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Abstract

The causes of neurodegenerative diseases are complex with likely contributions from genetic
susceptibility, and environmental exposures over an organism’s lifetime. In this review, we
examine the role that aquatic models, especially zebrafish, have played in the elucidation of
mechanisms of heavy metal toxicity and nervous system function over the last half-decade. Focus
is applied to cadmium, lead and mercury as significant contributors to central nervous system
morbidity, and to the application of numerous transgenic zebrafish expressing fluorescent reporters
within specific neuronal populations or brain regions enabling high-resolution neurodevelopmental
and neurotoxicology research.

INTRODUCTION

The vertebrate central nervous system (CNS) is an evolutionarily conserved system
consisting of the brain and spinal cord. During embryogenesis, the brain of all vertebrates
partitions along the anterior-posterior axis into the forebrain (prosencephalon), consisting of
the telencephalon and diencephalon; midbrain (mesencephalon); and hindbrain
(rhombencephalon), consisting of the metencephalon and myelencephalon, which then
transition to the spinal cord. In mammals, the telencephalon expands substantially and
envelops both the diencephalon and mesencephalon and becomes the cerebral cortex or
cerebrum, where the seat of consciousness appears to residel, and where voluntary
movement is controlled, and learning, memory, language, and sensory processing occur. In
other vertebrates including fish, the telencephalon is a considerably smaller structure
situated anterior to the mesencephalon and from which the more prominent olfactory bulb
projects. In addition to this major difference, the adult brain of fish, reptiles, amphibians and
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birds differs anatomically from the mammalian brain in that the three major subdivisions of
the brain (fore-, mid- and hindbrain) remain situated along the anterior-posterior axis of the
vertebrate body in contrast to the folding of the fore- and mid-brain into a single, complex
structure in mammals, thus exhibiting a simplified architecture relative to their mammalian
counterparts. Neurodevelopmental disorders (NDDs) can be broadly defined as defects in
growth or development of the central nervous system, which can be caused by genetic or
environmental factors. The latter can include physical trauma, exposure to xenobiotics, and
biological causes such as viral or bacterial infections? during critical periods of nervous
system development. In humans, manifestations of neurodevelopmental disorders are wide-
ranging and complex, and include intellectual disabilities, communication disorders,
traumatic brain injuries, and autism spectrum disorders, epilepsies, and motor and
coordination disorders. Many of these human disorders appear to have model organism
counterparts including rodents and fish, thus enabling experimentation designed to elucidate
the mechanistic bases of their origins. Although outside of the scope of this review, the
reader is referred to several excellent reviews discussing the application of model organisms
towards understanding complex human neurodevelopmental disorders3-5.

In this review, we focus on describing transgenic zebrafish generated over the last decade, in
which specific neuronal populations are labeled with fluorescent tags for /n vivo
visualization of normal and pathological neurodevelopmental processes, and we review the
effect of cadmium (Cd), lead (Pb) and mercury (Hg), on neurodevelopment and
neurodevelopmental outcomes by specifically focusing on the contributions that aquatic
species, mainly fish, have made toward our understanding of the role these metals have on
adverse neurological outcomes in affected populations.

TRANSGENIC ZEBRAFISH USED IN THE STUDY OF NEURODEVELOPMENT

Transgenic zebrafish in which specific neuronal populations or CNS regions are labeled with
fluorescent reporters have provided important insights into neurodevelopment, and are a
promising resource for understanding the effects of neurotoxic compounds on brain
function. The transgenic lines discussed below are summarized in Table 1.

Transgenics that Label Specific Neurons

The ability to generate stable transgenic zebrafish that label specific neuronal populations or
particular regions of the brain has been an extremely useful tool to study neurodevelopment
in the presence of toxins and toxicants by tracking neuronal outgrowth and circuit formation,
and by quantifying changes in fluorescence during exposure as evidence of abnormal
neuronal function’-8. Examples include double-labeling mitochondria to measure
mitochondrial transport, fusion and fission in dopaminergic neuronal axons®; visualizing
cadherin bases cell-cell interactions in the hindbrain with the ctnna promoterl?; tagging
specific neurons with stable GFP expression, including dopaminergic neurons with the 12
promoter!l, monoaminergic neurons with the s/c28a2 promoter!2, and habenular nuclei with
the kctd12.2 promoter to assess monoamine regulation and study asymmetric brain
development!314: and, neural stem cell proliferation and response to neural injury with the
fezf2 promoter!®. Another increasingly important area of research relates to sensory neurons
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and their role in behavior, learning, and emotional disorders!6-18, Multiple transgenic
zebrafish have been developed to study a variety of sensory systems by fluorescently
labeling optic nerves using the gap43 promoter?; olfactory neurons using the inducible
hsp70 promoter?; and single-cell resolution studies of adult telencephalic neural stem cells
using the gfap promoter?1:22, Recently, a transgenic line in which GFP is expressed under
the control of enhancers of the arxa gene was used to demonstrate that diminished dosage of
the arxa gene transcript affects neuronal outgrowth and path finding capabilities resulting in
neurodevelopmental disturbances similar to those observed in patients with copy number
variations of the human ortholog, ARX23; therefore, opening up possibilities for using this
transgenic to characterize xenobiotics that could impact gene dosage and lead to new
therapies. Finally, the impact of support cells, including glial cells, oligodendrocytes, and
corticotropic cells should not be underestimated as these cells outnumber neurons 10:124,
Transgenic lines for support cell imaging include mpz, and o/igZ, which label
oligodendrocytes25-28; pomca, which labels corticotropic cells in the anterior pituitary29-31;
and gfap, which allows visualization of radial-glial cells32,

Transgenics that Alter Neuronal Function

While the transgenic lines listed above can be used to visualize cell types, and investigate
chemical influence, it is also possible to assess how gain or loss of function mutations
impact toxicant susceptibility. An evaluation of viral insertional mutants and their related
phenotypes uncovered novel genomic lesions resulting in defects in gliogenesis, glial
patterning, neurogenesis, and axon guidance that may be useful in future studies of neuronal
function under different environmental conditions33. Other gain or loss of function
transgenics include the loss of function mutant Adac11618 which regulates neural
progenitor differentiation into neurons, and glial-dependent myelination through integration
of the Hedgehog, Notch, and Wnt signaling pathways34-3°; a genetically-encoded calcium
indicator, GCaMP5G, that coupled with optoacoustic imaging enables visualization of
calcium-based neuronal activity3®; and a gain of function mutant of 47b, which causes
early-onset epileptic encephalopathy, and may be a useful mutant for studying chemical
influence on voltage-gated sodium channels3.

Transgenics to Study Neural Degeneration

Advances in public health have led to greater longevity giving rise to an increased number of
people suffering from neurodegenerative diseases, including Parkinson’s and Alzheimer’s
disease38. Although robust causal factors for these increases have eluded epidemiological
analyses, the accumulation of exposures over prolonged lifespans is one possible mechanism
suspected for the observed increase in neurodegenerative diseases39. Zebrafish have emerged
as an important tool to study neurodegenerative diseases*?, resulting in the development of
new transgenic lines that may be used to study these diseases. For example, mutations in
MAPT, which encodes the tau protein, have been causally associated with frontotemporal
dementia*’. A commonly occurring human tau mutation, A152T-tau, consisting of a single
G > A nucleotide change, diminishes tau binding to microtubules and increases
neurofibrillary tangle formation. Recently, this mutation has been introduced into zebrafish
and observed to cause neurodegeneration and proteasomal deficiencies, which could be
partially rescued by pharmacologically upregulating autophagy!. A second tau transgenic
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has been used to study factors influencing oligomer formation and disease progression#2. A
second devastating neurological disorder, amyotrophic lateral sclerosis (ALS), is often
associated with an expansion of a GGGGCC repeat in a non-coding region of the
chromosome 9 open reading frame 72 (C90rf72) locus*3. Recently, a zebrafish C90rf72-GFP
transgenic was developed as a means to characterize therapeutic interventions for ALS*3,
and could potentially be used to better understand the influence of toxic insults on disease
onset and progression. Many neurodegenerative diseases are marked by programmed cell
death, and having an effective and efficient way to replicate the disease progression could be
instrumental in developing treatments**. This line of research could benefit from established
transgenic zebrafish such as a recently developed line that allows for cell type-specific
caspase-mediated (ca8) apoptosis based on a tamoxifen-inducible system?4.

OVERVIEW OF HEAVY METALS AND NEUROTOXICITY

Heavy metals are naturally occurring metals exhibiting high atomic weights and high
densities. Many heavy metals, including copper, iron, manganese, nickel, selenium, and zinc
have important biological roles as cofactors for numerous proteins and enzymes. However, a
significant number of heavy metals have no known biological roles, including cadmium,
lead, and mercury but instead exhibit highly toxic properties when consumed by animals,
including humans, and are classified as toxic heavy metals. Although naturally occurring,
human activities, particularly through industrial processes, have led to widespread
distribution of toxic metals throughout the biosphere. The widened distribution range
increases the likelihood that humans will be exposed to toxic heavy metals through air,
water, contaminated soil, and food. The World Health Organization lists cadmium, lead, and
mercury in its list of top 10 chemicals of major public health concern®®, and exposure to
these metals has been linked to numerous neurodevelopmental and neurodegenerative
disorders in humans#6:47. In the following section, we summarize the latest research on the
neurotoxicity of these three elements, with emphasis on the contributions made by aquatic
models, primarily zebrafish, to our understanding of their toxic mechanisms.

PATHOLOGICAL EFFECTS OF HEAVY METALS ON FISH
NEURODEVELOPMENT
Cadmium (Cd)

A variety of fish species have been used to study the effects of Cd exposure, including
fathead minnow, rainbow trout, and sea bass*®-°1, These studies, summarized in Table 2,
were performed in larvae, juveniles and adults, and showed that Cd is capable of increasing
auditory thresholds, increasing growth rates, impairing social and escape behavior,
accumulating in the olfactory bulbs, and damaging the sensory macula and neuromast#8-51,
Even at very low levels (1.9 ppb), Cd accumulates in the brain, causing an increase in
expression of apoptotic genes (e.g., c-jurn), and detoxifying genes (e.g., mtZ and mt2)°2. This
trend continues as the dose is increased to 200 ppb, as long as the exposure time remains
less than 24 hours with one study showing an induction of the antioxidant gene, nr7-2, in the
olfactory bulb and telencephalon®3 and another showing induction of mt2and smtbin the
brain®*. As the exposure time (2 — 30 days) and concentration increase (180 — 1000 ppb),
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these protective mechanisms appear to be overwhelmed and signs of stress and tissue
damage appear®>-98. This damage includes changes in retinal neuronal morphology,
increased sensitivity to light, decreases in glial fibrillary acidic protein (an astroglial cell
cytoskeleton protein), and increases in reactive oxygen species (ROS), nitric oxide, and
malondialdehyde>5-58. The LC50 levels for Cd are approximately 27 ppm, which is coupled
to AChE inhibition®®, whereas brain homogenates exposed to LC50 levels for 10 minutes
show evidence of nucleotide hydrolysis®?, indicative of DNA damage. In larval zebrafish the
trend seems similar, including increases in mt2and smtb expression®® followed by oxidative
stress, abnormal histology, immunotoxicity, cell death, and a reduction in olfactory-
dependent predator responses seen at mid-range levels (112 — 970 ppb)20:62.63 These data
suggest that in adult and larval fish, Cd exposure induces oxidative stress that at high doses
or chronic exposures overwhelms natural defense systems leading to systemic damage,
possibly through apoptotic mechanisms.

In zebrafish, low level (40 ppb) developmental exposure to cadmium results in hyperactivity,
decreased otolith size (inner ear gravity sensing biocrystals), and increases in rotational
movement6, While short term (24 — 120 hours) moderate exposures (112 — 560 ppb), as
seen in larvae, show increases in antioxidant and detoxifying (cyp19a1band mtl) gene
expression, oxidative stress, immunotoxicity, damage to the olfactory pits and neuromast
cells, and a reduction in olfactory-dependent predator response®4-67. An interesting finding
from a recently published study revealed that /n vivoand /n vitro exposure to 112 ppb Cd
resulted in anti-estrogenic activity®4, although the mechanism remains unknown. At higher
concentrations (2 ppm), indications of neural crest effects were apparent, including
disruptions in neural crest gene expression patterns and hypopigmentation; in addition,
neuromast damage, and eye hypoplasia were reported®8.69. Paradoxically, two studies using
very high Cd levels (~7 and 11 ppm) found hyperpigmentation, as well as reductions in
retinal ganglion projections, optic neuronal projections, a complete absence of
photoreceptors, decreased head size, unclear brain divisions, and reduced proneuronal gene
expression’0:71, Longer (50 days) exposure to 20 ppb Cd resulted in reduction of olfactory-
dependent predator response in juvenile fish, in a manner similar to that observed in the
larval studies referenced above2%:62.72 \which may reflect equivalent accumulations of
cadmium in the three studies despite the differences in Cd levels at the onset of the
experiments. Overall, embryonic Cd exposure in zebrafish shows similar responses as in
adults, including indicators of oxidative stress but the developing sensory system appears to
be particularly sensitive to Cd toxicity.

Lead has received attention in recent years due to contamination of multiple public water
systems. The effects of lead on zebrafish have been summarized in a recent review by Lee
and Freeman (2014), including discussions on neurodegenerative diseases and the role of Pb
in their development, and the use of zebrafish as a model organism’3. As such we discuss
results published since 2014, which are summarized in Table 3. Unlike Cd studies, the
effects of Pb exposure during development have been examined at much lower
concentrations, ranging from 10 to ~200 ppb. At lower levels (< 100 ppb), studies show that
Pb alters a number of genes associated with nervous system development’4, including
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increased GABA gene and protein expression early in development, which decreases after
hatching’®. These changes are possibly associated with decreased neuronal axon length, and
reduced activity (hypoactivity)8. At levels above 100 ppb, zebrafish exhibit decreased adult
learning, and altered color preferences’”:"8, with the former persisting for up to three
generations after the initial exposure. These findings confirm previous observations
regarding interference with axon development, and learning and memory deficits but the
underlying mechanisms and windows of susceptibility require further investigation’3.

Methylmercury (MeHg)

Studies investigating the effects of mercury exposure have used both zebrafish and fathead
minnows (see Table 4). In adults, these studies have shown that at levels less than 200 ppb,
MeHg inhibits membrane adenosine deaminase, and results in /m¢2 gene induction in the
brain but otherwise has minimal impact on other brain transcripts’%-81. Mid-range levels
(between 720 to 5500 ppb) show significant Hg accumulation in the brain®2, delayed
hatching, and increased mortality83, and the induction of hyperactive behavior coupled with
decreased levels of the neurotransmitters, serotonin and dopamine8485. At high doses (10 —
13 ppm), studies show alterations in proteins associated with gap junctions and oxidative
phosphorylation, large increases in mz2, and mitochondrial dysfunction81:82.86,

Studies in zebrafish embryos find that this stage is significantly more sensitive to MeHg with
significant molecular, cellular and behavioral effects emerging at much lower levels. For
example, embryonic exposure to Hg levels less than 30 ppb results in adult visual deficits,8”
decreased neural tube cell profileration88, hyperactivity, and mortality89. Levels above 50
ppb result is significant toxic outcomes including delayed hatching®8, decreased head size®,
altered cAMP signaling®, and mortality88.

CONCLUSION

Research is still needed to expand understanding into the effects of heavy metal exposure on
neurodevelopment and neurodegenerative diseases. However, recent advances in the
production of transgenic zebrafish lines for neurodevelopment studies, and the use of other
aquatic species to study metal toxicity have returned promising results that can be used to
understand mechanisms of metal toxicity, and may lead to interventions for exposed
populations or new regulatory policies aimed at reducing the levels of heavy metals in the
environment. Although still a vexing problem, the current is moving in the right direction
and aquatic models are helping navigate the perilous waters of heavy metal toxicity.
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