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Complex life cycles characterized by uncertainty at transitions between larval/

juvenile and adult environments could favour irreversible physiological

plasticity at such transitions. To assess whether thermal tolerance of intertidal

mussels (Mytilus californianus) adjusts to post-settlement environmental con-

ditions, we collected juveniles from their thermally buffered microhabitat

from high- and low-shore locations at cool (wave-exposed) and warm

(wave-protected) sites. Juveniles were transplanted to unsheltered cages at

the two low sites or placed in a common garden. Juveniles transplanted to

the warm site for one month in summer had higher thermal tolerance, regard-

less of origin site. By contrast, common-garden juveniles from all sites had

lower tolerance indistinguishable from exposed site transplants. After six

months in the field plus a common garden period, there was a trend for

higher thermal tolerance at the protected site, while reduced thermal tolerance

at both sites indicated seasonal acclimatization. Thermal tolerance and growth

rate were inversely related after one but not six months; protected-site trans-

plants were more tolerant but grew more slowly. In contrast to juveniles,

adults from low-shore exposed and protected sites retained differences in ther-

mal tolerance after common garden treatment in summer. Both irreversible

and reversible forms of plasticity must be considered in organismal responses

to changing environments.
1. Introduction
Animals’ performance in stressful environments could depend on gene–environ-

ment ‘match–mismatch’ [1] or on physiological plasticity expressed either during

development or in response to variation in the adult environment [2,3]. Delineat-

ing the relative roles and magnitudes of these phenomena is particularly relevant

to forecasting the effects of global change [4,5]. Reversible adult plasticity can be

an effective strategy in sessile organisms exposed to stressful environments after

recruitment to the adult population [6], for example, by allowing long-lived

organisms to adjust to predictable environmental changes, such as seasonal temp-

erature cycles [7]. Adult plasticity affects thermal tolerance in diverse terrestrial

and marine species [8].

By contrast, developmental plasticity is generally considered irreversible and

results from individuals experiencing different environments before adulthood

[9]. For example, developmental temperature has been shown to induce irrevers-

ible phenotypic changes in Drosophila, parasitoid wasps and zebrafish [10–12].

Developmental plasticity may be adaptive in organisms with high gene flow

among populations inhabiting disparate environments [13], in cases of high

spatial variability within populations [14], and for species that experience

considerable temporal environmental variation across generations [14]. These

scenarios result in offspring inhabiting environments that vary unpredictably

from the parental environment. Complex life cycles, particularly in the numerous
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species in which different life-history stages occupy distinct

environmental niches, could similarly favour the expression

of irreversible plasticity during periods of transition between

environments [13]. Aside from studies on insects [10,11,15],

relatively little is known about the flexibility of physiological

mechanisms during these transitions.

Here, we investigate plasticity of thermal tolerance around

such a life-history transition—recruitment of post-larval

juveniles to adult aggregations—in the ecologically dominant

rocky intertidal mussel Mytilus californianus. The dynamic

nature and spatial heterogeneity of the rocky intertidal zone

[16], along with aspects of this species’ life history, may pro-

mote both reversible and irreversible forms of plasticity.

Adult M. californianus are sessile, can live for 50þ years [17],

and experience predictable seasonal temperature changes.

Accordingly, adult mussels exhibit seasonal plasticity in gill

phospholipid membrane composition [18] and in heat shock

protein (Hsp) induction temperature [19]. Mytilus californianus
also experience large temperature fluctuations associated with

the semidiurnal tidal cycle, corresponding with short-term

plasticity in membrane composition [16] and defenses against

oxidative stress [20]. Other aspects of this mussel’s life history

could promote irreversible, developmental plasticity of thermal

tolerance [21]. Adults produce long-lived planktonic larvae (up

to 45 days; [22]) that can disperse at least 50 km [23], thereby

facilitating gene flow [24] and probably increasing environ-

mental variation across generations. There also is pronounced

spatial variability in body temperature within mussel beds

[16], further reducing the predictability of a settling larva’s

future adult micro-environment. However, expressing the regu-

latory mechanisms that allow juveniles to switch between

phenotypes may be costly [7], potentially constraining other

processes such as growth [12]. Given M. californianus’ role as

an ecosystem engineer [25], if developmental plasticity does

allow juveniles to match their thermal tolerance to their post-

recruitment micro-environment—even if such adjustments are

limited in magnitude [5,26]—the implications could extend

throughout the rocky intertidal community.

We assessed thermal tolerance of juvenile and adult

M. californianus from multiple intertidal sites and measured

growth rates of juveniles to: (i) determine whether fixed genetic

differences or phenotypic plasticity determine juveniles’

thermal tolerance, (ii) examine potential trade-offs between

juveniles’ thermal tolerance and growth, and (iii) compare

plasticity of thermal tolerance in juveniles and adults from

the same sites. Our data suggest that juveniles irreversibly

adjust thermal tolerance based on post-recruitment environ-

mental conditions. Such plasticity and its associated costs can

affect how taxa that experience unique environments through-

out development will cope with environmental change.
2. Material and methods
(a) Plasticity of thermal tolerance and growth rate in

juvenile mussels
Juvenile mussels (M. californianus, n ¼ 735, shell length 5–14.5 mm)

were collected in June 2016 from high- and low-shore beds at both

wave-exposed (cool) and wave-protected (warm) microsites at

Hopkins Marine Station (HMS) in Pacific Grove, CA, USA

(36.62178 N, 121.90438 W) [16,20]. Low- and high-shore sites

(approx. 1.5 and approx. 1.75 m above mean lower low water,

respectively) within each microsite were situated within 10 m of
each other. These exposed and protected microsites differ in wave

splash, solar irradiance and mussel body temperatures. Individuals

were labelled with coded apiarist tags. Juveniles of this size

still inhabit algal tufts and/or interstices of the byssal thread net-

work under and between larger adults [22]; these microhabitats

shelter juveniles from the direct solar heating and desiccation risk

characteristic of the adult micro-environment [27].

(i) Juvenile one-month and six-month reciprocal transplant
studies

Mussels from each of the four origin sites were transplanted to a

low-shore location at either their original wave-exposure site or

the other site during early summer. Juveniles from each site were

placed inside a mesh bag, enclosed within a stainless steel anti-

predator cage (3.3 mm mesh), and attached to an acrylic plate

(electronic supplementary material, figure S1). The plates were

bolted onto open patches of rock, exposing the juveniles to unshel-

tered conditions, on 21 June 2016. Transplanted individuals were

retrieved after one month (July) or six months (December)

(electronic supplementary material, figure S2).

Survival was high during the one-month experiments at

both transplant sites (99%) (electronic supplementary material,

table S1). Owing to tag loss and/or uncertain fate of numerous

individuals, survival could not be quantified in the six-month

experiment.

(ii) Juvenile one-month common garden study
Shifts in juveniles’ thermal physiology could change with recent

environmental experience or simply with age [28]. To begin to

tease apart these factors, individuals from each origin site (n ¼ 24

per site) were exposed to a laboratory common garden treatment

that ran in parallel with the one-month transplant study. These

mussels were continuously submerged in a flow-through seawater

tank (temperature 12.4–15.28C) at HMS. Phytoplankton food in the

flow-through seawater was supplemented once per day by adding

approximately 1 ml of concentrated Shellfish Diet 1800 (Reed

Mariculture) and stopping water flow for approximately 1.5 h.

(iii) Juvenile six-month reciprocal transplant plus common
garden study

Juveniles from the six-month transplant study not assayed

immediately for thermal tolerance were kept continuously sub-

merged in common-garden conditions (temperature 14.38C–

15.48C) in a recirculating aquarium system at Loyola Marymount

University (LMU) and fed as described above for one month

after retrieval from the field. Thermal tolerance assays were then

repeated to test for persistent effects of transplant environment.

Owing to tag losses, the origin wave exposure was unknown for

these individuals (electronic supplementary material, figure S2).

(iv) Juvenile growth rate
Initial and final measurements of shell length, which is correlated

with mass in Mytilus [29], were made with digital calipers and

used to determine a daily growth coefficient. This coefficient rep-

resents proportional change in length per day, assuming a

constant growth rate throughout the study. For individuals in

the six-month field study, growth coefficients were calculated sep-

arately for zero to one month and one to six months. Owing to tag

losses, growth could not be quantified in the six-month reciprocal

transplant plus common garden study.

(b) Transplant site temperature measurements
To estimate thermal variation between the transplant sites, iButton

temperature dataloggers (model DS1921G, Maxim Integrated,

San Jose, CA, USA) were embedded in silicon-filled adult
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mussel shells (approx. 55 mm shell length; [16]) and deployed

within the transplant cages (n ¼ 5 per site). Although these adult

mimics record different ‘body’ temperatures than those experi-

enced by juveniles [27], they allow between-site comparisons.

The dataloggers recorded temperature (0.58C resolution) every

30 min for 30 days in summer. They were then reprogrammed to

record every 120 min (owing to memory constraints) for the six-

month field study. This longer sampling interval probably

missed many daily maximum temperatures [30], but it provides

an overall assessment of thermal differences between the sites.

Data from all functional dataloggers at each site and time were

averaged for analyses.

(c) Plasticity of thermal tolerance in adult mussels
In July 2016, we collected approximately 50 adult mussels

(40–55 mm shell length) from both the exposed-low and pro-

tected-low origin sites. Half of these individuals were assayed

for thermal tolerance within 6 days of collection. The remaining

individuals were placed in common garden conditions for 19–22

days before repeating the thermal tolerance assay.

(d) Thermal tolerance assays
Thermal tolerance assays were conducted in air to mimic hot,

low-tide conditions. To determine the thermal tolerance of field-

acclimatized juveniles from each of the four origin sites, we

exposed individuals to one of three temperatures (n ¼ 6–8 per

temperature per site). Each individual was placed in a 0.6 ml

microcentrifuge tube, and a 1 � 1 cm seawater-saturated labora-

tory tissue was placed at the bottom of the tube to maintain

humidity. The tubes were placed in a thermalcycler, which

ramped temperature up from 208C at 0.18C min21 [16,30]. Upon

reaching the target temperature (35.88C, 37.78C or 38.68C), temp-

erature was held constant for 1 h before ramping down to 208C
at 0.38C min21. Target temperatures were chosen based on the

adult LT50 for this species, approximately 388C [13]. For sub-

sequent assays, we preserved the ramping profiles but used a

larger chamber containing a seawater-saturated laboratory tissue:

common-garden and one-month reciprocal transplant juveniles

in 1.5 ml microcentrifuge tubes; six-month juveniles in 15 ml

tubes; adults in 50 ml tubes. The tubes were submerged in a

water bath programmed with the ramp profile. Air temperature

inside one to two tubes was monitored with a thermocouple to

ensure consistency.

Immediately after the ramp, individuals were returned to a

flow-through tank at HMS (or the aquarium system at LMU)

and fed once per day as described above. Survival was scored

after 7 days. Open mussels that did not respond to mechanical

stimulation by closing, as well as mussels that opened upon

mechanical stimulation, were scored as dead.

(e) Statistics
(i) Thermal tolerance
Survival data were analysed using the glmulti package in R [31] to

perform exhaustive model selection, retaining the terms that

provided the most informative binomial general linear model.

The full model for juveniles at one month included origin and

treatment (field-acclimatized, transplant site (exposed or protected)

or common garden) as factors, with assay temperature as a continu-

ous covariate. We included interactions between origin and

temperature and between origin and treatment to allow for

origin-specific patterns. For the juvenile six months plus common

garden analysis, the full model included treatment (exposed or pro-

tected), origin shore height (high or low), and temperature, as well

as interactions of treatment with the other two predictors. For

adults, the full model included origin site and treatment (field-

acclimatized or common garden), temperature and interactions of
treatment with the other two predictors. The best model was

chosen using a modified Akaike’s information criterion

(AICc) adjusted for small sample sizes [32]. Statistical significance

(a ¼ 0.05) and odds ratios are presented from the best model for

each analysis. In each analysis, there was another equally parsimo-

nious model (delta AICc , 2.0) [33], but these alternate models did

not change the interpretations.

(ii) Growth rate
To analyse growth data, we used the model selection approach

described above. For juvenile growth from zero to one month

(n ¼ 658, electronic supplementary material, table S2), the full

model included origin site, treatment and their interaction. For

the 48 individuals measured in both the zero to one month and

the one to six month intervals, the full model included origin site,

treatment and time interval. We also included interactions between

origin site and treatment, origin site and time, and treatment and

time to allow for more complex patterns. For both analyses, initial

shell length was included as a continuous covariate to account for

allometric effects.
3. Results
(a) Transplant site temperatures
(i) One-month transplant
The average daily range of temperature was three times greater

at the protected site (8.18C versus 2.78C) in the one-month

study (electronic supplementary material, figure S3a and

table S3). The exposed site reached a maximum of 20.38C; the

protected site exceeded this temperature on 15 days, reaching

a maximum of 31.38C.

(ii) Six-month transplant
During the six-month study the protected site had a greater

mean daily temperature range, reaching high temperatures

more frequently. Daily temperature range decreased at both

sites from summer to autumn, and the absolute difference

between the sites grew smaller (electronic supplementary

material, table S3).

(b) Origin site and recent environment influence
juvenile thermal tolerance

(i) One month
The best model for juvenile survival included significant

effects of treatment, origin and temperature (table 1). The

odds of survival for transplants to the protected site were esti-

mated at more than 10 times those for individuals held in

common garden ( p , 0.001) or transplanted to the exposed

site ( p , 0.001); protected-site transplants had roughly

four times the odds of survival as field-acclimatized mussels

( p ¼ 0.019) (table 1; post hoc p-values generated using multcomp
R package [34]). These treatment differences were most pro-

nounced at 37.78C (figure 1). It is possible the slightly lower

survival of field-acclimatized juveniles (figure 1) was owing

to low oxygen content of their small tubes at the end of the

heat ramps, but this is unlikely given the propensity of M. cali-
fornianus to seal its valves upon emersion [30] and thus reduce

its oxygen consumption rate [35]. Juveniles from the exposed-

low origin site had less than one-fifth the odds of survival rela-

tive to the exposed-high site ( p ¼ 0.010) and the protected-high

site ( p ¼ 0.005) (table 1). One other model was supported and



Table 1. Statistical summaries of the best binomial models of thermal tolerance. (The first row for each analysis contains p-values for each of the included
predictors (values in bold are significant, a , 0.05), and subsequent rows contain corresponding odds ratios for each term in the model (with 95% confidence
intervals). Predictors left blank were excluded from the final model. Odds ratios were produced by exponentiating the model b coefficients and indicate the
odds of survival relative to the reference level for each variable. Quasi-complete separation required some model coefficients to be derived by exact conditional
logistic regression using the elrm package in R (*). Although the interaction between origin and treatment was initially included in the full model for all
analyses, it was not included in any of the best models and is thus not shown here.)

analysis origina treatmentb temperature origin 3 temperaturec

juvenile one month p 5 0.002

highprot ¼ 1.13 (0.42, 3.03)

lowexp ¼ 0.17 (0.05, 0.50)

lowprot ¼ 0.69 (0.25, 1.88)

p < 0.001

exp ¼ 0.73 (0.24, 2.22)

field ¼ 2.63 (0.90, 8.09)

prot ¼ 10.82 (3.84, 34.00)

p < 0.001

temp ¼ 0.09

(0.05, 0.14)

juvenile six

months þ common

garden

p < 0.001

temp* ¼ 0.75

(0.00, 0.85)

adult one month p < 0.001

temp ¼ 0.04

(0.01, 0.12)

p < 0.001

temp � prot ¼ 1.12

(1.05, 1.24)
aReference ¼ high exposed.
bReference ¼ common garden.
cReference ¼ exposed � temperature (adults only).
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included effects of treatment, temperature and the interaction

between origin site and temperature (electronic supplementary

material, table S4).

To ensure that analysing data for juvenile thermal toler-

ance that were collected one month apart did not introduce

a confounding factor of development time, we reran the

analysis without the field-acclimatized treatment. The top

two, equally parsimonious models were identical to those

derived using the full dataset (not shown).

(ii) Six months
Owing to mussel losses, tolerance was only assessed at the

two higher temperatures (37.78C and 38.68C) that showed

the greatest treatment differences at one month. No individ-

uals survived these exposures.

(iii) Six months plus common garden
Although there was a trend of mussels from the protected trans-

plant site showing higher survival at the lowest temperature,

the best model included only temperature ( p , 0.001; table 1).

An equally parsimonious model included effects of treat-

ment and temperature ( p ¼ 0.189 and p , 0.001, respectively;

electronic supplementary material, table S4). No mussels sur-

vived at 37.78C or 38.68C (electronic supplementary material,

figure S4).

(c) No evidence for plasticity of thermal tolerance in
adults

Adults from the protected site were estimated to have 72 times

higher odds of survival at 37.78C than those from the exposed

site, both before and after common gardening. Unlike juven-

iles, adult tolerance did not change with common-garden

acclimation (figure 2). The best model included significant

effects of temperature and an origin-by-temperature inter-

action (table 1). An equally parsimonious model included
significant effects of temperature and origin (electronic

supplementary material, table S4).

(d) Juvenile growth rate varies between transplant sites
(i) One month
The best model for growth rate over one month included

origin ( p ¼ 0.992) and three significant terms: treatment, an

origin-by-treatment interaction, and a negative effect of

shell length (table 2). Overall, transplants to the exposed

and protected sites grew 2.45 and 0.75 global standard devi-

ations faster, respectively, than mussels in the common

garden (which grew very slowly). For the interaction, juven-

iles originating from high-shore sites and transplanted to the

exposed site grew at more than twice the rate of those at the

protected site ( p , 0.001 for each post hoc comparison;

figure 3). There were no equally parsimonious models.

(ii) Six months
The best model for juvenile growth over six months included

significant effects of transplant site, time interval, their inter-

action and a negative effect of shell length (table 2). There

were no equally parsimonious models. While growth rate at

the protected site was consistently slow throughout the

study, the interaction term indicated that growth at the

exposed site was rapid during the first month (coinciding

with reduced thermal tolerance) but slowed to a rate compar-

able to that of protected-site transplants in the one to six

month interval (figure 4).
4. Discussion
Our reciprocal transplant and common garden experiments

suggest that recent environmental experience contributes to

the thermal tolerance of post-settlement juvenile M. califor-
nianus, but not of adults from the same intertidal sites.
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Seasonal shifts in tolerance are superimposed on these devel-

opmental effects. Our results also indicate a potential trade-

off between thermal tolerance and growth for juveniles

during summer when food is abundant. It is difficult to prove

that the changes we observed are irreversible, because one

cannot test the thermal tolerance of an individual multiple

times. However, these results are consistent with the existence

of a developmental window following settlement during
which juveniles adjust their thermal tolerance to their micro-

environment.

(a) Short-term plasticity of thermal tolerance is
restricted to juveniles

Evolution of a thermally sensitive window during develop-

ment in M. californianus, as has also been observed in lake
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whitefish and Lepidoptera butterflies [36,37], could be because

of unpredictability around the transition between distinct

juvenile and adult microhabitats. Juveniles settle in algal tufts

or among the byssal threads of adults [22,38]; these microhabi-

tats are moist and sheltered from the sun. The ensuing

transition to relatively unsheltered, but spatially variable [16],

adult microhabitats as recruits grow could favour physiologi-

cal plasticity around this period. Subsequently, adult mussels

are essentially sessile, with limited capacity to modify their

thermal exposure [30]. Consequently, resources devoted to

maintaining a plastic juvenile state might best be reallocated

to adult growth and reproduction. Analogous trade-offs have

been thoroughly examined in plants (e.g. [39]), although rigor-

ous experimental designs are required to quantify the

associated costs [40].

The higher thermal tolerance in juveniles transplanted to

the wave-protected site in summer is probably owing to

more frequent episodes of high body temperature during low

tide. The average daily temperature range at the protected

site was triple that at the exposed site, although maximum

datalogger temperatures never approached within 4.58C of

the lowest assay temperature. Similar correlations between

high temperature variability and thermal tolerance have been

observed in a range of taxa [12,41–44]. In the six months

plus common garden study, there was a similar, albeit non-sig-

nificant, trend for greater thermal tolerance among mussels

transplanted to the warmer, protected site that was evident

only at the lowest assay temperature. Seasonal acclimatization

(see below) may have obscured evidence for persistent devel-

opmental effects on thermal tolerance in our study design;

these may have appeared at lower winter assay temperatures

(electronic supplementary material, figure S4).

The pattern of thermal tolerance plasticity in juveniles but

not adults that we observed in M. californianus is far from

universal. Thermal tolerance of adults does respond to

recent temperatures in numerous species [15,45–48],
although experimental differences necessitate caution in

making generalizations [49]. Notably, adult M. californianus

seasonally adjust membrane composition and temperature

of Hsp induction [18,19]. Similarly, ratios of DNA to RNA

in reciprocally transplanted adults quickly adjusted to trans-

plant sites [50]. Adults of other Mytilus congeners acclimate

both absolute heart rate and acute temperature thresholds

for cardiac function [51]. However, definitive links between

these parameters and thermal tolerance have not always

been demonstrated. Further comparative work is needed to

identify the environmental factors and time-scales of vari-

ation driving divergence among life-history stages in

plasticity of thermal tolerance and to identify the underlying

mechanisms.
(b) Seasonal acclimatization of thermal tolerance curves
Juveniles assayed in summer exhibited moderate survival

at 37.78C and 38.68C, whereas no juveniles survived these

temperatures in the groups assayed in winter. Seasonal acclimat-

ization of thermal tolerance curves has been observed in a wide

variety of taxa [8]. The observed seasonal differences in the fre-

quency of warm, low-tide episodes probably drive seasonal

variation in mussels’ thermal tolerance.

The seasonal differences in thermal tolerance of

M. californianus might also be a result of variation in

phytoplankton food supply, which influences both growth

rates and biochemical status [52,53], or of interactions between

food availability and other stressors [54]. Five years of data

from the intertidal zone at HMS (2002, 2008–2011) indicate

that chlorophyll a levels, a proxy for phytoplankton biomass,

are significantly lower during the autumn and winter

months (HMS Marine Life Observatory, http://mlo.stanford.

edu). Accordingly, daily growth coefficients were significantly

lower from 22 July–12 December compared to 21 June–22 July,

particularly at the exposed site. Seasonal reductions in autumn

and winter growth rate because of reduced food have been

observed in other marine invertebrates, including mussels

[55–57]. Notably, food restriction decreased thermal tolerance

of adult M. californianus, presumably owing to energetic

constraints [58].
(c) Plasticity versus genetic constraint in regulation
of growth

Growth rates were similarly affected by an interaction between

origin shore height and transplant site. Juveniles originally

from the high-shore sites grew 94% (exposed-high) and 70%

(protected-high) faster at the exposed transplant site compared

to the protected transplant site in summer. Similar, context-

dependent origin effects on growth have been observed in

Cerastoderma edule and Littorina saxatilis [59,60]. Filter-feeding

invertebrates like M. californianus at high-shore sites are sub-

merged for shorter durations than conspecifics at low-shore

sites, constraining their feeding opportunities. When food is

limited, Mytilus edulis adjusts its filtration rate and its inges-

tion/absorption efficiencies, thereby increasing capacity for

growth [61]. Similarly, juvenile M. californianus from high-

shore sites could be primed to deal with hotter conditions

and lower food availability; when these individuals are

moved to favourable conditions, they would be able to grow

faster than individuals from low-shore sites.

http://mlo.stanford.edu
http://mlo.stanford.edu
http://mlo.stanford.edu
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(d) Thermal tolerance and growth trade-offs
Juveniles transplanted to the warmer, wave-protected site had

the highest thermal tolerance, but they grew more slowly in

summer. This finding is consistent with previous results from

this species [58], as well as from several fishes [12,62,63].

Broadly, this inverse relationship between thermal tolerance

and growth is probably a result of energetic constraints

among protected-site transplants. For example, induction of

the heat shock response—which protects macromolecules but

at an appreciable cost [64]—or of other thermoprotective mech-

anisms could impinge on growth. It is also possible that

differences in food quantity and/or time available for feeding

exist between the transplant sites, although there is no reason

to expect that food concentrations would vary over the short

distance between the exposed and protected sites.

Mussels from all origin sites grew slowly and exhibited low

thermal tolerance after being constantly submerged in the

common garden, where they did not encounter episodes of

high temperature that would prime compensatory tolerance

mechanisms. Though this pattern is not universal [12],

decreased growth under constant temperatures has also been

observed in salmon and other intertidal invertebrates [65,66]

and may be attributable to a loss of positive metabolic effects

resulting from warm, but not stressful, body temperatures

[67]. This pattern may also be attributable to higher cumulative

metabolic costs; unlike mussels in the field (electronic sup-

plementary material, figure S3), common-garden juveniles did
not experience low temperatures, which can reduce metabolic

rate via Q10 effects [68]. Furthermore, common-garden mussels

did not benefit from reduced rates of energy expenditure via

anaerobiosis during emersion [35].
5. Conclusion
Our results imply environmentally driven developmental plas-

ticity in thermal tolerance that is inversely related to growth

rate among recent M. californianus recruits. Importantly, the

persistent effect of origin site supports the conclusion that

both genetics and recent experience contribute to thermal toler-

ance [4,69,70]. However, there was no evidence for analogous

plasticity of thermal tolerance in adults. Without the data for

juveniles, the latter result may have been mistaken for fine-

scale local adaptation. A more plausible, yet still hypothetical,

mechanism for these patterns is irreversible epigenetic pro-

gramming [71]. The developmental adjustment appears to

interact with seasonal acclimatization, evident as horizontal

shifts in the thermal tolerance curve. Both irreversible and

reversible forms of plasticity should be considered when pre-

dicting how species will respond to shifting environments.

Under the right circumstances, such plastic responses could

mitigate the negative effects of global change.

Ethics. Animals were collected under California Department of Fish
and Wildlife permit no. SC-7955.
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