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Abstract

Breast cancer risk is intimately intertwined with exposure to estrogens. While more than 160 

breast cancer risk loci have been identified in humans, genetic interactions with estrogen exposure 

remain to be established. Strains of rodents exhibit striking differences in their responses to 

endogenous ovarian estrogens (primarily 17β-estradiol). Similar genetic variation has been 

observed for synthetic estrogen agonists (ethinyl estradiol) and environmental chemicals that 

mimic the actions of estrogens (xenoestrogens). This review of literature highlights the extent of 

variation in responses to estrogens among strains of rodents and compiles the genetic loci 

underlying pathogenic effects of excessive estrogen signaling. Genetic linkage studies have 

identified a total of the 35 quantitative trait loci (QTL) affecting responses to 17β-estradiol or 

diethylstilbestrol in 5 different tissues. However, the QTL appear to act in a tissue-specific manner 

with 9 QTL affecting the incidence or latency of mammary tumors induced by 17β-estradiol or 

diethylstilbestrol. Mammary gland development during puberty is also exquisitely sensitive to the 

actions of endogenous estrogens. Analysis of mammary ductal growth and branching in 43 strains 

of inbred mice identified 20 QTL. Regions in the human genome orthologous to the mammary 

development QTL harbor loci associated with breast cancer risk or mammographic density. The 

data demonstrate extensive genetic variation in regulation of estrogen signaling in rodent 

mammary tissues that alters susceptibility to tumors. Genetic variants in these pathways may 

identify a subset of women who are especially sensitive to either endogenous estrogens or 

environmental xenoestrogens and render them at increased risk of breast cancer.
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Estrogens and breast cancer risk

Estrogens have diverse actions in directing development and maintenance of tissues. 

However, prolonged exposure to estrogens has been implicated in initiation and progression 

of cancers primarily in breast, endometrium, and ovary (Burns and Korach 2012). Given the 

diverse roles, the health benefits and risks of estrogen supplementation was examined in 

postmenopausal women in the Women’s Health Initiative (WHI). This study demonstrated 

an increased incidence of breast cancer among women receiving postmenopausal hormone 

therapy and a lack of clear beneficial effects in other tissues (Prentice and Anderson 2008; 

Prentice et al. 2008). The risk associated with postmenopausal hormone therapy was also 

observed in the Million Women Study (Beral 2003). Both studies reported a modest increase 

in risk of breast cancer associated with estrogen alone therapies but was significantly higher 

when progestins were included. Exposure to estrogens is also significant for women prior to 

menopause. Higher levels of circulating estradiol were associated with increased breast 

cancer risk among premenopausal women (Eliassen et al. 2006). Breast cancer risk was also 

increased by early menarche and late menopause (Bernstein 2002; Tamimi et al. 2016). 
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Together these associations suggest that lifetime exposure to estrogens play an important 

role in the pathogenesis of breast cancer (Pike 1987).

Although estrogens participate in the initiation and progression, the majority of women do 

not develop detectable breast cancers (American Cancer Society, 2017) despite exposures to 

both endogenous estrogens produced during each ovarian cycle. During pregnancy, 

estrogens reach concentrations that are approximately 10-fold higher than in 

postmenopausal women. Rather than increased risk, these levels of estrogen along with other 

hormones during pregnancy have an overall long-term protective effect reducing the risk of 

breast cancer by up to 50% (Albrektsen et al. 2005; Chie et al. 2000; MacMahon et al. 

1970). The major estrogen produced by the ovaries is 17β-estradiol. Administration of 17β-

estradiol alone or in combination with progesterone was to sufficient to mimic the protective 

effects of pregnancy in rodents (Dunphy et al. 2008; Guzman et al. 1999; Rajkumar et al. 

2001; Rajkumar et al. 2007; Sivaraman et al. 1998). Similarly, for the subset of women in 

WHI without benign breast disease or family history of breast cancer, estrogen-only 

postmenopausal hormone therapies were associated with measurable decreases in breast 

cancer and an overall decrease in mortality (Anderson et al. 2012). While these observations 

are not sufficient to warrant use of estrogen treatments for risk reduction, they do highlight 

the paradoxical roles of estrogens in preventing as well as promoting breast cancer and 

suggest a complex balance of responses within breast tissue.

Genetic variation in estrogen signaling has the potential to determine the balance of 

responses to estrogens within breast tissues and modify the risk of breast cancer associated 

with exposure to estrogens. As estrogen receptor alpha (ERα) is expressed in a majority of 

breast cancers and is a target of therapies to block signaling, genetic variants within the 

ESR1 locus have been examined for associations with breast cancer risk in women (Dunning 

et al. 2016). While these genetic variants have a significant effect, the overall impact on 

breast cancer risk is modest with odds ratios of less than 1.2. In contrast, genetic differences 

rendering strains of rats sensitive or resistant to the tumorigenic effects of estrogens reveal 

the potency of the underlying regulatory pathways (Shull et al. 2001; Shull et al. 1997). 

Differences in sensitivity to estrogen signaling among strains of rodents have the potential to 

define critical pathways affecting breast cancer risk in humans as well as provide new 

therapeutic targets. In this review, we have summarized data examining differences in 

sensitivity to estrogens among strains of mice and rats and the genetic basis for the variation.

Variation in responses to estrogenic compounds among strains of rodents

PubMed was searched to identify publications where estrogenic compounds were evaluated 

in strains of rats or mice. The initial search retrieved 265 publications that included the terms 

“strain differences estrogen”. This set was refined by selecting those using rat or mouse 

models. The set was manually curated to identify studies in which at least 2 strains of rats or 

mice were compared. Studies that included treatments with 17β-estradiol are emphasized as 

this is the most active of the estrogens produced by ovaries and provides a reference for 

comparisons. Studies using well-characterized agonists of estrogen receptors (e.g ethinyl 

estradiol, diethylstilbestrol) were also included. Environmental chemicals were evaluated for 

estrogenic activity, referred to as xenoestrogens, were included when comparisons with 
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either 17β-estradiol or estrogen agonists were available. While effects in mammary tissue 

were of primary interest, all tissues were included in the search to assess whether strain-

effects were consistent across tissues. The data are also selected to emphasize inbred strains 

of mice (BALB/c, C3H, C57BL/6, DBA, 129) and rats (ACI, BN, COP, DA, F344, WKY). 

However, Sprague Dawley (SD) outbred rats are included because they were used across 

many studies. The Holzman strain (Holz) is outbred and was derived from SD. Long-Evans 

and SD outbred strains are related to the Wistar (Wis) strain from which they were derived. 

Similarly, outbred CD-1 mice were compared in some reports. Most studies examined only 

single doses of compounds. This limits the ability to detect non-monotonic differences in 

responses among strains and sensitivity would be overlooked if saturating doses were used. 

Therefore, the data may underestimate the extent of genetic variation. The selected studies 

are summarized in Table 1.

Given the prominent role in breast cancer, effects of estrogen exposures in the mammary 

gland were of primary interest. However, only 5 publications compared responses across 

strains of mice or rats and differed greatly in doses and duration of treatments. Acute 

exposure to 17β-estradiol for 4 days was evaluated in C57BL/6J and C3H/H3J mice that 

were ovariectomized prior to puberty (Wall et al. 2014a). Branching of mammary ducts was 

greatest in C57BL/6J females, whereas C3H/HeJ exhibited a greater ductal length. The 

proliferative response was greater in C57BL/6J, but was balanced by higher levels of 

apoptosis. Acute treatment of C57BL/6J mice with 17β-estradiol also increased the ductal 

area to a greater extent than in CD-1 mice. However, the difference appears related to the 

near complete arrest of ductal elongation upon ovariectomy in C57BL/6J females whereas 

modest ductal growth continued in CD-1 even in the absence of ovaries (Wadia et al. 2007). 

Long-term exposure to diethylstilbestrol (DES) increased ductal branching to a similar 

extent in wild type BALB/cJ and 129/SvEv female mice but no mammary tumors were 

observed in either strain (Bennett et al. 2000). Effects of chronic treatment with 17β-

estradiol were also compared in ACI and BN rats (Ding et al. 2013). ACI rats had dramatic 

proliferative responses after 1 week which were sustained throughout the 12-week treatment 

period. In contrast, BN rats exhibited a transient increase in proliferation during 1–3 weeks 

but returned to baseline levels by 12 weeks. Unlike C57BL/6J mice where increased 

proliferation was balanced by increased apoptosis, no difference in apoptosis was detected 

between ACI and BN rats using cleaved caspase as a marker. While 17β-estradiol stimulated 

proliferation and hyperplasia of the mammary epithelium in ACI rats, differentiation was the 

major effect in BN rats as indicated by the increased expression of milk proteins. ACI rats 

also developed mammary tumors with chronic exposure to 17β-estradiol or DES (Shull et al. 

2001; Shull et al. 1997; Stone et al. 1979). While treatments and endpoints varied among 

these studies, they demonstrate clear differences in estrogen-induced proliferation, apoptosis 

and morphogenesis of the mammary ducts among the strains.

The uterus is also very sensitive to estrogens and responses have been compared in multiple 

strains of rats and mice. The outbred SD were used across 5 studies providing a common 

reference. To test acute responses, rats were ovariectomized then treated with 17β-estradiol, 

estrogen agonists or environmental compounds to test for xenoestrogen activity with uterine 

weight as a common endpoint. Increases in uterine weight in response to the estrogen 

agonist ethinyl estradiol (EE) were similar for the F344 and SD rats (McKim et al. 2001). 

Jerry et al. Page 4

Mamm Genome. Author manuscript; available in PMC 2018 May 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



EE increased uterine weights to a greater extent in Wis and DA/Han strains compared to SD 

(Diel et al. 2004; Geis et al. 2005). The outbred LE rats also had a greater increase in uterine 

weight in response to the estrogen analog PEP compared to SD rats (Lawson et al. 1984). 

The Wis rats were more sensitive to 17β-estradiol when compared to the WKY (Mitsui et al. 

2013). As the SD strain is outbred and derived from the Wis strain, it appears that genetic 

variants determining uterine responses may be segregating within the populations used in the 

experiments. In mice treated with the estrogen analog E2-DP, the increase in uterine weight 

in the 129 strain was 2-fold that in the C57BL/6 and C3H/He strains with intermediate 

responses in C3H/JFe and DBA/1 (Drasher 1955). However, in subsequent studies using 

17β-estradiol (Roper et al. 1999), responses were greater in C57BL/6J compared C3H/HeJ 

strains (3.5-fold vs 2.1-fold, respectively). The C57BL/6J strain also exhibited a stronger 

recruitment of macrophages compared to C3H/HeJ mice (Griffith et al. 1997).

The strain-differences in the uterus are more complex when comparing responses to 

environmental xenoestrogens. Although SD and F344 rats responded similarly to the 

estrogen analog EE, responses to octametthylcylotetrasioxane (D4) were greater in SD 

compared to F344 rats (McKim et al. 2001). However, bisphenol A (BPA) stimulated a 3-

fold increase in proliferation of the vaginal epithelium in the F344 strain while responses in 

SD rats were negligible, yet responses to 17β-estradiol were similar for the two strains 

(Long et al. 2000). The strains did not differ in clearance of BPA, indicating genetic 

variation in intracellular signaling. In mice, low doses of DES increased uterine weights to a 

greater extent in C57BL/6J mice indicating that this strain is more sensitive than the BALB/c 

(Greenman et al. 1977). Prolonged treatment with DES induced neoplastic lesions in the 

uterus of 129/SvEv mice, but not BALB/cJ. But this response was limited to the uterus as 

there were no lesions detected in the mammary glands (Bennett et al. 2000). It is not clear 

from these studies whether the estrogenic responses are mediated by estrogen receptors as 

drugs to block these receptors were not included. Nonetheless, genetic variants determining 

sensitivity to xenoestrogens appear to be distinct from variants determining sensitivity to 

17β-estradiol. Therefore, the relative potency of xenoestrogens across strains cannot be 

inferred from responses to 17β-estradiol.

Estrogen-stimulated proliferation of lactotrophs within the pituitary and secretion of 

prolactin have also been compared in strains of rats. Both 17β-estradiol and DES have been 

used and elicited consistent responses. The ACI and F344 strains are generally more 

responsive (Moy and Lawson 1992; Spady et al. 1999b; Stone et al. 1979; Wiklund and 

Gorski 1982) compared to the related outbred strains (SD, Holz, Wis). In contrast, the BN, 

COP and WKY strains had modest responses detectable at early time points, but were 

transient (Spady et al. 1999a). Tissue differences were especially striking in comparisons of 

Wis and WKY strains (Mitsui et al. 2013). While pituitary responses to 17β-estradiol were 

negligible in WKY rats, uterine weights were increased ~5-fold. Strain differences were also 

prominent following chronic stimulation with 17β-estradiol resulting in 5-fold higher levels 

of plasma prolactin in SD and Wis rats compared to BN (Blankenstein et al. 1984). This is 

similar to the relative sensitivity for estrogen-induced pituitary growth reviewed previously 

(Spady et al. 1999a) where F344 are most sensitive, SD being intermediate and BN being 

the least sensitive.
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While estrogen agonists induce proliferative responses in mammary, uterine and pituitary, 

they cause regression in other tissues. DES induced thymic regression in both C57BL/6 and 

BALB/c strains (Greenman et al. 1977). Although the strains differed in initial thymus 

weights, both exhibited similar ~1.5 g decreases following DES treatment (Greenman et al. 

1977). In rats, the F433 strain was most responsive in pituitary and uterine tissues, but DES-

induced thymic regression was greatest in the SD strain compared to F344 and BN (Gould et 

al. 2000). Treatment with17β-estradiol elicited striking reductions in testicular weights in 

C57BL/6J males compared to outbred CD-1 mice (Spearow et al. 1999; Spearow et al. 

2001). Similarly, hair regrowth is suppressed by 17β-estradiol in C57BL/6, C3H and CD-1 

mice but did not differ among these strains (Smart et al. 1999). Therefore, it appears that 

genetic variants regulating estrogen-induced repression in these tissues differ from the 

variants mediating growth in other tissues.

The striking differences among strains in responses to estrogenic compounds demonstrates 

genetic diversity in the signaling pathways. It is especially notable that proliferation was 

transient in spite of continuous exposure in some strains. This was most notable in the 

pituitary and mammary tissues of BN and COP rats indicating an ability to attenuate 

signaling (Ding et al. 2013; Gould et al. 2000) but not in ACI and F344. In the case of 

mammary epithelium of C57BL/6J mice, proliferation in response to 17β-estradiol appeared 

to be balanced by an increase in apoptosis (Wall et al. 2014a). In contrast, ACI rats have a 

persistent proliferative response to DES in mammary epithelium without a compensatory 

increase in apoptosis and was associated with extensive hyperplasia (Ding et al. 2013). Thus, 

strains of rodents appear to have adopted different strategies to achieve tissue homeostasis. 

The ability to attenuate signaling also appears to differ among tissues. An example is the 

formation of neoplastic lesions in the uterus of 129/SvEv mice treated with DES, but no 

lesions developed in the mammary glands of these mice (Bennett et al. 2000). The diversity 

of responses among strains of rats and mice suggests that effects would be similarly variable 

among humans (Spearow and Barkley 2001). Thus, the genes and pathways regulating these 

responses can significantly affect whether exposure to endogenous levels of 17β-estradiol 

poses a significant risk. The genetic variation could also affect the risk associated with 

postmenopausal hormone therapies and exposures to environmental xenoestrogens.

Genetic variants determining responses to estrogen

Linkage mapping has been used to identify the genetic basis for the variation in responses to 

estrogens among strains of rodents. Searches of rat and mouse genome databases and 

PubMed were conducted to compile relevant loci. These are summarized in Figure 1 with 

details provided in Supplementary Table 1.

The pathogenic effects of prolonged estrogen stimulation on mammary tumorigenesis are 

best described in rats. ACI rats are highly susceptible to mammary tumors while COP are 

resistant and BN are highly resistant. In genetic crosses between these inbred rat strains, 

susceptibility to 17β-estradiol-induced mammary tumors behaves as an incompletely 

dominant trait (Shull et al. 2001). A total of 9 QTL (designated Emca) influencing 

susceptibility to mammary tumors (latency and/or number of mammary tumors) were 

identified (Figure 1). QTL mapped to rat chromosomes 5 and 18 in 17β-estradiol-treated F2 
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progeny generated in intercrosses between ACI and COP rats and chromosomes 2, 3, 4, 5, 6, 

7, and 18 in progeny from intercrosses between ACI and BN rats (Gould et al. 2004; 

Schaffer et al. 2006; Shull 2007). The existence of each of these mammary tumor QTL has 

been confirmed through generation and characterization of congenic rat strains. The QTL 

exhibit orthology to a region of the human genome that has been linked to breast cancer risk 

and/or mammographic breast density in genome wide association studies, strongly 

suggesting these genetically defined rat models are relevant to understanding the genetic 

bases of breast cancer susceptibility in humans (Colletti et al. 2014; Schaffer et al. 2013).

Strain differences in the responsiveness of the anterior pituitary lactotroph to estrogens have 

also long been recognized (Spady et al. 1999a) allowing multiple QTL to be mapped 

(designated Edpm and Ept, Figure 1). F344 and ACI rats are highly sensitive to the 

stimulatory actions of estrogens on lactotroph proliferation, resulting in rapid development 

of lactotroph hyperplasia and adenoma. COP rats exhibit an intermediate sensitivity while 

BN rats are highly insensitive to estrogen-induced proliferation of lactotrophs. When 

pituitary weight was used as a phenotypic indicator of estrogen stimulated lactotroph 

proliferation, five QTL were identified upon characterization of DES treated female F2 

progeny generated in an intercross between F344 and BN rats (Wendell and Gorski 1997). 

One additional QTL was mapped during characterization of backcross progeny generated 

using these same strains (Wendell et al. 2000). When ACI rats were utilized as the sensitive 

strain, six QTL were mapped upon characterization of DES treated male F2 progeny 

generated in reciprocal intercrosses between ACI and COP rats and two additional QTL 

were mapped upon characterization of 17β-estradiol-treated female F2 rats generated in a 

BNxACI intercross (Shull et al. 2007; Strecker et al. 2005). Each of the QTL mapped in 

these studies of estrogen action on the pituitary lactotroph resides in a distinct region of the 

rat genome, although the mapping resolution for Edpm3 and Ept2, both of which reside on 

rat chromosome 3, is insufficient to demonstrate conclusively that these two QTL are 

distinct entities. Several of these QTL that harbor genetic determinants of responsiveness of 

the rat pituitary gland to estrogens have been isolated as congenic rat strains, which will 

allow the genetic variants that impact responsiveness to estrogens to be mapped to higher 

resolution and their molecular actions to be further elucidated (Dennison et al. 2015; Kurz et 

al. 2014; Kurz et al. 2008; Pandey et al. 2004; Wendell et al. 2002). The presence of multiple 

loci regulating responses to estrogens and that these are distinct for mammary gland and 

uterus highlights the tissue-specific nature of estrogen signaling and its complexity.

In the rat uterus, estrogens exert strain specific actions on induction of pyometritis, which is 

thought to develop as a consequence of extensive over proliferation of the uterine 

epithelium. In this regard, BN rats are highly sensitive relative to ACI or F344 rats revealing 

2 genetic loci (Figure 1). Eutr1, a QTL that influences pyometritis development, was 

mapped to the proximal region of rat chromosome 5 in a study in which F2 progeny 

generated in an intercross between BN and ACI rats were treated with 17β-estradiol (Gould 

et al. 2005). A second QTL, Eutr2 was mapped to the same region of chromosome 5 through 

characterization of DES treated congenic rats in which BN alleles across proximal 

chromosome 5 were introgressed onto the F344 genetic background (Pandey et al. 2005).
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In contrast to the mammary epithelium, pituitary and uterus, estrogens inhibit proliferation 

of thymocytes in mice and rats (Gould et al. 2000; Greenman et al. 1977). QTL that modify 

the extent of the repression have been identified in rats (Figure 1). Treatment with DES 

identified QTL influencing repression on chromosome 10 (Esta1) and chromosome 2 (Esta2 
and Esta3) in a study using male F2 progeny from a BN x ACI intercross (Gould et al. 

2006). QTL associated with regression of testes induced by DES were identified on 

chromosomes 1 and 7 (Figure 1) in recombinant inbred male rats (Tachibana et al. 2006). 

Although no linkage was detected for pituitary adenoma development in male rats in the 

recombinant inbred strains, the markers associated with regression of testes (D1Wox25, 
D7Mit4) are in close proximity to a locus affecting pituitary adenomas on chromosome 1 

(Ept10) and the locus involved in mammary tumors and pituitary adenomas (Emca4, Ept7) 

on chromosome 7 (Figure 1). The mammary tumor and pituitary phenotypes were identified 

in different crosses (ACI x COP and BN x ACI respectively) while the testicular phenotype 

was mapped in panel of 30 recombinant inbred strains derived from crosses of LE/Stm x 

F344/DuCrj rats (LEXF/FXLE). Therefore, while the locus may be the same, it is likely that 

the polymorphisms responsible for the tissue-specific effects differ among the strains.

Comparisons of estrogen responses in uterus and mammary glands of C3H/HeJ and 

C57BL/6J female mice reveal a complex set of modifiers in each tissue as well. Treatment 

with 17β-estradiol increased uterine weights 3.3-fold in C57BL/6J compared to a 2.2-fold 

increase in C3H/HeJ (Roper et al. 1999; Wall et al. 2013). The greater sensitivity to estrogen 

in the C57BL/6J strain was dominant in F1 hybrids. Therefore, linkage analysis was 

performed using backcross of F1 progeny to C3H/HeJ which identified 5 QTL (designated 

Est, Supplementary Table 1). Differences in estrogen-stimulated uterine weight was linked 

to chromosomes 5 and 11. Infiltration of eosinophils in the uterus induced by 17β-estradiol 

administration was linked to loci on chromomosomes 4, 10 and 16 as well as interactions 

between D10Mit180 and the loci on chromosomes 4 and 5. The effects on uterine weight in 

C57BL/6J and C3H/HeJ were not due to proliferative responses, but rather a higher level of 

apoptosis in the C3H/HeJ mice (Wall et al. 2013). Treatment with 17β-estradiol also 

stimulates expansion of the of ductal branching in mammary glands. The extent of 

development was nearly 2-fold greater in C57BL/6J mice compared to C3H/HeJ (Wall et al. 

2014a). Although estrogen stimulates increases in tissue mass in both the mammary 

epithelium and uterus, little overlap was observed in transcriptional profiles induced by 17β-

estradiol in these tissues (Wall et al. 2014b). Therefore, it appears that the QTL regulating 

responses to estrogenic stimulation are distinct among mammary epithelium and uterus in 

these strains of mice.

These studies indicate that the genetic variants controlling responsiveness to estrogens do so 

in a tissue and/or cell-type specific manner. For example, the QTL that influence 

development of pituitary lactotroph hyperplasia/adenoma are physically distinct from those 

that influence susceptibility to mammary cancer; the only exception being Ept7 and Emca4, 

which both map to the same region of rat chromosome 7 (Kurz et al. 2014; Schaffer et al. 

2006; Shull et al. 2007). The tissue-specific actions of these loci allowed development of a 

novel rat model of 17β-estradiol-induced mammary tumors that lacks the deleterious 

morbidities associated with pituitary lactotroph hyperplasia/adenoma (Dennison et al. 2015). 

As a result, studies of regulation of estrogen signaling must be studied in the appropriate 
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tissue. Despite the limited genetic diversity in ACI, COP and BN strains, a total of 9 QTL 

were identified that modify sensitivity to mammary tumors induced by chronic exposure to 

17β-estradiol. This suggests that a much larger number of loci and variants may participate 

in regulating the consequences of exposure to estrogenic compounds in the human 

population.

Effects of estrogens on mammary gland development and breast cancer 

risk

Estrogen is a primary driver of mammary gland development during puberty. Estrogen 

receptor alpha (ERα) plays a principal role as deletion of the gene encoding ERα (Esr1) 

causes a profound failure of mammary gland development (Feng et al. 2007). Therefore, 

differences among strains in mammary development during puberty offers an additional 

approach to evaluate estrogen sensitivity and actions. A survey of mammary gland 

architecture was performed using 43 recombinant inbred strains of mice that comprise the 

Mouse Diversity Panel (Hadsell et al. 2015). Tissues were evaluated during puberty (42 day 

old) and at maturity (12 weeks) for 15 different measures of area, branching and density of 

the mammary ducts. The phenotypes were largely consistent at both ages within strains, and 

therefore, not simply a consequence of differences in the onset of puberty. Hierarchical 

clustering defined 4 patterns of development represented by C3H/HeJ, 129S1/SvlmJ, 

C57BL/6J and BALB/cByJ (Clusters 1–4, respectively). This is consistent with the 

differences in ductal growth between C57BL/6J and C3H/HeJ strains (Table 1) following 

acute treatment with 17β-estradiol (Wall et al. 2014a). The analysis of mammary gland 

development identified 20 mammary ductal quantitative trait loci (Mdq, Table 3). Of these, 9 

were found to be within, or close to, orthologous regions associated with risk for breast 

cancer in humans.

Differences in mammary structure among the strains in the Mouse Diversity Panel also 

appear to provide insights into pathways underlying breast density. Most notably, the lead 

SNP for Mdq15 maps to within 0.5 Mbp of a locus on 12q24 associated with 

mammographic density in women (Stevens et al. 2012). The most significant SNP 

(rs1265507) is in close proximity to the Tbx3 gene, which is required for the ERα 
expressing lineage of mammary epithelial cells (Davenport et al. 2003; Kunasegaran et al. 

2014) and breast cancer (Douglas and Papaioannou 2013; Krstic et al. 2016; Stephens et al. 

2012). In addition, the lead SNP in Mdq8, which was associated with ductal branch density, 

maps to within 0.11 Mbp of an orthologous region in the human containing the breast cancer 

associated SNP, rs11814448 (Michailidou et al. 2015; Michailidou et al. 2013). This 

particular SNP is located between the genes Dnajc1 and Bmi1. Bmi1 is regulated by ERα 
and has been implicated in a number of behaviors in breast cancer cells including epithelial-

to-mesenchymal transition (Wang et al. 2014). Therefore, the genetic modifiers that regulate 

ductal development in mice appear to overlap with breast cancer risk loci in women. 

Although it is unclear whether the Mdq loci regulated by development or are dependent on 

estrogen exposure, A search of ChIP-seq databases for H3K4me2 binding was used to 

identify regulatory elements within the Mdq loci and colocalize binding of progesterone 

receptor within 15 (Mbp) of the loci suggesting hormonal regulation (Hadsell et al. 2015).
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The role of the Mdq in mammary tumorigenesis has not been tested directly. As a means to 

address their relationship with susceptibility to mammary tumors, the authors combined 

previously published data on strain dependent variation in mammary tumorigenesis and the 

incidence of lung metastases in the polyoma middle T-antigen model with their own data on 

variation in normal mammary ductal development. Modifiers of mammary tumorigenesis 

and lung metastasis have been mapped using mice expressing the oncogenic polyoma 

middle T-antigen (MMTV-PyMT) in crosses with 28 strains (Le Voyer et al. 2000; Le Voyer 

et al. 2001; Lifsted et al. 1998). Of these previously studied 28 strains, measures of normal 

branch density were available for 21. By plotting strain means, mammary ductal branch 

density and incidence of lung metatsatsis were found to be highly correlated (R2>0.7) 

indicating that at least a portion of the loci involved in ductal structure were related to tumor 

development and/or metastasis (Hadsell et al. 2015).

Modifiers of estrogen signaling --- challenges and opportunities

The studies in rodents demonstrate the presence of genetic variants that can limit or amplify 

the pathogenic effects of estrogenic compounds in mammary glands. A total of 29 QTL have 

been identified that influence the effects of estrogens on development of the mammary 

ductal network and susceptibility to mammary tumors (Figure 1 and Table 2). These loci are 

orthologous to polymorphisms associated with breast cancer risk in humans suggesting that 

variation in estrogen signaling may be a common mechanism underlying breast cancer risk. 

Furthermore, the risk posed by chronic exposure to estrogens would be of greatest concern 

for a subset of individuals who are particularly sensitive. This highlights the potential impact 

of gene x environment interactions in determining risk associated with estrogen exposures.

Several hurdles hamper the ability to detect genetic variants that interact with levels of 

estrogen exposure to influence breast cancer risk in humans. The difficulty of accurately 

estimating levels of estrogen exposure in large populations of women is a major challenge. 

The magnitude of risk associated with genetic variants is often modest and, without very 

large studies, the statistical power to detect interactions can be limiting (Rudolph et al. 

2016). However, relationships between mammographic breast density and estrogen exposure 

suggest that genetic interactions may be important. Mammographic density is among the 

strongest predictors of breast cancer risk and is determined, in part, by estrogen exposure. 

Estrogen plus progestin hormone therapies increase breast density and can explain the 

increased risk associated with the use of exogenous hormones (Byrne et al. 2017; 

Chlebowski et al. 2013). Conversely, inhibition of signaling through estrogen receptors by 

Tamoxifen reduced mammographic density and was associated with decreased risk of 

subsequent breast cancer (Cuzick et al. 2011). Identification of genes involved in estrogen 

signaling among the 11 loci associated with differences in mammographic density in GWAS 

(Lindstrom et al. 2014) reinforces the potential interactions between estrogen exposure and 

breast cancer risk. Candidate genes linked to polymorphisms include the gene encoding 

ERα (ESR1) and estrogen-responsive target genes (Amphiregulin, Insulin-like growth factor 

1) as well as lymphocyte-specific factor 1 (LSP1). A targeted screen of genes linked to 

breast cancer risk (Odefrey et al. 2010) also found significant associations between 

mammographic breast density and polymorphisms in LSP1. Similar to the effects in ACI 

rats (Ding et al. 2013), genetic variants in humans that impair the ability to attenuate 
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estrogen signaling may render individuals susceptible to breast cancer associated with 

postmenopausal hormone therapies. The reduction in breast density in response to 

Tamoxifen has been shown to vary substantially among women (Cuzick et al. 2011) and 

genetic variants that are permissive to estrogen signaling may play a role in limiting the 

efficacy of Tamoxifen in these individuals. Thus, the challenge is to identify the rate-limiting 

steps in estrogen signaling and pathogenic responses in breast tissue.

Genetic variation in responses to estrogenic stimulation among strains of rodents provides an 

incisive approach to define critical pathways in mammary tissue. The dose, duration and 

types of estrogenic compounds can be controlled in experimental settings. Study designs 

allow effects of modest magnitude to be detected. The availability of genetically diverse 

strains of mice represented in the Collaborative Cross and Diversity Outbred panels (Harrill 

and McAllister 2017) offer new opportunities to expand the number of loci influencing 

sensitivity to elevated levels of endogenous estrogens or estrogen therapies. These studies 

would provide a foundation for selection of strains to evaluate the risks posed by 

environmental xenoestrogens. The loci in humans that are orthologous to the rodent loci 

regulating estrogen sensitivity can be used in targeted screens for interactions with 

estrogenic exposures (endogenous or environmental sources) providing greater statistical 

power to detect associations. The pathways identified in rodents would provide insights into 

risk alleles in humans rendering individuals sensitive to the pathogenic effects of estrogenic 

exposures as well as provide biomarkers for assessing risk in breast tissues.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Positions of QTL regulated responses to estrogens in 5 tissues in rats
The phenotypes and strains used to define the quantitative trait loci (QTL) are indicated. The 

localization of QTL is based on the polymorphic markers used in mapping experiments. An 

interval is indicated using a horizontal line for Emca1 and Eutr2.
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