
THE NEURODEVELOPMENTAL TOXICITY OF HEAVY METALS: A 
FISH PERSPECTIVE

Adrian J. Green1,2 and Antonio Planchart1,2,3,4

1Graduate Program in Toxicology, North Carolina State University, Raleigh NC 27695

2Department of Biological Sciences, North Carolina State University, Raleigh NC 27695

3Center for Human Health and the Environment, North Carolina State University, Raleigh NC 
27695

4W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh NC 27695

Abstract

The causes of neurodegenerative diseases are complex with likely contributions from genetic 

susceptibility, and environmental exposures over an organism’s lifetime. In this review, we 

examine the role that aquatic models, especially zebrafish, have played in the elucidation of 

mechanisms of heavy metal toxicity and nervous system function over the last half-decade. Focus 

is applied to cadmium, lead and mercury as significant contributors to central nervous system 

morbidity, and to the application of numerous transgenic zebrafish expressing fluorescent reporters 

within specific neuronal populations or brain regions enabling high-resolution neurodevelopmental 

and neurotoxicology research.

INTRODUCTION

The vertebrate central nervous system (CNS) is an evolutionarily conserved system 

consisting of the brain and spinal cord. During embryogenesis, the brain of all vertebrates 

partitions along the anterior-posterior axis into the forebrain (prosencephalon), consisting of 

the telencephalon and diencephalon; midbrain (mesencephalon); and hindbrain 

(rhombencephalon), consisting of the metencephalon and myelencephalon, which then 

transition to the spinal cord. In mammals, the telencephalon expands substantially and 

envelops both the diencephalon and mesencephalon and becomes the cerebral cortex or 

cerebrum, where the seat of consciousness appears to reside1, and where voluntary 

movement is controlled, and learning, memory, language, and sensory processing occur. In 

other vertebrates including fish, the telencephalon is a considerably smaller structure 

situated anterior to the mesencephalon and from which the more prominent olfactory bulb 

projects. In addition to this major difference, the adult brain of fish, reptiles, amphibians and 
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birds differs anatomically from the mammalian brain in that the three major subdivisions of 

the brain (fore-, mid- and hindbrain) remain situated along the anterior-posterior axis of the 

vertebrate body in contrast to the folding of the fore- and mid-brain into a single, complex 

structure in mammals, thus exhibiting a simplified architecture relative to their mammalian 

counterparts. Neurodevelopmental disorders (NDDs) can be broadly defined as defects in 

growth or development of the central nervous system, which can be caused by genetic or 

environmental factors. The latter can include physical trauma, exposure to xenobiotics, and 

biological causes such as viral or bacterial infections2 during critical periods of nervous 

system development. In humans, manifestations of neurodevelopmental disorders are wide-

ranging and complex, and include intellectual disabilities, communication disorders, 

traumatic brain injuries, and autism spectrum disorders, epilepsies, and motor and 

coordination disorders. Many of these human disorders appear to have model organism 

counterparts including rodents and fish, thus enabling experimentation designed to elucidate 

the mechanistic bases of their origins. Although outside of the scope of this review, the 

reader is referred to several excellent reviews discussing the application of model organisms 

towards understanding complex human neurodevelopmental disorders3–6.

In this review, we focus on describing transgenic zebrafish generated over the last decade, in 

which specific neuronal populations are labeled with fluorescent tags for in vivo 
visualization of normal and pathological neurodevelopmental processes, and we review the 

effect of cadmium (Cd), lead (Pb) and mercury (Hg), on neurodevelopment and 

neurodevelopmental outcomes by specifically focusing on the contributions that aquatic 

species, mainly fish, have made toward our understanding of the role these metals have on 

adverse neurological outcomes in affected populations.

TRANSGENIC ZEBRAFISH USED IN THE STUDY OF NEURODEVELOPMENT

Transgenic zebrafish in which specific neuronal populations or CNS regions are labeled with 

fluorescent reporters have provided important insights into neurodevelopment, and are a 

promising resource for understanding the effects of neurotoxic compounds on brain 

function. The transgenic lines discussed below are summarized in Table 1.

Transgenics that Label Specific Neurons

The ability to generate stable transgenic zebrafish that label specific neuronal populations or 

particular regions of the brain has been an extremely useful tool to study neurodevelopment 

in the presence of toxins and toxicants by tracking neuronal outgrowth and circuit formation, 

and by quantifying changes in fluorescence during exposure as evidence of abnormal 

neuronal function7,8. Examples include double-labeling mitochondria to measure 

mitochondrial transport, fusion and fission in dopaminergic neuronal axons9; visualizing 

cadherin bases cell-cell interactions in the hindbrain with the ctnna promoter10; tagging 

specific neurons with stable GFP expression, including dopaminergic neurons with the th2 
promoter11, monoaminergic neurons with the slc18a2 promoter12, and habenular nuclei with 

the kctd12.2 promoter to assess monoamine regulation and study asymmetric brain 

development13,14; and, neural stem cell proliferation and response to neural injury with the 

fezf2 promoter15. Another increasingly important area of research relates to sensory neurons 
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and their role in behavior, learning, and emotional disorders16–18. Multiple transgenic 

zebrafish have been developed to study a variety of sensory systems by fluorescently 

labeling optic nerves using the gap43 promoter19; olfactory neurons using the inducible 

hsp70 promoter20; and single-cell resolution studies of adult telencephalic neural stem cells 

using the gfap promoter21,22. Recently, a transgenic line in which GFP is expressed under 

the control of enhancers of the arxa gene was used to demonstrate that diminished dosage of 

the arxa gene transcript affects neuronal outgrowth and path finding capabilities resulting in 

neurodevelopmental disturbances similar to those observed in patients with copy number 

variations of the human ortholog, ARX23; therefore, opening up possibilities for using this 

transgenic to characterize xenobiotics that could impact gene dosage and lead to new 

therapies. Finally, the impact of support cells, including glial cells, oligodendrocytes, and 

corticotropic cells should not be underestimated as these cells outnumber neurons 10:124. 

Transgenic lines for support cell imaging include mpz, and olig2, which label 

oligodendrocytes25–28; pomca, which labels corticotropic cells in the anterior pituitary29–31; 

and gfap, which allows visualization of radial-glial cells32.

Transgenics that Alter Neuronal Function

While the transgenic lines listed above can be used to visualize cell types, and investigate 

chemical influence, it is also possible to assess how gain or loss of function mutations 

impact toxicant susceptibility. An evaluation of viral insertional mutants and their related 

phenotypes uncovered novel genomic lesions resulting in defects in gliogenesis, glial 

patterning, neurogenesis, and axon guidance that may be useful in future studies of neuronal 

function under different environmental conditions33. Other gain or loss of function 

transgenics include the loss of function mutant hdac1hi1618, which regulates neural 

progenitor differentiation into neurons, and glial-dependent myelination through integration 

of the Hedgehog, Notch, and Wnt signaling pathways34–35; a genetically-encoded calcium 

indicator, GCaMP5G, that coupled with optoacoustic imaging enables visualization of 

calcium-based neuronal activity36; and a gain of function mutant of fhf1b, which causes 

early-onset epileptic encephalopathy, and may be a useful mutant for studying chemical 

influence on voltage-gated sodium channels37.

Transgenics to Study Neural Degeneration

Advances in public health have led to greater longevity giving rise to an increased number of 

people suffering from neurodegenerative diseases, including Parkinson’s and Alzheimer’s 

disease38. Although robust causal factors for these increases have eluded epidemiological 

analyses, the accumulation of exposures over prolonged lifespans is one possible mechanism 

suspected for the observed increase in neurodegenerative diseases39. Zebrafish have emerged 

as an important tool to study neurodegenerative diseases40, resulting in the development of 

new transgenic lines that may be used to study these diseases. For example, mutations in 

MAPT, which encodes the tau protein, have been causally associated with frontotemporal 

dementia41. A commonly occurring human tau mutation, A152T-tau, consisting of a single 

G > A nucleotide change, diminishes tau binding to microtubules and increases 

neurofibrillary tangle formation. Recently, this mutation has been introduced into zebrafish 

and observed to cause neurodegeneration and proteasomal deficiencies, which could be 

partially rescued by pharmacologically upregulating autophagy41. A second tau transgenic 
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has been used to study factors influencing oligomer formation and disease progression42. A 

second devastating neurological disorder, amyotrophic lateral sclerosis (ALS), is often 

associated with an expansion of a GGGGCC repeat in a non-coding region of the 

chromosome 9 open reading frame 72 (C9orf72) locus43. Recently, a zebrafish C9orf72-GFP 

transgenic was developed as a means to characterize therapeutic interventions for ALS43, 

and could potentially be used to better understand the influence of toxic insults on disease 

onset and progression. Many neurodegenerative diseases are marked by programmed cell 

death, and having an effective and efficient way to replicate the disease progression could be 

instrumental in developing treatments44. This line of research could benefit from established 

transgenic zebrafish such as a recently developed line that allows for cell type-specific 

caspase-mediated (ca8) apoptosis based on a tamoxifen-inducible system44.

OVERVIEW OF HEAVY METALS AND NEUROTOXICITY

Heavy metals are naturally occurring metals exhibiting high atomic weights and high 

densities. Many heavy metals, including copper, iron, manganese, nickel, selenium, and zinc 

have important biological roles as cofactors for numerous proteins and enzymes. However, a 

significant number of heavy metals have no known biological roles, including cadmium, 

lead, and mercury but instead exhibit highly toxic properties when consumed by animals, 

including humans, and are classified as toxic heavy metals. Although naturally occurring, 

human activities, particularly through industrial processes, have led to widespread 

distribution of toxic metals throughout the biosphere. The widened distribution range 

increases the likelihood that humans will be exposed to toxic heavy metals through air, 

water, contaminated soil, and food. The World Health Organization lists cadmium, lead, and 

mercury in its list of top 10 chemicals of major public health concern45, and exposure to 

these metals has been linked to numerous neurodevelopmental and neurodegenerative 

disorders in humans46,47. In the following section, we summarize the latest research on the 

neurotoxicity of these three elements, with emphasis on the contributions made by aquatic 

models, primarily zebrafish, to our understanding of their toxic mechanisms.

PATHOLOGICAL EFFECTS OF HEAVY METALS ON FISH 

NEURODEVELOPMENT

Cadmium (Cd)

A variety of fish species have been used to study the effects of Cd exposure, including 

fathead minnow, rainbow trout, and sea bass48–51. These studies, summarized in Table 2, 

were performed in larvae, juveniles and adults, and showed that Cd is capable of increasing 

auditory thresholds, increasing growth rates, impairing social and escape behavior, 

accumulating in the olfactory bulbs, and damaging the sensory macula and neuromast48–51. 

Even at very low levels (1.9 ppb), Cd accumulates in the brain, causing an increase in 

expression of apoptotic genes (e.g., c-jun), and detoxifying genes (e.g., mt1 and mt2)52. This 

trend continues as the dose is increased to 200 ppb, as long as the exposure time remains 

less than 24 hours with one study showing an induction of the antioxidant gene, nrf-2, in the 

olfactory bulb and telencephalon53 and another showing induction of mt2 and smtb in the 

brain54. As the exposure time (2 – 30 days) and concentration increase (180 – 1000 ppb), 
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these protective mechanisms appear to be overwhelmed and signs of stress and tissue 

damage appear55–58. This damage includes changes in retinal neuronal morphology, 

increased sensitivity to light, decreases in glial fibrillary acidic protein (an astroglial cell 

cytoskeleton protein), and increases in reactive oxygen species (ROS), nitric oxide, and 

malondialdehyde55–58. The LC50 levels for Cd are approximately 27 ppm, which is coupled 

to AChE inhibition59, whereas brain homogenates exposed to LC50 levels for 10 minutes 

show evidence of nucleotide hydrolysis60, indicative of DNA damage. In larval zebrafish the 

trend seems similar, including increases in mt2 and smtb expression61 followed by oxidative 

stress, abnormal histology, immunotoxicity, cell death, and a reduction in olfactory-

dependent predator responses seen at mid-range levels (112 – 970 ppb)20,62,63. These data 

suggest that in adult and larval fish, Cd exposure induces oxidative stress that at high doses 

or chronic exposures overwhelms natural defense systems leading to systemic damage, 

possibly through apoptotic mechanisms.

In zebrafish, low level (40 ppb) developmental exposure to cadmium results in hyperactivity, 

decreased otolith size (inner ear gravity sensing biocrystals), and increases in rotational 

movement16. While short term (24 – 120 hours) moderate exposures (112 – 560 ppb), as 

seen in larvae, show increases in antioxidant and detoxifying (cyp19a1b and mt1) gene 

expression, oxidative stress, immunotoxicity, damage to the olfactory pits and neuromast 

cells, and a reduction in olfactory-dependent predator response64–67. An interesting finding 

from a recently published study revealed that in vivo and in vitro exposure to 112 ppb Cd 

resulted in anti-estrogenic activity64, although the mechanism remains unknown. At higher 

concentrations (2 ppm), indications of neural crest effects were apparent, including 

disruptions in neural crest gene expression patterns and hypopigmentation; in addition, 

neuromast damage, and eye hypoplasia were reported68,69. Paradoxically, two studies using 

very high Cd levels (~7 and 11 ppm) found hyperpigmentation, as well as reductions in 

retinal ganglion projections, optic neuronal projections, a complete absence of 

photoreceptors, decreased head size, unclear brain divisions, and reduced proneuronal gene 

expression70,71. Longer (50 days) exposure to 20 ppb Cd resulted in reduction of olfactory-

dependent predator response in juvenile fish, in a manner similar to that observed in the 

larval studies referenced above20,62,72, which may reflect equivalent accumulations of 

cadmium in the three studies despite the differences in Cd levels at the onset of the 

experiments. Overall, embryonic Cd exposure in zebrafish shows similar responses as in 

adults, including indicators of oxidative stress but the developing sensory system appears to 

be particularly sensitive to Cd toxicity.

Lead (Pb)

Lead has received attention in recent years due to contamination of multiple public water 

systems. The effects of lead on zebrafish have been summarized in a recent review by Lee 

and Freeman (2014), including discussions on neurodegenerative diseases and the role of Pb 

in their development, and the use of zebrafish as a model organism73. As such we discuss 

results published since 2014, which are summarized in Table 3. Unlike Cd studies, the 

effects of Pb exposure during development have been examined at much lower 

concentrations, ranging from 10 to ~200 ppb. At lower levels (< 100 ppb), studies show that 

Pb alters a number of genes associated with nervous system development74, including 

Green and Planchart Page 5

Comp Biochem Physiol C Toxicol Pharmacol. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



increased GABA gene and protein expression early in development, which decreases after 

hatching75. These changes are possibly associated with decreased neuronal axon length, and 

reduced activity (hypoactivity)76. At levels above 100 ppb, zebrafish exhibit decreased adult 

learning, and altered color preferences77,78, with the former persisting for up to three 

generations after the initial exposure. These findings confirm previous observations 

regarding interference with axon development, and learning and memory deficits but the 

underlying mechanisms and windows of susceptibility require further investigation73.

Methylmercury (MeHg)

Studies investigating the effects of mercury exposure have used both zebrafish and fathead 

minnows (see Table 4). In adults, these studies have shown that at levels less than 200 ppb, 

MeHg inhibits membrane adenosine deaminase, and results in mt2 gene induction in the 

brain but otherwise has minimal impact on other brain transcripts79–81. Mid-range levels 

(between 720 to 5500 ppb) show significant Hg accumulation in the brain82, delayed 

hatching, and increased mortality83, and the induction of hyperactive behavior coupled with 

decreased levels of the neurotransmitters, serotonin and dopamine84,85. At high doses (10 – 

13 ppm), studies show alterations in proteins associated with gap junctions and oxidative 

phosphorylation, large increases in mt2, and mitochondrial dysfunction81,82,86.

Studies in zebrafish embryos find that this stage is significantly more sensitive to MeHg with 

significant molecular, cellular and behavioral effects emerging at much lower levels. For 

example, embryonic exposure to Hg levels less than 30 ppb results in adult visual deficits,87 

decreased neural tube cell profileration88, hyperactivity, and mortality89. Levels above 50 

ppb result is significant toxic outcomes including delayed hatching88, decreased head size90, 

altered cAMP signaling90, and mortality88.

CONCLUSION

Research is still needed to expand understanding into the effects of heavy metal exposure on 

neurodevelopment and neurodegenerative diseases. However, recent advances in the 

production of transgenic zebrafish lines for neurodevelopment studies, and the use of other 

aquatic species to study metal toxicity have returned promising results that can be used to 

understand mechanisms of metal toxicity, and may lead to interventions for exposed 

populations or new regulatory policies aimed at reducing the levels of heavy metals in the 

environment. Although still a vexing problem, the current is moving in the right direction 

and aquatic models are helping navigate the perilous waters of heavy metal toxicity.
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