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Abstract

Ryanodine receptors (RyRs) are ubiquitous intracellular calcium (Ca2+) release channels required 

for the function of many organs including heart and skeletal muscle, synaptic transmission in the 

brain, pancreatic beta cell function, and vascular tone. In disease, defective function of RyRs due 

either to stress (hyperadrenergic and/or oxidative overload) or genetic mutations can render the 

channels leaky to Ca2+ and promote defective disease-causing signals as observed in heat failure, 

muscular dystrophy, diabetes mellitus, and neurodegerative disease. RyRs are massive structures 

comprising the largest known ion channel-bearing macromolecular complex and exceeding 3 

million Daltons in molecular weight. RyRs mediate the rapid release of Ca2+ from the 

endoplasmic/sarcoplasmic reticulum (ER/SR) to stimulate cellular functions through Ca2+-

dependent processes. Recent advances in single-particle cryogenic electron microscopy (cryo-EM) 

have enabled the determination of atomic-level structures for RyR for the first time. These 
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structures have illuminated the mechanisms by which these critical ion channels function and 

interact with regulatory ligands. In the present chapter we discuss the structure, functional 

elements, gating and activation mechanisms of RyRs in normal and disease states.
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11.1 Ryanodine Receptors: Physiology and Function

Ryanodine receptors (RyRs) control calcium (Ca2+) release from intracellular endoplasmic/

sarcoplasmic reticulum (ER/SR) stores (Santulli et al. 2017b). RyRs are found ubiquitously 

in mammals, and three different variants (RyR1, RyR2, and RyR3) are known. RyR1 is the 

major form in skeletal muscle (Inui et al. 1987; Takeshima et al. 1989; Marks et al. 1989); 

RyR2 is the major form in cardiac muscle (Nakai et al. 1990; Otsu et al. 1990; Brillantes et 

al. 1992), and is also involved in cognitive function (Liu et al. 2012) and in insulin secretion 

from pancreatic beta cells (Santulli et al. 2015a); RyR3, originally identified in the brain 

(Nakashima et al. 1997; Hakamata et al. 1992), is widely expressed (Zhang et al. 2011; 

Lanner et al. 2010) but its function is less well understood.

In muscle cells RyRs are expressed early in development (Rosemblit et al. 1999; Brillantes 

et al. 1994b), and their expression is regulated by stress signals (Maki et al. 1996). They are 

required for excitation-contraction coupling, which translates an electrical signal into a 

mechanical output via the second messenger Ca2+ (Santulli and Marks 2015). The closely 

related inositol 1,4,5-trisphosphate receptors (IP3Rs) are also found in most cell types and 

require the second messenger IP3 for activation (Harnick et al. 1995; Yuan et al. 2016; 

Santulli et al. 2017a). In skeletal muscle there is a mechanical interaction between RyR1 on 

the sarcoplasmic reticulum (SR) membrane and the dihydropyridine receptor (Cav1.1) on 

specialized invaginations of the sarcolemma, called transverse tubules, leading to rapid Ca2+ 

release (Rios and Brum 1987; Nelson et al. 2013; Santulli et al. 2017b). In cardiac muscle 

the depolarization of the plasma membrane activates Ca2+ influx via the L-type Ca2+ 

channel (LCC, Cav1.2), which in turn activates RyR2 via Ca2+-induced Ca2+ release 

(Fabiato and Fabiato 1975; Santulli et al. 2017b). At low cytosolic Ca2+ (∼100–200 nM), 

RyR channels are closed, with extremely low open probability (Po). The Po increases at 

submicromolar levels of cytosolic Ca2+, reaching a maximal Po at ∼10 μM. Cytosolic Ca2+ 

concentrations above ∼10 μM lower the Po (Bezprozvanny et al. 1991). This behavior points 

to the presence of two Ca2+ binding sites with different affinities, a moderate-affinity (μM 

KD) Ca2+ activation binding site (des Georges et al. 2016) and a lower-affinity (∼100 μM 

KD) Ca2+-dependent inhibition site.

As Ca2+ is involved in many cell signaling pathways of critical importance, mutations 

affecting the proper function and regulation of the Ca2+-release channel RyR can have 

severe impact on cellular function. In particular, RyRs are crucial for muscle function, and 

mutations in the receptor can lead to a number of heart and skeletal muscle pathologies. For 

instance, mutations in RyR1 are implicated in malignant hyperthermia (MH) and central 
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core disease (CCD) (Quane et al. 1993; Santulli et al. 2017b), while mutations in RyR2 can 

lead to cardiac arrhythmias (Vest et al. 2005; Xie et al. 2015; Lehnart et al. 2004; Marks et 

al. 2002; Xie et al. 2013). Understanding the structure of these channels and the mechanism 

by which they function may enable the design of therapeutics to stabilize damaged RyRs in 

order to restore normal function.

11.2 Early Attempts to Determine RyR Structure

The gigantic size and large variability of the RyR structure have hindered attempts to obtain 

highly ordered crystals amenable to X-ray crystallography. Only the structures of individual 

domains were solved to high resolution: a 559-residue fraction of the N-terminal domain 

(Lobo et al. 2009), representing 11% of the sequence of the entire channel, and the SPRY1 

and tandem-repeat domains (Yuchi et al. 2015). However, the best crystals of the channel in 

its entirety, obtained in a collaboration between the Marks and Hendrickson labs, did not 

diffract beyond a resolution of 7 Å (Clarke and Hendrickson, personal communication).

For very large molecules such as RyR, several advantages of the single-particle cryogenic 

electron microscopy (cryo-EM) approach (Frank 2016) over X-ray crystallography come to 

bear (also see separate section below): first, high-resolution 3D information can be obtained 

from the 2D projection images of the molecule flash-frozen in solution, obviating the need 

for ordered crystals; and second, structural heterogeneity inherent to the function of the 

molecule may be studied as multiple conformers can be retrieved through the use of image 

classification.

These aspects prompted us early on, in collaboration with Sidney Fleischer at Vanderbilt 

University, to try using the single-particle electron microscopy technique on detergent-

solubilized RyR, resulting in first image averages of the negatively stained channel in the top 

view (Saito et al. 1988). Soon after that, first three-dimensional reconstructions of the 

stained (Wagenknecht et al. 1989) and unstained, frozen-hydrated RyR1 (Radermacher et al. 

1992 Radermacher et al. 1994; Wagenknecht and Radermacher 1995) (Fig. 11.1) and RyR2 

(Sharma et al. 1998) channels were obtained. The resolution of these first reconstructions 

was quite limited, but they revealed the overall fourfold symmetric (C4) mushroom-shaped 

architecture, with the four copies of a large cytosolic domain forming an umbrella, and a 

small cylindric transmembrane domain containing the pore. Each monomer, or “wing” of the 

cytosolic umbrella domain, was seen to be perforated by large cavities.

Even as the performance of electron microscopes and the sophistication of image processing 

programs improved, the resolution of RyR density maps did not keep pace for several years, 

for an important technical reason: reconstructions were limited by the severe orientation bias 

as RyR molecules prefer to lie on the carbon-coated grid in their C4-symmetry view, face-up 

or face-down. In such a situation, the reconstruction is strongly distorted as the resolution is 

anisotropic, producing biased and misleading representations of the structure. Still, 

significant progress was achieved in identifying locations of critical effector binding sites on 

the molecule (see review by Hamilton and Serysheva 2009). The problem of strong view 

preference of the molecule was finally resolved by preparing the EM grids with the water 

layer freely suspended over holes, yielding first reconstructions of the closed RyR1 channel 
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with isotropic resolution (Samsò et al. 2005). Details regarding the issues related to view 

preference of RyR have been reviewed in Baker et al. (2015).

However, until recently, there still existed a fundamental obstacle preventing resolutions 

better than 5 Å to be reached by single-particle cryo-EM for any structures except for those 

with very high symmetry, such as icosahedral viruses. The obstacle was presented by the 

suboptimal performance of recording media in the electron microscope. Density maps of 

RyR1 with best resolutions in the 10 Å range were interpreted with “helix hunter” programs 

(Jiang et al. 2007; Baker et al. 2007) that attempt to place helices and other secondary 

structure elements into the reconstructed density map, based on sequence information and 

low-resolution localizations of binding sites. On this basis, first tentative all-atomic 

structures were built for the RyR1 channel in its entirety or for the functionally most 

relevant, pore-forming region (Ludtke et al. 2005; Samsò et al. 2009). In order to map the 

low-resolution density map to the sequence of the molecule, Liu and co-workers developed a 

method of genetic GFP insertion and cryo-EM difference mapping, first applied to RyR2 

(Liu et al. 2004). Even at these low resolutions, the masses of density due to insertion of 

GFP become visible in the difference map as a signal with high statistical significance. This 

strategy allowed the approximate positions of divergent regions of RyR to be determined.

In 2012 the first direct electron detectors came on the market, which have signal-to- noise 

ratios and modulation transfer functions superior to those of film and much superior to the 

only online recording medium then available, the CCD camera. The introduction of these 

new cameras into electron microscopy spurred an avalanche of molecular structures with 

resolutions ranging from 2 to 4 Å, allowing chain tracing, sequence-guided modeling and, in 

the 2–3 Å range, even ab initio modeling. In 2015, the first atomic structures of RyR1 in its 

closed state were published by three groups, all taking advantage of this new data collection 

technology (Efremov et al. 2015; Yan et al. 2015; Zalk et al. 2015). Meanwhile several 

additional structures in different states have been described for RyR1 (des Georges et al. 

2016; Wei et al. 2016; Bai et al. 2016) and for RyR2 (Peng et al. 2016). The vast increase of 

knowledge presented by the cryo-EM studies in the past 2 years will be illuminated in the 

following sections of this review, and its implications will be discussed in the context of 

human disease. In particular, the newest structures offer a first glimpse on the dynamic 

mechanism of channel activation and gating (see Van Petegem 2016; Clarke and 

Hendrickson 2016).

11.3 A Primer on Single-Particle Cryo-EM

11.3.1 Method of Sample Preparation and Reconstruction

Cryo-EM is a technique of imaging in which a frozen-hydrated sample is visualized in the 

transmission electron microscope (Dubochet et al. 1981, 1986). Contrast is produced by the 

difference in elastic scattering (i.e., scattering without loss of energy) between protein (or 

nucleic acids when applicable) and the surrounding matrix of ice. A frozen-hydrated sample 

is obtained by quick freeze-plunging of the EM grid (a round 3 mm-diameter copper or gold 

grid), on which the liquid sample has been deposited, into liquid ethane that is kept at liquid 

nitrogen temperature. Blotting of excess liquid ensures that the thickness of the aqueous 

sample will be in the range of thicknesses (∼100 nm) that can be penetrated by the 200-kV 
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or 300-kV electron beam of commercial transmission electron microscopes. Both the high 

speed of freeze-plunging and the low heat capacity of the grid ensure rapid temperature 

change of the sample (estimated as 105 degrees Celsius/s). Under these conditions water 

turns into vitreous (non-crystalline) ice, that is, ice possessing very similar density and 

amorphous structure as liquid water. The resulting embedment of the molecule in vitreous 

ice is essential for preserving its native structure. Preparation of samples with consistent ice 

thickness in the correct range is made possible by “vitrification robots,”, which contain an 

environmental chamber for control of temperature and humidity and have provisions for 

automated blotting and rapid plunging of the grid.

The single-particle approach in cryo-EM (see Frank et al. 2002; Frank 2016; Nogales 2016) 

is distinct from approaches involving crystals (with two-dimensional or helical symmetry) in 

that the molecules to be visualized are suspended freely in the aqueous buffer, without 

contacts with neighboring molecules. Thus, there are no constraints on the conformations 

they can assume, and, provided that the processes of purification and freezing themselves do 

not significantly alter their structure, the molecules are depicted in their native range of 

conformations and binding states.

The molecules are visualized as 2D projection images, which carry both amplitude and 

phase information in the Fourier domain and thus, unlike in X-ray crystallography, obviate 

the need for phasing. High-resolution 3D information can then be retrieved by alignment of 

these projections into a common 3D reference frame. The single-particle approach requires, 

however, that the molecules assume all possible views without major gaps in orientation 

distribution, as a precondition for artifact-free three-dimensional reconstruction. As pointed 

out above, many of the early structural studies of the RyR were adversely affected by strong 

preference of molecules for the top view, rendering the reconstructions difficult to interpret.

After the grid is plunged into the cryogen, it is transferred into the electron microscope, 

being kept under liquid nitrogen temperature at all times. In the imaging experiment, a beam 

with low electron dose (in our experiments 25–80e−/Å2) is employed to prevent radiation 

damage, but at such doses the images are very noisy. The need for collecting large numbers 

of images, often going in the hundreds of thousands, is due to four reasons: (1) the very low 

signal-to-noise ratio of the images, (2) beam-induced movement, charging of the specimen 

and other blurring effects, (3) the need to cover the entire angular range, and (4) the need to 

sample all major conformations co-existing in the specimen.

The recording of micrographs has been revolutionized recently with the introduction of 

direct electron detection cameras that possess high signal-to-noise ratio and a modulation 

transfer function extending to high spatial frequencies (i.e., small spacings in the image) 

(McMullan et al. 2009; McMullan et al. 2014). Micrographs are recorded as stacks of frames 

(“movies”), enabling correction of drift and electron beam-induced movement (Brilot et al. 

2012; Li et al. 2013) and the weighting of frames according to accumulated electron dose 

(Grant and Grigorieff 2015). After this pre-processing step the images are sorted, or 

classified, using maximum-likelihood programs such as RELION (Scheres 2012). 

Reconstructions from the resulting classes display the whole range of structures co-existing 

in the sample.
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11.4 Structures of the Channel Obtained by High-Resolution Cryo-EM

The above-mentioned advances in single-particle cryo-EM have spurred a revolution in 

structural biology, enabling the reconstruction of atomic-resolution maps for membrane 

proteins (Liao et al. 2013). This development has allowed the determination of high-

resolution structures of RyRs, for the first time providing a mechanistic understanding of 

how the channel functions in healthy tissue and giving clues as to how it may be affected in 

disease states.

As mentioned above, the structure of RyR1 in a closed state, without Ca2+ or other 

activating ligands, was determined in three recent studies at resolutions ranging from 3.8 Å 

to 6.1 Å and allowed the building of an atomic-level model of the RyR channel core (Yan et 

al. 2015) and poly-alanine-level models of the RyR cyto-plasmic shell (Zalk et al. 2015; Yan 

et al. 2015; Efremov et al. 2015). These structures gave us a better understanding of the 

overall architecture of RYRs, homotetramer of four 5037-residue protomers with a 

combined mass of 2.2 mega-Daltons, and divided between pore, activation domain and 

cytoplasmic shell.

The structures confirmed that the pore domain belongs to the 6TM family of ion channels 

(Hille 2001) and contains a pseudo-voltage sensor domain (pVSD). RyR has unique features 

compared to other 6TM-family ion channels, which includes an insertion between S2 and S3 

helices (S2S3 domain), a 90 Å long pore helix ending with a C-terminal domain containing 

a zinc finger and an acidic disordered loop between S1 and S2 (Yan et al. 2015; Fan et al. 

2015). A polyproline segment in the S2S3 domain may be a binding site for SH3 domain-

containing proteins (des Georges et al. 2016), which by their interaction with this extension 

of the pVSD may regulate channel function.

A notable feature of the activation domain is that it contains a domain in the shape of a 

thumb and forefingers (TaF), which clamps the zinc finger-containing C-terminal domain 

(CTD) (Fig. 11.2), thereby providing the allosteric coupling between the pore and the shell 

of the receptor. Presence of an EF-hand motif in the activation domain interacting with the 

pVSD hinted at a putative mechanism of activation by Ca2+ (Wei et al. 2016). This putative 

mechanism later proved not to be correct (Guo et al. 2016; des Georges 2016), but this 

interaction between the EF-hand and the pVSD may have an important functional role, 

which remains to be determined.

The shell of RyR is principally composed of three α-solenoid repeats. The core solenoid 

(CSol), which is part of the activation domain, links the pore domain to the shell. The other 

α-solenoid repeats are the bridging (BSol), and N-terminal (NTD-C), that are joined by a 

fourth junctional solenoid (JSol) which provides a bridge between all the other ones (des 

Georges et al. 2016). These solenoids incorporate small folds of other domains, yielding 

numerous interdomain interfaces in the cytosolic shell. Other domains in the cytosolic shell 

include the SPRY domains (SPRY1-SPRY3) (Lau and Van Petegem 2014), EF-hands 

(EF1&2) (Xiong et al. 2006), RyR repeat pairs (RY1&2 and RY3&4) (Yuchi et al. 2015; 

Sharma et al. 2012), and the N-terminal domains (NTD-A and NTD-B) (Amador et al. 

2009).
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Three major interfaces provide inter-protomer contacts: SPRY2 with Bsol, NTD-A with 

NTD-B, and NTD-A with BSol (where the second domain is on the adjacent protomer). 

These interdomain and interprotomer contacts have been implicated in channel gating (Tung 

et al. 2010), linking the control of shell dynamics with pore opening. The picture emerging 

is of the RyR as a large complex network of interconnected helices (Fig. 11.2), which 

enables allosteric coupling of conformational changes over the span of the entire channel. 

Many proteins interact with the large cytoplasmic shell and take advantage of this allosteric 

coupling to allow a range of stimuli to exert control over the channel function (Lanner et al. 

2010; Van Petegem 2015).

Important keys for understanding this allosteric coupling between the shell and pore of the 

channel comes from a most recent study showing a series of structures, and their 

conformational variabilities, which change upon binding with different combinations of 

ligands (des Georges et al. 2016). These results have provided the important insight that 

there are in fact different modes of mechanical coupling, and that these modes are switched 

upon binding of activating ligands (Clarke and Hendrickson 2016).

11.5 RyR Activation: A Close Look

RyR contains multiple domains forming binding sites for functional ligands, including ions 

(primarily Ca2+ and Mg2+), proteins including calstabin, calmodulin, the voltage-gated Ca2+ 

channel Cav and small molecules such as adenine nucleotides, and caffeine (des Georges et 

al. 2016; Hwang et al. 2012; Choi et al. 2017; Santulli et al. 2017b). These ligands can bias 

the channel towards specific functional states and Po. Most importantly, RyR gating is 

regulated by Ca2+ with a characteristic bell-shaped curve (Bezprozvanny et al. 1991), 

suggesting that RyR must have two Ca2+ binding sites of differing activities. ATP is also a 

well characterized physiological activating ligand likely to be constitutively bound in 

physiological conditions since cellular ATP concentration in skeletal muscles is very high 

(∼5 mM; Kushmerick et al. 1992). Ca2+ and ATP are known to have synergistic effect on 

RyR gating, with the highest Po when both are present. Although probably not 

physiological, addition of caffeine increases the Po to an even greater extent (Po = 0.91; des 

Georges et al. 2016).

It is a striking observation that those three synergistic activating ligands bind at the CTD 

interdomain interface (des Georges et al. 2016; Fig. 11.2), which is itself directly linked to 

the pore helix via its Zinc-finger domain. This finding together with the observation that 

both Ca2+ and ATP/caffeine produce the same or very similar changes in the position of the 

core solenoid with respect to the CTD (des Georges et al. 2016) can explain their synergistic 

effect. It also explains why caffeine potentiates RyR Ca2+ binding. As caffeine and Ca2+ 

binding produce a similar conformational change in the region of the CTD, caffeine acts as 

an allosteric agonist of Ca2+, thereby shifting the sensitivity to Ca2+ towards lower 

concentrations (Porta et al. 2011).

The ATP binding site is at the interface formed by the C-terminal portion of the TaF and the 

S6c-CTD junction (Fig. 11.2). The adenine moiety binds in the T intersection formed by the 

pore helix and the CTD, next to the Zinc finger motif, and may play a similar structural role, 
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maintaining the geometry of the junction. This would explain why adenine nucleotides are 

competitive partial agonists of RyR1 while adenosine is an antagonist (Chan et al. 2000; 

Laver et al. 2001). Other nucleotide phosphates have been shown to not activate RyR.

The triphosphate tail of ATP binds to positively charged residues on the TaF domain of the 

core solenoid. ATP thereby acts as a bridge between the CTD and the TaF domain, 

triggering the conformational change between those two domains necessary for gating. As 

the number of phosphate groups is reduced, the interaction with the TaF positive charges is 

weakened or abolished and no longer bridges the TaF to the CTD. This observation explains 

the difference in affinity and channel Po between ATP, ADP and AMP, and may provide a 

mechanism contributing to muscle fatigue (Rullman et al. 2013; Bellinger et al. 2008a; Chan 

et al. 2000).

This change in the conformation of the core solenoid with respect to the CTD upon Ca2+ and 

ATP/caffeine binding activates the channel and allows the lateral displacement of the whole 

protomer as a rigid unit, resulting in opening of the pore. The fact that ligand binding 

restricts the range of observed positions of the cytoplasmic shell (des Georges et al. 2016; 

Fig. 11.3) implies that this observed ligand-dependent conformational change of the core 

solenoid renders the whole protomer assembly more rigid. This change appears to allow 

pore opening, but the exact gating mechanism is still unknown. We can postulate two 

possible and non-exclusive mechanisms: (1) the more rigid assembly allows coupling of the 

thermal movement of the shell to bending of the S6 pore helix; (2) the conformational 

change releases a still unknown locking interaction, which allows the outward movement of 

the protomer and pore opening.

The key to the gating mechanism may potentially lie in the pseudo-voltage sensor (pVSD), a 

domain whose function in RyR is still not well understood. It has been shown that voltage 

potential on the SR membrane has an effect on RyR gating (Endo 2009), which would imply 

that the pVSD is playing a role in gating, despite the domain lacking most of the voltage-

sensing charges on S4. The S2 helix and RyR-specific S2-S3 domain of the pVSD, together 

with the EF1/EF2 domain have also been implicated in Ca2+-dependent inactivation of RyR 

(Gomez and Yamaguchi 2014; Gomez et al. 2016). It has been observed that the EF hand 

domain comes closer to the S2-S3 domain upon channel opening (des Georges et al. 2016; 

Wei et al. 2016). A tentative hypothesis could be that low affinity Ca2+-binding on one of 

those domains triggers a repulsion, pushing those two domains apart and thereby preventing 

channel opening.

RyRs have a high degree of sequence and structure homology with another intracellular 

Ca2+ release channel, the IP3R (Santulli et al. 2017a). IP3Rs are found in the ER and 

mediate the release of intracellular Ca2+ in response to external stimuli. RyRs and IP3Rs 

have ∼40% homology in the core regions, indicating a common origin for Ca2+ release 

channels (Santulli et al. 2017a). However, the IP3R does not include much of the 

cytoplasmic shell and, most notably, lacks the large Bsol (Santulli et al. 2017a). Of particular 

interest, the extended pore helix, CTD and activation domain are conserved between these 

two channels, meaning that they have the same or very similar mechanisms of activation by 

Ca2+ (Santulli et al. 2017a). In IP3R, the CTD is further extended and directly links to the 
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NTD and the IP3 binding site (Fan et al. 2015). Conformational changes induced by IP3 can 

therefore be directly linked or relayed to Ca2+ binding and gating (Fig. 11.4). In the case of 

RyR, gating is linked to mechanical coupling of the shell and pore, in IP3R, gating is 

probably coupled to IP3 binding by a very similar mechanism.

11.6 Mapping of Channel Dynamics by Cryo-EM

RyR gating is triggered by Ca2+-induced conformational changes in the core solenoid and 

CTD that couple cytoplasmic shell movement to pore opening (des Georges et al. 2016). The 

cytoplasmic shell dynamics therefore plays a direct role in channel gating by Ca2+, and must 

play an integral role in Ca2+ release triggered by mechanical coupling with the 

dihydropyridine receptor. The channel dynamics is also tightly regulated by numerous 

factors that influence gating including calstabin and calmodulin. It is therefore important to 

study the complex dynamics of this very large ion channel in order to better understand its 

function and regulation. Cryo-EM is uniquely placed to do this, as the single-particle method 

allows the sorting of individual macromolecules based on their conformational state.

In order to appreciate the cryo-EM data analysis for a molecule exhibiting dynamic behavior 

in the sample, it is important to understand that maximum-likelihood classification by 

programs such as RELION (Scheres 2012) entails a user decision on how many discrete 

classes (K) the algorithm should distinguish. In the case of RyR1, for any choice of K, 

multiple classes with different conformations are found, distinguished by the position of the 

cytosolic wing domains (des Georges et al. 2016), suggesting that the structure of the 

isolated receptor is fluctuating as a result of Brownian motion. Binding of ligands (Ca2+, 

caffeine/ATP, or Ca2+ + caffeine/ATP) changes the range and distribution of cytosolic 

domain positions found and, as pointed out before, the preference for closed versus open 

channel. Since increasing K, the number of classes, leads to an ever-increasing number of 

reconstructions with ever-finer increments in conformational changes, it is safe to say that 

the discrete classes found are samples from an underlying continuum – reflecting variability 

of the large molecule that results from being exposed to thermal agitation in the surrounding 

solvent. (It should be pointed out in this context that the movies showing transitions between 

the open and closed channel in the work by des Georges et al. 2016 were obtained by 

morphing between two to four structures, without support by data in between).

The analysis using discrete classes described in des Georges et al. (2016) (classification 

voluntarily limited to K = 4 with fourfold symmetry imposed in order to reduce the 

complexity of the analysis), unveiled the conformational changes necessary for gating and 

the conformation of the open state of the channel. It also showed that the height of the 

cytoplasmic shell with respect to the membrane plane both lowers and reduces its range of 

attainable conformations with ligand binding (Fig. 11.3). Activating ligands therefore 

reinforce the mechanical coupling between the pore and the shell, which must be an integral 

part of the gating mechanism. Still, even with caffeine/ATP and Ca2+ bound, the analysis 

shows that the cytoplasmic shell has an important level of intrinsic flexibility not well 

depicted by the small number of discrete classes used in the analysis.
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The continuous character of the distribution of states is in fact borne out by the application 

of a new kind of analysis that allows continuous ordering of data due to conformational 

changes to be tracked (Dashti et al. 2014; Frank and Ourmazd 2016). When this method is 

applied to the data collected in the study of RyR1 bound with various combinations of 

ligands (des Georges et al. 2016), we indeed see that the channel in each sample assumes an 

entire continuum of states – albeit with different distributions – exhibiting a combination of 

wing motions, motions of the activation domain, and channel openings and closings (Dashti 

et al. 2017). This analysis promises to lead to more profound insights into the nature and 

dynamics of channel activation and gating than obtainable from single reconstructions in 

open and closed states (see Van Petegem 2016). It may also be a well-suited tool to study 

how the numerous regulatory factors shift the equilibrium of states and modulate gating.

11.7 Modulation of RyR Dynamics and Gating

A number of factors affect RyR function in the cell, and a better understanding of their effect 

on RyR dynamics may be of crucial importance in understanding disease states of the 

channel.

The Ca2+ channel-binding and -stabilizing proteins calstabin1 and calstabin2 (also known as 

FKBP12 and FKBP12.6, respectively) are of critical importance for preventing RyRs from 

leaking Ca2+ and for coupled gating (Marx et al. 1998, 2000) between RyRs (Brillantes et al. 

1994a; Timerman et al. 1993; Santulli and Marks 2015; Yuan et al. 2014). Calstabin1 and 

calstabin2 preferentially bind RyR1 and RyR2, respectively, and help to stabilize the closed 

state of the channel (Santulli and Marks 2015). Calstabins are the cytosolic targets for the 

immunosuppressant drugs rapamycin and FK506 (Lombardi et al. 2017a, 2017b). 

Rapamycin (or sirolimus) coated on coronary artery stents is used to prevent restenosis by 

inhibiting vascular smooth muscle migration and proliferation (Santulli 2015; Marks 2003; 

Santulli and Totary-Jain 2013; Santulli et al. 2014). The interaction between calstabins and 

RyR can regulate the channel and prevent intracellular Ca2+ leak that leads to a variety of 

disease states (Santulli and Marks 2015; Huang et al. 2006; Brillantes et al. 1994a). These 

proteins are highly specific, with one calstabin bound per RyR protomer, and have been used 

to isolate RyR from microsomes (Zalk et al. 2015; Xin et al. 1995). Calstabin binds at the N-

terminus of the bridging solenoid, possibly rigidifying the interface between BSol and 

SPRY1/SPRY2, thus stabilizing the link between the pore and cytoplasmic region (des 

Georges et al. 2016; Zalk et al. 2015; Yan et al. 2015). Reinforcing such hypothesis, a cryo-

EM study of RyR2 in the absence of calstabin shows a much greater level of flexibility of 

the BSol (Peng et al. 2016). This greater flexibility of the BSol may be due to the absence of 

calstabin, but may also be intrinsic to RyR2.

Additional modulatory proteins associate directly and indirectly with RyR, including 

calsequestrin, sorcin, triadin, homer, histidine-rich Ca2+ binding protein, calmodulin, 

S100A1, and junctin (Santulli et al. 2017b). RyR function is also regulated by post-

translational modifications, including phosphorylation, oxidation and nitrosylation (Santulli 

et al. 2015a, b, 2017a, b; Marx et al. 2000, 2001b; Bellinger et al. 2008b, 2009; Shan et al. 

2010a, b; Andersson et al. 2011; Umanskaya et al. 2014).
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The majority of the known post-translational modifications and modulatory protein binding 

sites are situated on the cytoplasmic shell and influence the cytoplasmic shell dynamics and 

therefore, indirectly, gating (Gambardella et al. 2017). The shell dynamics could be 

influenced in several ways: The rigidity of the protomer assembly could be altered, as 

suggested with calstabins; the strength of interprotomer contacts could be modified, thereby 

influencing shell movement and gating; the shell movement could be directly constrained, 

which would either promote (e.g., DHPR) or prevent the outward motion necessary for pore 

opening (Bai et al. 2016; des Georges et al. 2016). It is also possible that other regulatory 

proteins influence more directly the priming of the core solenoid, which is necessary for 

gating to occur (des Georges et al. 2016), or influence gating more directly by interacting 

with the pVSD. For instance, an RyR-specific polyproline segment in the pVSD (des 

Georges et al. 2016) is a potential binding site for SH3 domain-containing proteins that 

could have a direct effect on gating.

As discussed above, the movement of the cytoplasmic shell is tightly interconnected with 

gating. RyRs are known to form paracrystalline arrays in checkerboard patterns (Franzini-

Armstrong et al. 1999; Cabra et al. 2016). This feature provides a mechanism by which 

opening of a single channel can mechanically trigger neighboring channels and greatly 

amplify Ca2+ release via coupled gating (Marx et al. 1998). RyR repeats 1&2, located in the 

corners of the cytoplasmic shell, is most likely involved in mediating coupled-gating 

(Lehnart et al. 2003; Marx et al. 1998, 2001a). By triggering neighboring channels both 

physically and chemically, RyRs act as both signal amplifiers and signal integrators (Fabiato 

1983; Endo et al. 1970). This supramolecular allostery and thus the whole dynamics of 

excitation-contraction coupling is highly sensitive to the binding of protein factors to the 

shell assembly.

11.8 Involvement of RyR in Human Diseases

Over 300 mutations causing human diseases have been mapped to RyRs (Santulli et al. 

2017a). Mutations in the cardiac RyR2 are primarily linked to cardiac arrhythmias, 

including catecholaminergic polymorphic ventricular tachycardia (CPVT) (Lehnart et al. 

2008; Santulli et al. 2015a), in which exercise-induced sympathetic activation in conjunction 

with the mutation causes ventricular tachycardia and sudden cardiac death. Importantly, 

patients typically do not exhibit prior symptoms or structural modification of the heart, but 

can experience ventricular arrhythmia and syncope during physical exercise, following stress 

or acute emotions. The majority of mutations linked to CPVT are located in the pore, pVSD 

and central domain regions (Santulli et al. 2017b), domains directly implicated in activation 

and gating (des Georges et al. 2016). Other hotspots are located in the NTD and BSol 

domains, two domains that form interprotomer contacts and therefore influence the 

cytoplasmic shell dynamics. The majority of those mutations link to malfunction in the 

gating mechanism which may be exacerbated under stress and lead to spurious Ca2+ sparks 

and arrhythmia.

Mutations in RyR1 can cause malignant hyperthermia (MH), and RyR1 myopathies 

previously classified as central core disease (CCD) and multiminicore disease (Santulli et al. 

2017a). Additionally, stress-induced post-translational modifications of RyR1 including 
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phosphorylation, oxidation, nitrosylation and depletion of calstabin1 can lead to Ca2+ leak, 

resulting in deleterious effects on muscle function (Matecki et al. 2016; Shan et al. 2010a, b; 

Lehnart et al. 2005; Bellinger et al. 2009; Fauconnier et al. 2010; Marx et al. 2000; 

Umanskaya et al. 2014; Santulli et al. 2017a, b). These myopathies include Duchenne 

muscular dystrophy (Bellinger et al. 2009), sarcoglycanopathies (Andersson et al. 2012) and 

sarcopenia (Andersson et al. 2011; Santulli et al. 2017a).

MH involves activation of RyR1 induced by a volatile halogenated anesthetic, which causes 

a rapid rise in core body temperature and can result in organ failure and death if not 

promptly treated (Rosenberg et al. 2007; Santulli et al. 2017a). MH is a pharmacogenetic 

disorder, in which the mutation is latent until it is triggered by a drug. In this condition, Ca2+ 

is rapidly released by RyR1, causing uncontrolled muscle contraction. Sarco/endoplasmic 

reticulum Ca2+-ATPase (SERCA) hydrolyzes ATP to pump it back into the SR/ER, 

consuming ATP and generating the characteristic excessive heat. Although dantrolene is an 

established therapeutic that resolves MH episodes, mortality from this event remains at 

approximately 5% (Larach et al. 2014). Despite years of use and studies showing interaction 

with RyR1, a validated mechanism of action for dantrolene has yet to be reported (Paul-

Pletzer et al. 2002; Zhao et al. 2001). A recent study demonstrated that dantrolene efficacy is 

also affected by the level of Mg2+ (Choi et al. 2017). Mutations causing MH are autosomal 

dominant and typically seen in the central and N-terminal clusters. Another MH mutation 

hotspot is at the interprotomer contacts between NTD-A and NTD-B, which is disrupted 

during channel opening (Kimlicka et al. 2013; Santulli et al. 2017a). The location of those 

mutations, mostly around the N-terminal region and around the Bsol, points to a 

misregulation of the shell dynamics that would cause uncontrolled pore opening upon the 

anesthetic binding to RyR1.

CCD is a congenital myopathy characterized by the presence of metabolically inactive tissue 

cores in muscle fibers, resulting in progressive muscle weakness (Sewry et al. 2002; Santulli 

et al. 2017a). CCD presents during infancy as delayed motor development and hypotonia. 

There are no known therapeutics for CCD and it can result in death. Intriguingly, as RyR1 is 

also found in the brain, one CCD mutation was also discovered to have a neuronal 

phenotype (De Crescenzo et al. 2012). Mutations that lead to CCD are clustered in the C-

terminal region (Quane et al. 1993; Zhang et al. 1993; Santulli et al. 2017b), region directly 

responsible for Ca2+ activation (des Georges et al. 2016; Santulli et al. 2017a).

We can see that in each of these disorders, mutations are clustered in similar hotspots, 

mostly the interface between protomers (Van Petegem 2015; Tung et al. 2010; Santulli et al. 

2017a), but also in the activation domain. Mutations at the interface between protomers are 

likely to influence gating by affecting the outward movement of the shell necessary for pore 

opening. Weakening of those interfaces would facilitate pore opening and therefore spurious 

Ca2+ leak (Tateishi et al. 2009; Suetomi et al. 2011). Mutations in the C-terminal region or 

the core solenoid are more likely to affect the activation mechanism directly, either by 

facilitating the activated conformation, the binding of the activating ligands Ca2+ and ATP, 

or by preventing inactivation of the channel.
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One hotspot is localized in the phosphorylation domain, near the phosphorylation loop, 

indicating that disease mutations and phosphorylation can affect the same process (Yuchi et 

al. 2012; Santulli et al. 2017b). Still, the exact role of post-translational modifications on the 

channel are poorly understood. Cryo-EM structures of phosphorylated vs dephosphorylated 

channels showed no differences in the structure and dynamics of the purified receptor (Zalk 

et al. 2015). These modifications may only be relevant in the context of their interactions 

with other partners, including DHPR.

11.9 Conclusions

The recently published cryo-EM structures of RyR channels in closed and open states 

represent a breakthrough after years of slow progress in the structural and molecular 

understanding of disease-causing mutations in RyRs. The new structures have opened the 

door toward a detailed mechanistic understanding of their function in health and their 

dysfunction in disease. The improved understanding of the complex mechanisms of ligand 

binding and activation of the channel also presents opportunities for targeted drug 

developments addressing many of the known human diseases implicating RyR1 and RyR2.
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Fig. 11.1. First cryo-EM reconstruction of the RyR1 Ca2+-release channel (top and side view
The RyR1 channel was reconstructed from ∼500 particles at 30 Å resolution (Reproduced 

with permission from Radermacher et al. 1994)
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Fig. 11.2. Architecture of the ryanodine receptor
(a) Ribbon representation, with the shell (residues 1–3666; light blue), core solenoid 

(residues 3667–4253; green), pore domain (residues 4540–4956; orange), and CTD 

(residues 4957–5037; dark red). (b) Zoom onto the CTD area showing ligands and locally 

aligned difference density map calculated between the EGTA-only map and Ca2+, ATP, and 

caffeine map (green/red mesh), contoured at 5s. (c) Schematic representation of RyR1. J-sol, 

junctional solenoid; B-sol, bridge solenoid; C-sol, core solenoid; N-sol, N-terminus 

solenoid. TMx, putative additional transmembrane helices (Reproduced with permission 

from Zalk et al. 2015)
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Fig. 11.3. Ligand-dependent change in cytoplasmic shell motions amplitude
Box and whisker plot of the height measurement of the RY1&2 domain with respect to the 

SR membrane plane for each class of each dataset. The fraction of particles of each class is 

represented by the size of the circular marker for each dataset; the class number is given by 

the color of the marker (Reproduced with permission from des Georges et al. 2016)
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Fig. 11.4. Similarities in allosteric coupling and gating in RyR and IP3R
(a) RyR gating is linked to an outwards rigid body motion of opposing protomers resulting 

in opening of the pore (orange arrows). The ligand-bound closed and open classes are shown 

in yellow and blue. (b, c) Allosteric coupling between RyR (b) and IP3R (c) cytoplasmic 

shell and pore helix via the C-terminal domain. Pore helix and CTD are in black. The rest of 

the molecule is white. Ca2+ (green dot) and IP3 (represented in sticks) are shown in their 

know binding site. Arrows show possible paths of allosteric coupling
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