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Simpson’s Paradox: Examples     
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Summary: Simpson’s paradox is very prevalent in many areas. It characterizes the inconsistency between 
the conditional and marginal interpretations of the data. In this paper, we illustrate through some examples 
how the Simpson’s paradox can happen in continuous, categorical, and time-to-event data.   
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1. Introduction
Consider the following scenario. Suppose the 4th grade 
students of two schools, Alpha and Beta, from DYC 
school district participated in a national standard math 
test. We want to compare the average scores of these 
two schools. Assume we are told that the average scores 
of both male and female in Beta are higher than those in 
Alpha. What can we say about the overall average score 
in those schools? Is it true that the School Beta gets a 
higher average score than Alpha? The answer seems to 
be affirmative and intuitive. To be more specific, assume 
the average scores of male and female students in each 
school are presented in Table 1. 

It is obvious that both male and female students 
in School Beta have higher average scores. However, 
simple calculation shows that the overall average scores 
in these two schools are 83.2 and 81.8, respectively. 
School Alpha won on the average score! 

Suppose the students in School Beta received 
a more advanced instruction which improves the 
traditional method (which was adapted by School 
Alpha). Intuitively, the students in Beta should get 
a better score on average. Why is this example so 
counterintuitive? Is there anything wrong here? Is the 
average score a reasonable measure of the performance 
of students in a school? In fact, when we talk about 
two schools, most of the time we assume that the 
proportion of male students in those two schools are 
approximately the same. It is easy to prove that if the 
proportions of male students in those two schools 
above are exactly same, and the average scores of 
male and female students in Beta are higher than their 
counterparts in Alpha, then the overall average score in 
Beta is higher. Our example means that the difference 
in the gender components may reverse the relation we 
want to study. 

The scenario above is an example of the well-known 
Simpson’s paradox.[1] Loosely speaking, Simpson’s 

Table 1. Average scores of male and female students 
in two schools

 Gender (X2)

Male (1) Female (2)
School 

(X1) n Average  n Average

Alpha (1) 80 84 20 80
Beta (2) 20 85  80 81

changyong_feng@urmc.rochester.edu
http://dx.doi.org/10.11919/j.issn.1002-0829.218026


• 140 • Shanghai Archives of Psychiatry, 2018, Vol. 30, No. 2

paradox says that the conditional relation (conditional 
on gender in each school in the example) does not 
imply marginal relation, and vice versa. Although the 
statistical community had known the ‘inconsistency’ 
between the conditional and marginal interpretation 
based on the same data, see for example Yule[2], the 
effect of Simpson’s paradox has been way beyond the 
statistical community. In fact, the Simpson’s paradox is 
very prevalent in many areas, from natural science, [3] 

to social sciences, [4] and even in philosophy[5]. We can 
even say that it is an inherent property of data from 
observational studies. [6]

In this paper, we discuss some examples of 
Simpson’s paradox in continuous data, categorical data, 
and in time-to-event data. In Section 2 we give a general 
statistical interpretation of Simpson’s paradox using 
conditional expectation. In the next two sections, we 
show through examples how the Simpson’s paradox can 
occur in categorical data and in time-to-event data. The 
conclusion is reported in Section 5.

2. Simpson’s Paradox and Conditional Expectation 
We know that if 

a/b=c/d
then

a/b=(a+c)/(b+d)=c/d,
(assuming b+d≠0). Do we have the similar property for 
inequalities of fractions? Specifically, assume sij, nij  (i=1,2, 
j=1,2)  are positive numbers with

s1j  / n1j < s2j / n2j ,    j=1, 2.
Is it true that 

(s11+s12) / (n11+n12 ) < (s21+s22) / (n21+n22 )?

Simpson [1] says that it not may be. For example, 
3/4 < 7/9    and    2/3 < 15/22

However, 
(3+2)/(4+3)=5/7 > 22/31 = (7+15)/(9+22)

This means that the pooled data shows a reversal 
relation. This is the original form of ‘Simpson’s paradox’. 
In this section, we construct a probability model to 
study why this reversion occurs. 

Let Y be a random variable with E|Y|<∞ . Suppose 
X1 and X2 are two random variables with Xi ∈ {1,2,…,ki}, 
where  ki (≥2),i=1,2 are positive integers. Then, for any 
m ∈ {1,…,k1}, 

(1)

Let us make connection of equation (1) to our 
example of average score in Section 1. Let  X1=1 or 2 
denote schools Alpha and Beta, and X2=1 or 2  denote 
male and female in gender, respectively. Let Y denote 

the score of a randomly selected 4th student in those 
two schools. Then from Table 1 we have 

E[Y│X1=1,X2=1 ]=84, E[Y│X1=1,X2=2 ]=80,

E[Y│X1=2,X2=1 ]=85, E[Y│X1=2,X2=2 ]=81,

Pr{X2=1| X1=1}=0.8, Pr{X2=2| X1=1}=0.2,

Pr{X2=1| X1=2}=0.2, Pr{X2=2| X1=2}=0.8.

It is obvious that

E[Y│X1=1,X2=n]<E[Y│X1=2,X2=n],n=1,2.              (2)     

Equation (2) shows that both male and female students 
in School Beta have higher scores. When we calculate 
the average score of each school, we need to consider 
the gender component. In (1) we can see that the 
average scores of schools are the weighted average of 
the scores of males and females, which are 

E[Y│X1=1 ]=84×0.8+80×0.2=83.2,

E[Y│X1=2 ]=85×0.2+81×0.8=81.8.

Using (1), we find that
   E[Y│X1=1 ]>E[Y│X1=2 ].     (3) 

A close look at the data shows that the distribution 
of gender plays an important role in reversing the 
inequalities from (2) to (3). It is obvious that if the 
inequalities in (2) hold, and two schools have the same 
proportions of male students, the average score in Beta 
will be higher than that in Alpha. 

In this example, gender is called a confounder 
in causal inference literatures.[7] Although the new 
instruction method increases the score of both boys and 
girls, the imbalance of the gender distribution in two 
schools may confound the effect of the new instruction 
method. This has been widely studied in the causal 
inference literature based on observational studies 
especially in Epidemiology. [6] 

The example above shows how Simpson’s paradox 
occurs in continuous outcomes. In the following two 
sections, we illustrate how such a phenomenon can 
occur in categorical data and time-to-event data. 

3. Simpson’s Paradox in Categorical Data Analysis 
Suppose a certain disease can be characterized as 
being less severe or more severe. The patients have 
an option to go to either one of two hospitals for 
treatment: better or normal hospital. The outcome of 
the treatment is binary: success or failure. Consider the 
following example. 

We can see that for less severe patients, the success 
rate in the better treatment hospital is much higher 
than the normal hospital. Similar results hold true for 
more severe patients. 

We construct three more tables from Table 2. 
Table 3 is the cross-classification of the treatment and 
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outcome. The overall success rates of two types of 
hospitals are 50/100 and 68/100, respectively. This 
seems to show that the success rate in the normal 
hospital is higher than the better hospital. This is not 
what we have expected. 

Table 2. Success rate of the treatment outcome in 
different severity of the disease

    Outcome   
  Hospital  Severity  Success Failure  Total

Better  Less severe  18 2  20

 More severe  32 48  80

Normal  Less severe  64 16  80

 More severe  4 16  20

Table 3. Summary of the cross-classification of the 
treatment and outcome

  Outcome   
Treatment  Success Failure  Total

Better 50 50 100

Normal  68 32  100

Table 4 is the cross-classification of severity and 
the outcome. The success rates of less severe and more 
severe patients are 82/100 and 36/100, respectively. 
This is reasonable. 

Table 4. Summary of the cross-classification of the 
severity and outcome

  Outcome   
Severity  Success Failure  Total

Less severe 82 18 100

More severe  36 64  100

Table 5 is the cross-classification of treatment and 
severity. We can see that proportion of more severe 
patients in the better treatment group is much higher 
than that in the normal treatment. 

Table 5. Summary of the cross-classification of the 
treatment and severity

  Severity   

Treatment  Less severe More severe  Total

Better 20 80 100

Normal  80 20  100

Let O denote the outcome, which has possible 
values of s (“success”) or f (“failure”), T denote the 
treatment with possible values b (“better”) or n 

(“normal”), and S denote the severity with possible 
values l (“less severe”) or m (“more severe”). Note that 
Pr{O=s│T=b}=Pr{O=s│T=b,S=l}Pr{S=l│T=b}                                       
                       + Pr{O=s│T=b,S=m}  Pr{S=m│T=b},
Pr{O=s│T=n}=Pr{O=s│T=n,S=l}Pr{S=l│T=n}     
                       + Pr{O=s│T=n,S=m} Pr{S=m│T=n}.

A l t h o u g h  f r o m  t a b l e  2  i t  i s  c l e a r  t h a t 
Pr{O=s│T=b,S=l}>Pr{O=s│T=n,S=l} and Pr{O=s│T
=b,S=m}>Pr{O=s│T=n,S=m}, table 3 shows that 
Pr{O=s│T=b}<Pr{O=s│T=n}. From tables 4 and 5 we 
know that the success rate for more severe patients 
is much lower than the less severe patients, and the 
portion of more severe patients in the better treatment 
facility is much more than that in normal hospital. This 
imbalance reverses the direction of treatment effect. 

4. Simpson’s Paradox in Time-to-event Data Analysis 
Simpson’s paradox may also occur in time-to-event 
data. [8] Suppose we have two treatment groups 
(denoted by X1: treatment (1)/ control (0)). We consider 
two age groups X2= 1 (or 0) if age is ≤ 65 (> 65) years. 
Suppose the hazard function of the life time T of 
patients given the treatment and age categories are

h(t│X1=0,X2=0)=5,h(t│X1=0,X2=1)=3,
h(t│X1=1,X2=0)=4,h(t│X1=1,X2=1)=2.

Furthermore, we assume that the distribution of age 
categories of treatment groups are 

Pr{X1=0,X2=0}=0.1,       Pr{X1=0,X2=1}=0.9,
Pr{X1=1,X2=0}=0.9,       Pr{X1=1,X2=1}=0.1.

It is obvious that within each age category, the 
hazard function of the treatment groups is always below 
that of the control group. Figure 1 shows the hazard 
functions of two treatment groups within each age 
category. It is clear that treatment does a better job 
than control. 

The marginal hazard functions of two treatment 
groups are 

h(t│X1=0)=(0.5e-5t+2.7e-3t)/(0.1e-5t+0.9e-3t ),
h(t│X1=1)=(3.6e-4t+0.2e-2t)/(0.9e-4t+0.1e-2t ).

Figure 2 shows the marginal hazard function of 
two treatment groups after integrating out the age. In 
Figure 1, the hazard ratio of treatment versus control 
is a constant within each age category. However, the 
marginal hazard ratio is not a constant any more. This 
may cause some confusion especially if the follow-up 
time is censored at some time point . In that case, the 
estimated hazard function of the treatment group may 
be much higher than the control group, although this 
may not be what was expected.

5. Conclusion 
Simpson’s paradox is very common in observational 
studies due to effects of confounding. In this paper, we 
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Figure 1. Hazard functions in different age categories

Figure 2. Marginal hazard functions of two 
treatment groups

used some examples to show how this phenomenon 
can occur for continuous, categorical and survival 
outcomes.  I f  the confounding effects are not 
addressed appropriately, conclusions obtained from 
statistical analyses may be totally wrong. The study of 
Simpson’s paradox, or more generally, of the effects of 
confounders, forms the rubric of the theory of causal 
inference, which is especially relevant in the error of 
big data as most data are observational in nature and 
confounders can obscure relationships of interest if not 
addressed. 
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概述：辛普森悖论普遍存在于很多领域。它具有数据
的条件性和边缘性解释之间的不一致特征。在本文中，
我们通过一些例子来阐述辛普森悖论是如何在连续性、

分类和时间 - 事件数据中产生的。

关键词：条件期望；比值比；时间 - 事件分析

辛普森悖论的范例
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