlikely to be adopted in practice, so the increase in r1 should
only be considered relative to those scenarios where the type I
error appears to be inflated under a DRDS design with an allo-
cation ratio r1 ¼ 2 � r2 � 1.

In summary, Table 9ae9c show that the type I error rate of
the joint test is controlled under most practical situations with
the allocation ratios fixed at r1 ¼ 2 and r2 ¼ 1. In a given appli-
cation, under a DRDS design with allocation ratio r1 ¼ 2 and
r2 ¼ 1, if the situation appears to fall in one of the scenarios
where type I error inflation is anticipated, then one may consider
increasing the allocation ratio r1 to a level greater than 2 so that
the type I error will be controlled. However, as discussed above,
the type I error is expected to be under control in most practical
applications.

6.3. Hypothetical example on HDRS17 Anxiety and Somatization
subscale score data

The hypothetical values presented in Table 1 are those of the
distributional parameters of the HDRS17 Subscale score for treat-
ment and placebo that are derived on the basis of an exploratory
early phase 2 study with a DRDS design in subjects with major
depressive disorder. Although the sample size for this study is very
small, they are adequate for the purpose of illustration in this paper.

Using the Period 1 data in Table 1 for the distributional pa-
rameters of the HRDS17 subscale score under treatment and pla-
cebo, a major depressive disorder trial with a DRDS is simulated,
where the DRDS design parameters assumed the values of r1 ¼ 2,
p¼ 0.58, g¼ 0.42, r2¼ 1, and a Period 1 sample size of N1 ¼750. For
simplicity, it is assumed that the placebo dropout rate is 0 in this
simulated trial. Assuming a correlation between bD1 and bD2 of
r1,2 ¼ 0, this sample size was chosen to have about 69% power for
the combination test, 59% power for the consistency test and 48%
power for the joint test. Thus, the sample size selected is somewhat
underpowered for the tests. A summary of the DRDS study design
features and the simulated trial outcome statistics are given in
Table 10.

From the results of the simulated trial given in Table 10, one
obtains the following results for the combination test bZo and the
consistency test cWo:

The combined statistic is given by bD ¼ a1 bD1 þ a2 bD2 ¼ 0:49
with a standard error of s:e:ðbDÞ ¼ 0:16 and a 95% CI of (0.17, 0.81).
The combination Test: bZo ¼ 3:04 has a p-value of p ¼ 0.0012. For
the consistency test, one has bU1 ¼ 1:55; bU2 ¼ 4:34 andcWo ¼ 6:72
with a p-value of p ¼ 0.015 with 90% CI of (4.54, 8.90).

Thus, the estimate of an adjusted treatment effect of 0.49 given
by the combined statistic bD is obtained as a result of adjusting for
the presence of placebo responders by increasing the weight
aNR¼ ¼ 0.42 placed on DNR to the weight 0.53 by an amount
a2aR ¼ 0.19(0.58) ¼ 0.11.

This simulated trial shows that the apparent treatment effect D1
for Period 1 is estimated to be bD1 ¼ 0:29, and the adjusted
treatment effect D is estimated to be bD ¼ 0:49. The consistency
test cWo ¼ 6:72 with a p-value of 0.015 shows that the Period 1 and
Period 2 treatment effect estimates bD1 ¼ 0:29 and bD2 ¼ 1:35 are
consistent. Therefore, the evidence supports the adjusted treat-
ment effect ofD¼0.49 as the treatment effect for the intended study
population U.

7. Summary discussion

In psychiatric trials, the presence of a relatively high proportion
of placebo responders has caused many trials using a traditional
randomized parallel placebo-controlled trial to fail because the
treatment effect as measured by the relative treatment difference
has been diluted. Various authors (Liu et al. [1], Fava et al. [3], Chen
et al. [4], Huang and Tamura [5], Ivanova et al. [6], Tamura and
Huang [7] and Tamura et al. [8]) have proposed a DRDS design in
an attempt to resolve this problem. In their proposed methods, a
combination test with certain power optimality criterion to either
test the apparent treatment null hypothesis of Period 1or global
null hypothesis which is defined as the joint apparent treatment
null of Period 1 and the enriched treatment null of Period 2. The
weights used in the combined statistics depend on the DRDS
design allocation ratios and the combined statistics may provide
biased estimates of the apparent treatment effect. More impor-
tantly, it is believed that the apparent treatment effect should not
be the basis for evaluating the effectiveness of the treatment since
the true treatment effect has been mitigated on account of the
presence of placebo responders. It can underestimate the risk/
benefit ratio and it can lead to overdosing recommendation. In this
paper, the concept of an adjusted treatment effect is introduced
which is a weighted combination of the apparent treatment effects
from Period 1 and the treatment effect from Period 2 in a DRDS
design where the weights are independent of the DRDS design
allocation ratios. The adjusted treatment effect is invariant in the
class of DRDS design subject to the restriction that 1 � r2 � r1
which will be satisfied in practical applications. It is shown that
the adjusted treatment effect can be interpreted as an adjustment
of the apparent treatment effect of Period 1 by a quantity that
represents an appropriately weighted amount of the treatment
effect (as represented by the treatment effect from Period 2) that
has been nullified by the presence of placebo responders. There-
fore, the adjusted treatment effect as defined does not bias the
assessment of the treatment effect in favor of the treatment. Thus,
Period 2 of a DRDS design should not be viewed as providing
enriched treatment effect in order to bias the adjusted treatment
effect through the combined statistic, but rather as providing a
measure of the treatment effect in the absence of placebo response
which is exactly the information needed to make the proper
adjustment. The independence of the weights from the allocation
ratios in a DRDS design would allow the design to retain its flex-
ibility in its choice of allocation ratios subject to a certain minor
restriction which is needed to assure the type I error control of the
joint test.

A new combined statistic is derived to test the adjusted
treatment null hypothesis. In order for the adjusted treatment
effectiveness claim to be extendable to the intended study popu-
lation, a consistency measure is introduced to assess the consis-
tency between the treatment effects from the two periods. The
general monotonicity condition which has been suggested by
some as a criterion for extendibility of the treatment effectiveness
claim to the intended study population appears to be too stringent
because it is analogous to requiring the treatment to be at least as
effective as the control in an active control trial. It is shown that
the consistency condition is a natural generalization of the
monotonicity condition and it is less stringent and does not



Table 10
Summary Statistics from a Simulated MDD Trial with the Specified DRDS Design Parameter Values and the Hypothetical Distributions of a HDRS17 Subscale Score under
Treatment and Placebo as given in the First Row of Tables 1 and 3 (r1¼2, R1¼2/3,p¼ 0.58, g¼ 0.42, r2¼1, R2¼1/2) (ca¼ 1.96, ca,W¼ 1.60, N1¼750with 70%, 59%, 48% Power
for bZo; cWo; ðbZo; cWoÞ) (m1T ¼ 3.30, s1T ¼ 2.44, m1P ¼ 3.00, s1P ¼ 2.40).
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require the specification of a non-inferiority margin. It is sug-
gested that the rejection of the consistency null by the consistency
test should provide the additional evidence needed to be able to
extend the adjusted treatment effectiveness claim to the intended
study population.

Therefore, a joint test consisting of the combination test and
the consistency test is proposed for testing the adjusted null and
the consistency null. In most practical applications, the type I error
of the joint test should be under control. Indeed the conditional
probability structure underlying a DRDS design shows that the
Period 2 treatment effect cannot be arbitrarily large. However, in a
given application, if specific scenario suggests that the type I error
may be inflated, then an appropriate choice of the allocation ratios
can be selected for the DRDS design to assure the type I error
control. The independence of the weights in the adjusted treat-
ment effect from the allocation ratios in a DRDS design subject to a
certain minor restriction would allow a DRDS design to retain this
needed flexibility in its choice of the allocation ratios. The power
of the joint test is not expected to be high and therefore the
proposed methodology is not expected to increase efficiency
compared to a standard randomized parallel design. But the pro-
posed method would allow an unbiased estimate of the adjusted
treatment effect which represents an appropriate assessment of
the true treatment effect in the intended study population which
is something that a standard randomized parallel design can never
provide.

A successful outcome based on the proposed methodology
should provide the confidence required of the evidence provided
by a DRDS design to support the treatment effectiveness claim
for the intended study population. The estimated adjusted
treatment effect should also provide crucial information needed
for making appropriate benefit/risk analysis and dosage
recommendation.
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