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Aberrant expression of proteins often underlies many dis-
eases, including cancer. A recently developed approach in drug
development is small molecule-mediated, selective degradation
of dysregulated proteins. We have devised a protein-knockdown
system that utilizes chimeric molecules termed specific and
nongenetic IAP-dependent protein erasers (SNIPERs) to induce
ubiquitylation and proteasomal degradation of various target
proteins. SNIPER(ER)-87 consists of an inhibitor of apoptosis
protein (IAP) ligand LCL161 derivative that is conjugated to the
estrogen receptor � (ER�) ligand 4-hydroxytamoxifen by a PEG
linker, and we have previously reported that this SNIPER
efficiently degrades the ER� protein. Here, we report that
derivatization of the IAP ligand module yields SNIPER(ER)s
with superior protein-knockdown activity. These improved
SNIPER(ER)s exhibited higher binding affinities to IAPs
and induced more potent degradation of ER� than does
SNIPER(ER)-87. Further, they induced simultaneous degrada-
tion of cellular inhibitor of apoptosis protein 1 (cIAP1) and
delayed degradation of X-linked IAP (XIAP). Notably, these
reengineered SNIPER(ER)s efficiently induced apoptosis in
MCF-7 human breast cancer cells that require IAPs for contin-
ued cellular survival. We found that one of these molecules,
SNIPER(ER)-110, inhibits the growth of MCF-7 tumor xeno-
grafts in mice more potently than the previously characterized
SNIPER(ER)-87. Mechanistic analysis revealed that our novel
SNIPER(ER)s preferentially recruit XIAP, rather than cIAP1, to

degrade ER�. Our results suggest that derivatized IAP ligands
could facilitate further development of SNIPERs with potent
protein-knockdown and cytocidal activities against cancer cells
requiring IAPs for survival.

Aberrant or increased expression of pathogenic proteins
often results in the initiation of many diseases, including a
variety of cancers. However, a limited number of pathogenic
proteins are currently targeted by pharmacological inhibi-
tors, primarily because many proteins do not have suitable
binding pockets where a pharmacophore may interact to
regulate protein activity (1, 2). An alternative approach has
been to down-regulate expression of the pathogenic pro-
teins; this is usually achieved in vitro through use of genetic
methods involving antisense oligonucleotides, dsRNAs, and
CRISPR-Cas9 technology. However, clinical application of
these technologies remains challenging because delivery of
oligonucleotides to the target tissues is not easily accom-
plished (3, 4).

As a novel strategy to down-regulate pathogenic proteins in a
nongenetic manner, we and others have devised a protein-
knockdown system that uses small molecules with sufficient
membrane permeability to induce selective degradation of tar-
get proteins. These small-molecule compounds, designated as
proteolysis-targeting chimeras (PROTACs)7 and specific and
non-genetic IAP-dependent protein erasers (SNIPERs), are
chimeric molecules that contain two different ligands con-
nected by a linker; one ligand is specific for an E3 ubiquitin
ligase, and the other is specific for a target protein (5–7). The
PROTACs and SNIPERs are designed to cross-link the E3 ubiq-
uitin ligase and the target protein to induce polyubiquitylation
and proteasomal degradation of the target protein within cells.
To recruit the von Hippel–Lindau (VHL) E3 ligase complex and
the cereblon (CRBN) E3 ligase complex, a VHL inhibitor (based
on the HIF-1� peptide) and a phthalimide moiety have been
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respectively integrated into PROTAC constructs (8 –11). In a
similar manner, an IAP antagonist has been incorporated into
SNIPERs to recruit either cellular inhibitor of apoptosis protein
1 (cIAP1) or X-linked inhibitor of apoptosis protein (XIAP) E3
ligase (12–18). To date, a range of PROTAC and SNIPER com-
pounds have been developed, allowing degradation of a variety
of proteins, such as estrogen receptor � (ER�), oncogenic
kinase BCR-ABL, and epigenetic regulator bromodomain-
containing protein 4 (BRD4) (19 –30). Some PROTACs and
SNIPERs also have demonstrated the ability to degrade tar-
get proteins in vivo, suggesting that this technology is feasi-
ble for use in novel drug development. These include VHL-
based and CRBN-based PROTACs directed against BRD4,
which are capable of inducing BRD4 protein degradation in
mouse xenograft models (10, 31). By incorporating an
LCL161 derivative, a high-affinity IAP ligand, we developed
SNIPER(ER)-87, which induces in vivo degradation of ER�
and growth inhibition of an ER�-positive human breast
tumor in a xenograft model (13).

IAPs are a family of antiapoptotic proteins containing one or
three baculoviral IAP repeat (BIR) domains (32–34). Some fam-
ily members, such as cIAP1, cIAP2, and XIAP, directly interact
with and regulate caspases via the BIR domain, thus inhibiting
apoptosis (35–38). These IAPs are attractive targets for tumor
therapy because of their frequent overexpression in multiple
human malignancies and their implications in tumor progres-
sion, treatment failure, and poor prognosis (39 –45). Based on
the IAP-binding tetrapeptides of second mitochondria-derived
activator of caspases/direct IAP-binding protein with low pI
(SMAC/DIABLO), many potent and cell-permeable peptido-
mimetic IAP antagonists (also known as SMAC mimetics) have
been developed; some of these are under evaluation in clinical
phase studies as antitumor drugs (32, 46, 47). These IAP antag-
onists interact with BIR domains in IAP proteins to directly
inhibit XIAP or to induce autoubiquitylation and proteasomal
degradation of cIAP1 and cIAP2 (48 –51). Because SNIPERs
utilize IAP antagonists as IAP-ligand modules, SNIPERs are
able to down-regulate IAPs beyond the initial target proteins
(12–18); this is likely to be advantageous when attempting to
kill cancer cells that require IAPs for survival.

In this paper, we demonstrate that, by derivatizing the IAP-
ligand module, we have developed novel SNIPER(ER)s whose
protein knockdown and antitumor activities are more potent
than those of SNIPER(ER)-87. These SNIPER(ER)s have higher
affinity for IAPs and exhibit more consistent abilities to degrade
ER� and IAPs. In addition, we discuss the significance of IAP
down-regulation in pharmacological efforts to induce cancer
cells to undergo apoptosis.

Results

Structure-activity relationship of SNIPER(ER)s with novel IAP
ligands

To discover IAP ligands that are useful for the development
of SNIPERs with potent protein-knockdown activity, we sub-
stituted the IAP ligand moiety of SNIPER(ER)-87 with several
IAP antagonists that have been reported elsewhere (52–55)
(Fig. 1 and Table S1) and examined their abilities to reduce ER�

expression by MCF-7 human breast tumor cells (Fig. 2). In a
series of SNIPER(ER)s with different IAP ligand modules, we
found that five compounds (SNIPER(ER)-105 (4), -110 (31a),
-113 (31c), -119 (31d), and -126 (50)) reduced ER� expression
comparably with, and more potently than, SNIPER(ER)-87 for
durations of 4 and 48 h, respectively (Fig. 2a). SNIPER(ER)-130
(69) and -131 (71) exhibited attenuated knockdown activities,
whereas the others (SNIPER(ER)-104 (9), -118 (55a), -121
(55b), -134 (31b), and -136 (40)) did not induce effective
knockdown at 1–100 nM (Fig. 1b). The DC50 (the concentration
required for 50% reduction of expression) for each SNIPER(ER)
compound is summarized in Table 1.

Table 1 also reports the binding affinities (IC50) of SNIPER
(ER)s to ER� and IAPs in vitro. Because SNIPER(ER)-87 pref-
erentially recruits XIAP to degrade ER� (13), we compared the
binding affinity to XIAP with the DC50, for all SNIPER(ER)s.
SNIPER(ER)s with effective knockdown activities (SNIPER
(ER)-105, -110, -113, -119, and -126) exhibited affinities to
XIAP that were greater than, or comparable with, that of
SNIPER(ER)-87; in contrast, those with little or no ER�-knock-
down activity (SNIPER(ER)-104, -118, -121, -134, and -136)
exhibited lower binding affinities to XIAP. However, SNIPER
(ER)-130 and -131 exhibited attenuated ER�-knockdown activ-
ities, despite their higher affinities for XIAP binding. These
results suggest that an increased binding affinity of SNIPER(ER)
for XIAP seems to be important for effective ER� knockdown
but is not the sole determinant for degradation activity. Among
the arene substitution isomers (SNIPER(ER)-110, -113, and
-119), SNIPER(ER)-110 exhibited slightly better ability to
degrade ER�; therefore, we chose SNIPER(ER)-110 as a repre-
sentative. SNIPER(ER)-105, -110, and -126 also showed more
potent ability to degrade ER�, compared with SNIPER(ER)-87,
in assays involving other human ER�-positive breast tumor
T47D and ZR-75-1 cells (Fig. 3).

Degradation of cIAP1 and XIAP by SNIPER(ER)s

As observed in studies of many IAP antagonists, SNIPERs
in our study rapidly induced proteasomal degradation of
cIAP1, along with degradation of their target proteins (12–18).
SNIPER(ER)-105, -110, -113, -119, and -126 each reduced the
cIAP1 level more potently than SNIPER(ER)-87 (Figs. 2a and
3b), consistent with their increased binding affinities for
cIAP1 (Table 1). Further, these SNIPER(ER)s reduced XIAP
expression in MCF-7 cells after 48 h in a more potent fashion
than SNIPER(ER)-87 (Fig. 2a). The reduction of XIAP by
SNIPER(ER)s was prominent in T47D cells after 48 h but was
weak after 4 h of exposure (Fig. 3b). The difference in the
degradation pattern between cIAP1 and XIAP suggests that
these IAPs are degraded through a different mechanism, as
discussed below.

XIAP is required for the ER� degradation by SNIPER(ER)s

We previously reported that XIAP is preferentially recruited
to ER� upon treatment with SNIPER(ER)-87 (13). To ex-
amine which IAP is recruited by the novel SNIPER(ER)s
(SNIPER(ER)-105, -110, and -126) to induce ER� degrada-
tion, MCF-7 and T47D cells were treated with or without the
SNIPER(ER)s in the presence of MG132, a proteasome inhibi-
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tor; cell lysates were analyzed by co-immunoprecipitation. Fig.
4a shows that, when cells were treated with SNIPER(ER)s, the
anti-ER� precipitates contained both XIAP and cIAP1. We did
not examine cIAP2, because it is not expressed in MCF-7 and
T47D cells under normal cell culture and cIAP1-down-regu-
lated conditions (Fig. S1, a– c). Upon comparison of IAP pro-
tein levels in total cellular lysates, we found that SNIPER(ER)s
more effectively recruited XIAP to ER�, compared with cIAP1.
Consistent with this, depletion of XIAP by siRNA substantially
suppressed the ER� degradation induced in MCF-7 and T47D
cells by our SNIPER(ER) molecules, whereas depletion of cIAP1
marginally suppressed the degradation (Fig. 4b). These results
indicate that SNIPER(ER)-105, -110, and -126 preferentially
recruit XIAP to degrade ER� in target cells, similar to the mech-
anism initiated by SNIPER(ER)-87.

SNIPER(ER)s induce apoptosis in tumor cells requiring IAPs for
survival

Because ER� plays an important role in the proliferation of
most primary breast tumors (56, 57), we examined the effect of
SNIPER(ER)s on the growth of breast tumor cells. SNIPER(ER)s
and fulvestrant, a clinically approved inducer of ER� degrada-
tion, both efficiently suppressed the growth of ER�-positive
breast tumor cells (MCF-7 and T47D) but not of ER�-negative
breast tumor cells (MDA-MB-231) (Fig. 5a and Fig. S2).
Notably, SNIPER(ER)-105, -110, and -126 exhibited superior
antiproliferative effects on MCF-7 cells at concentrations
above 50 nM, compared with SNIPER(ER)-87 (Fig. 5a and

Fig. S2). In a microscopic analysis, we observed that substan-
tial number of MCF-7 cells, but not T47D cells, underwent
cell death upon treatment with SNIPER(ER)-105, -110, and
-126 (Fig. 5b). Induction of apoptotic cell death in MCF-7
cells by SNIPER(ER)-105, -110, and -126 was confirmed by
flow cytometric analysis and annexin V/propidium iodide
(PI) staining (Fig. 5 (c and d) and Fig. S3). Consistent with
this, a 100 nM concentration of these SNIPER(ER)s activated
caspase-7 and caspase-6 (detected by reduction of their pre-
cursor forms), which resulted in the cleavage of two caspase
substrates, PARP and lamin B1, in MCF-7 cells (Fig. 5e).
These results indicate that SNIPER(ER)-105, -110, and -126
each induced apoptosis in MCF-7 cells more effectively than
SNIPER(ER)-87; apoptosis was not observed in T47D cells.

To understand why these new SNIPER(ER)s effectively
induce apoptosis in MCF-7 cells, but not in T47D cells, and
because SNIPER(ER)-105, -110, and -126 each induced the
degradation of cIAP1 and XIAP more potently than SNIPER
(ER)-87 (Figs. 2a and 3b), we investigated the effects of IAP
depletion in MCF-7 and T47D cells. In MCF-7 cells, individual
silencing of cIAP1 and XIAP by siRNA slightly reduced the
number of cells; combined silencing of cIAP1 and XIAP
reduced the number of cells by �50%, compared with
untreated cells (Fig. 6a), and was accompanied by caspase acti-
vation, as demonstrated by cleavage of lamin B1 and PARP (Fig.
6b). In contrast, similar silencing of IAPs in T47D cells neither
reduced cell number nor activated caspases. When ER� was

Figure 1. Chemical structures of novel SNIPER(ER)s. The IAP ligand moiety of SNIPER(ER)-87 was substituted by various IAP antagonists. Chemical structures
shown in red indicate parts changed from the original SNIPER(ER)-87.
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silenced in MCF-7 and T47D cells, the numbers of cells in both cell
lines were effectively reduced without a requirement for caspase
activation. However, triple silencing of ER�, XIAP, and cIAP1 effi-

ciently reduced MCF-7 cell number, compared with T47D cells;
further, caspase activation was observed only in MCF-7 cells.
Additionally, an IAP antagonist, LCL161, sensitized tumor necro-

Figure 2. Novel SNIPER(ER)s with potent protein-knockdown activity. a and b, MCF-7 cells were treated with the indicated concentrations of SNIPER(ER)s
for the indicated periods. Whole-cell lysates were analyzed by Western blotting with the indicated antibodies. Numbers below the ER�, cIAP1, or XIAP panels
represent ER�/actin, cIAP1/actin, or XIAP/actin ratios, normalized by designating the expression from the vehicle control condition as 100%. a, data in the bar
graph are the mean � S.D. (error bars) of three independent experiments.

Table 1
Protein-knockdown activities and binding affinities of SNIPER(ER)s

Compound
no.

ER� DC50 IC50 (95% CI) IAP ligand
4 h 48 h ER� cIAP1 cIAP2 XIAP Originator Reference

nM nM

SNIPER(ER)-87 �3 83.0 110 (58–200) 450 (360–560) 960 (600–1500) 700 (510–960) Novartis WO2008016893
SNIPER(ER)-104 �100 NDa 61 (26–140) �1000 �1000 �1000 Novartis WO2012080260
SNIPER(ER)-105 �3 �3 69 (7–670) 5.3 (4.6–6.1) 7.2 (4.9–11) 55 (38–80) Novartis WO2012080271
SNIPER(ER)-110 �3 7.7 120 (68–200) 74 (62–89) 73 (55–97) 330 (250–430) Abbott Ref. 52; WO2016169989
SNIPER(ER)-113 �3 13.3 150 (82–290) 85 (75–96) 99 (58–200) 810 (58–200) Abbott Ref. 52; WO2016169989
SNIPER(ER)-118 �100 ND 230 (73–540) 140 (58–200) 900 (58–200) �1000 AstraZeneca Ref. 53
SNIPER(ER)-119 4 15.7 200 (73–540) 80 (62–100) 48 (28–82) 700 (490–1000) Abbott Ref. 52; WO2016169989
SNIPER(ER)-121 �100 ND ND 650 (540–780) �1000 �1000 AstraZeneca Ref. 53
SNIPER(ER)-126 �3 3.7 83 (2–3800) 68 (66–77) 200 (150–280) 490 (310–760) Novartis WO2008016893
SNIPER(ER)-130 36.9 ND 41 (25–65) 68 (60–77) 28 (21–39) 25 (17–37) Genentech Ref. 54
SNIPER(ER)-131 33.8 ND 80 (39–160) 25 (22–28) 24 (18–32) 140 (85–220) Genentech Ref. 55
SNIPER(ER)-134 �100 ND 47 (15–140) 550 (450–670) 360 (240–540) �1000 Abbott Ref. 52
SNIPER(ER)-136 �100 ND 47 (25–89) 890 (790–1000) �1000 �1000 Genentech Ref. 54; WO2006069063

a ND, not determined.
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sis factor � (TNF�)-dependent apoptosis in MCF-7 cells, but not
T47D cells (Fig. S4). These results suggest that MCF-7 cells, but
not T47D cells, require IAPs for survival; thus, IAPs could be
involved in the selective induction of apoptosis in MCF-7 cells that
have been exposed to SNIPER(ER)-105, -110, and -126.

In vivo protein-knockdown activities and antitumor activities
of SNIPER(ER)s

We measured the metabolic stabilities of SNIPER(ER)-87,
-105, -110, -113, -119, and -126 in liver microsomes (Table S2)

Figure 3. Protein-knockdown activities of SNIPER(ER)s in T47D and ZR-75-1 breast tumor cells. a, protein levels of IAPs and ER� in human ER�-positive
breast tumor cells. b, knockdown activities of SNIPER(ER)s in T47D and ZR-75-1 cells. Cells were treated with the indicated concentrations of SNIPER(ER)s for the
indicated periods. Whole-cell lysates were analyzed by Western blotting with the indicated antibodies. Numbers below the ER�, cIAP1, or XIAP panels represent
ER�/actin, cIAP1/actin, or XIAP/actin ratios, normalized by designating the expression from the vehicle control condition as 100%. Data in the bar graph are the
mean � S.D. (error bars) of three independent experiments.

Figure 4. Role of XIAP in ER� degradation by SNIPER(ER)s. a, SNIPER(ER)s preferentially recruit XIAP to ER�. MCF-7 or T47D cells were treated with 10 nM

SNIPER(ER)s in the presence of 10 �M MG132 for 3 h. Immunoprecipitates of anti-ER� (IP) and whole-cell lysates (total lysates) were analyzed by Western blotting
(IB). b, depletion of XIAP suppresses the SNIPER(ER)-induced degradation of ER�. MCF-7 and T47D cells were transfected with the indicated siRNA for 42 h and
treated with 10 nM SNIPER(ER)s for 3 h. Whole-cell lysates were analyzed by Western blotting with the indicated antibodies. Numbers below the ER� panel
represent the ER�/actin ratio, normalized by designating the expression from the vehicle control condition as 100%. A mixture of three different siRNAs against
each target was used to suppress expression.
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and carefully selected SNIPER(ER)-110 and -126 as test com-
pounds for in vivo comparison with SNIPER(ER)-87. When
female BALB/c mice were intraperitoneally injected with
SNIPER(ER)-87, -110, and -126 (30 mg/kg body weight), ER�

protein levels in ovarian tissue were effectively reduced by all
SNIPERs (Fig. 7a). To evaluate SNIPER(ER)-knockdown activ-
ities in a tumor model, we next applied MCF-7 breast tumor
xenografts to nude mice. The ER� protein levels in orthotopic

Figure 5. Induction of apoptosis by SNIPER(ER)s in MCF-7 breast tumor cells. a, antiproliferative effects on ER�-positive human breast tumor cells by
SNIPER(ER)s. Cells were treated with the indicated concentrations of SNIPER(ER)s or fulvestrant for 72 h; the remaining living cells were stained with crystal
violet. b– e, SNIPER(ER)s induce apoptosis in MCF-7 cells. MCF-7 or T47D cells were treated with 100 nM SNIPER(ER)s or fulvestrant for 48 h. b, phase-contrast
images were obtained. Scale bars, 50 �m. c, cell cycle distribution was quantified by MultiCycle software. d, cell death was determined by Annexin V and PI
staining. e, activation of caspases was analyzed by Western blotting.

Figure 6. Depletion of IAPs induces apoptosis in MCF-7 but not T47D cells. MCF-7 or T47D cells were transfected with the indicated siRNA for 72 h. a, cell
proliferation was evaluated by a cell viability assay. Data in the bar graph are the mean � S.D. (error bars) of a experiment performed in triplicate. b, activation
of caspases was analyzed by Western blotting. A mixture of three different siRNAs against each target was used to suppress expression.
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tumors were reduced by 40 –50% in SNIPER(ER)-treated mice,
compared with those in vehicle-treated mice (Fig. 7, b and c);
SNIPER(ER)-110 significantly showed a significant increase
in protein-knockdown activity at 48 h, compared with
SNIPER(ER)-87. Treatment with SNIPER(ER)-87, -110, and
-126 each reduced cIAP1 and XIAP protein levels in tumor
xenografts (Fig. 7, b and c), consistent with the results of our in
vitro analyses (Fig. 2a). Notably, SNIPER(ER)-110 again exhib-
ited a significant increase in the ability to reduce cIAP1 and
XIAP at 24 and 48 h, compared with SNIPER(ER)-87.

To demonstrate the therapeutic significance of these
findings, we also evaluated the in vivo antitumor activity
of SNIPER(ER)-110, compared with SNIPER(ER)-87, in an
MCF-7 tumor xenograft model. When tumor-bearing mice
received daily intraperitoneal injections of SNIPER(ER)-87
or SNIPER(ER)-110 (30 mg/kg body weight) for 16 days,
SNIPER(ER)-110 attenuated MCF-7 tumor progression more
effectively than SNIPER(ER)-87, as shown in measurements of
tumor volume and tumor weight (Fig. 8, a– c). Notably, no obvi-
ous toxicities, including body weight changes, were observed
during treatment (Fig. 8d). Thus, compared with SNIPER(ER)-
87, SNIPER(ER)-110 showed superior antitumor activity
against ER�-positive breast tumors that require IAPs for cellu-
lar survival.

Discussion

Chemical protein knockdown technologies, utilizing chime-
ric molecules, such as PROTACs and SNIPERs, have been
recently developed to induce degradation of target proteins in
cells (5–7). Our SNIPER compounds degrade cIAP1 and XIAP
along with their initial target proteins, which could be advanta-
geous in attempts to kill cancer cells because of the frequent
overexpression of IAPs to suppress apoptosis in cancer cells. In
this study, we developed novel SNIPER(ER)s by incorporating
various IAP ligands with higher binding affinities for IAP pro-
teins. The resulting SNIPER(ER)s (SNIPER(ER)-105, -110, and
-126) each induce degradation of ER�, cIAP1, and XIAP more
potently than SNIPER(ER)-87, resulting in the induction of apo-
ptosis in MCF-7 breast tumor cells. In an in vivo tumor xeno-
graft model, the novel SNIPER(ER)s exhibited activity to reduce
ER� and IAPs that was respectively comparable with, and
better than, that of SNIPER(ER)-87; further, the novel
SNIPER(ER)-110 showed superior antitumor activity against
MCF-7 tumor xenograft, compared with SNIPER(ER)-87.
These results suggest that incorporating IAP ligands with
higher binding affinities may be a promising strategy to develop
SNIPERs with better protein knockdown and antitumor
activities.

The novel SNIPER(ER)s also exhibited better protein-
knockdown activity in other ER�-positive breast tumor cells,
compared with SNIPER(ER)-87 (Fig. 3). However, the novel

SNIPER(ER)s did not exhibit improved inhibition of growth or
induction of apoptosis in T47D cells (Fig. 5), which contrasts
with their activities in MCF-7 cells. We speculate that the dif-
ferences in sensitivity between the two cell lines derive from
differing need for IAPs, because depletion of IAPs induces apo-
ptosis in MCF-7 cells, but not in T47D cells (Fig. 6). The role of
IAPs in cancer cell survival has been suggested in many papers
(32, 42– 45, 58), and IAP antagonists have shown antitumor
activity against many tumor cells, including breast tumor
(46, 47, 59). Therefore, we hypothesize that the ability of the
SNIPERs to degrade IAPs could be advantageous in treatment
of cancer cells, especially those dependent on the activity of
IAPs. Recently, it has been reported that the different molecular
signature other than IAP frequency also specifies a sensitivity to
IAP antagonists in cancer cells; the mechanism depends on
autocrine release of TNF� (60 –64), constitutive ubiquityla-
tion of receptor-interacting protein kinase 1 (RIP1) (61), and
expression of cellular FLICE-inhibitory protein (c-FLIP) (60)
and leucine-rich repeats and immunoglobulin-like domains
protein 1 (LRIG1) (65). Thus, these signatures could be used to
predict sensitivity to SNIPERs as well.

Although SNIPER(ER)s induce degradation of ER�, cIAP1,
and XIAP, the degradation mechanism appears different for
each protein. Degradation of ER� appears to require formation
of a ternary complex that is composed of ER�, SNIPER, and
XIAP; we suspect this because a treatment with the individual
ligand or with an structural SNIPER(ER) analog that cannot
bind to IAPs does not induce degradation of ER� (13) (Fig. S5).
The pharmacological hook effect that is observed during
SNIPER(ER)-induced ER� degradation further supports the
hypothesis that ternary complex formation is required (13). In
contrast, the degradation of cIAP1 is triggered by binding of the
IAP antagonist module to the BIR3 domain of cIAP1, thus
inducing autoubiquitylation. In this case, the ternary complex is
not required, and no hook effect is observed (13). Notably, the
degradation mechanism of XIAP remains ambiguous. Degra-
dation of XIAP was induced by SNIPER(ER)s but not by IAP
antagonists nor by the mixture of IAP antagonist and 4-hy-
droxytamoxifen (Fig. S5), suggesting that the ternary complex
is required for XIAP degradation. Consistent with this hypoth-
esis, XIAP degradation by SNIPER(ER)-87 was not observed in
the ER�-negative MDA-MB-231 breast cancer cells (Fig. S5).
Thus, XIAP degradation seems to require the same ternary
complex formation that is required for ER� degradation. How-
ever, XIAP degradation requires more time and is inefficient,
compared with degradation of the ER� target protein (Figs. 2a
and 3). It is likely that part of the population of XIAP in the
ternary complex is subjected to ubiquitylation and proteasomal
degradation. Because XIAP degradation was more prominently
observed in T47D cells than in MCF-7 and ZR-75-1 cells, we

Figure 7. In vivo protein knockdown by SNIPER(ER)s in mice. a, in vivo protein knockdown in ovarian tissue. Female BALB/c mice were injected with vehicle
or 30 mg/kg SNIPER(ER)s. After 24 or 48 h, the mice were sacrificed, and their ovaries were collected and analyzed by Western blotting with the indicated
antibodies. Numbers below the ER� panel represent the ER�/actin ratio, normalized by designating the expression from the vehicle control condition as 100%
(average of each group). b and c, MCF-7 human breast tumor cells were inoculated into mammary fat pads of 6-week-old female BALB/c nude mice. The
tumor-bearing mice were intraperitoneally injected with SNIPER(ER)s. After 24 or 48 h, mice were sacrificed, and ER� protein levels in tumor xenografts were
analyzed by Western blotting. Bar graphs represent the mean � S.D. (error bars) of each group. *, p � 0.05 in two-tailed Student’s t test compared with vehicle
control. #, p � 0.05 in two-tailed Student’s t test compared with SNIPER(ER)-87.
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measured the expression of ER�, cIAP1, and XIAP in these cells
(Fig. S6). We found that the ratio of XIAP to ER� is one-third
and one-thirteenth less in T47D cells than in MCF-7 cells and in

XR-75-1 cells, respectively, suggesting that the lower expres-
sion of XIAP may increase the significance of its degradation in
T47D cells. Thus, although the degradation mechanisms differ,
SNIPER(ER)s induce degradation of ER�, cIAP1, and XIAP,
culminating in an anti-tumor effect that is directed against
breast cancer cells.

It has been reported that ER� translocates from the cytosol to
the nucleus upon binding with tamoxifen (66, 67). This is also
observed after treatment with SNIPER(ER)s, because the rela-
tive amount of ER� increased in the nucleus, compared with
the cytosol, upon treatment with SNIPER(ER)s; this was more
clearly observed in the presence of MG132 (Fig. S7, a and b).
Interestingly, the amount of XIAP increased in the nucleus
upon treatment with SNIPER(ER)s; this was also more clearly
observed in the presence of MG132. These results suggest that
when a SNIPER(ER) penetrates a cell, it induces formation of
the ternary complex composed of ER�, SNIPER(ER), and XIAP
in the cytosol; ER� then translocates to the nucleus together
with the bound XIAP. Thus, in the presence of SNIPER(ER),
ER� interacts with XIAP sufficiently to tether XIAP in the
nucleus, consistent with the preferential recruitment of XIAP,
but not cIAP1, to ER�.

In summary, we have developed potent SNIPER(ER)s by
incorporation of high-affinity IAP ligands. These SNIPER(ER)s
induce degradation of ER� and IAPs and exhibit antitumor
activity against breast tumors that require IAPs for survival.
These IAP ligand modules could be utilized to develop novel
SNIPERs with activity against various oncogenic proteins and
enhanced antitumor capabilities.

Experimental procedures

Chemistry

Chemical synthesis and physicochemical data for SNIPER
compounds are provided in the supporting information.

Cell culture

Human breast carcinoma MCF-7, T47D, and ZR-75-1 cells
were maintained in RPMI 1640 medium containing 10% fetal
bovine serum (FBS) and 100 �g/ml kanamycin. Human breast
carcinoma MDA-MB-231 cells were maintained in Dulbecco’s
modified Eagle’s medium containing 10% FBS and 100 �g/ml
kanamycin. All of the cell lines were purchased from ATCC
(Manassas, VA), and their cell authentications were confirmed
by morphology, karyotyping, and PCR-based approaches in
ATCC. Cells were treated with various concentrations of
SNIPER compounds for the indicated times.

Western blotting

Cells were lysed with SDS lysis buffer (0.1 M Tris-HCl, pH 8.0,
10% glycerol, 1% SDS) and immediately boiled for 10 min to
obtain clear lysates. Nuclear and cytoplasmic extracts were pre-
pared with NE-PER nuclear and cytoplasmic extraction re-
agents (Thermo Fisher Scientific). Protein concentration was
measured by the BCA method (Pierce); lysates containing equal
amounts of proteins were separated by SDS-PAGE and trans-
ferred to polyvinylidene difluoride membranes (Millipore,
Darmstadt, Germany) for Western blot analysis using the

Figure 8. Antitumor activity of SNIPER(ER)s. Growth inhibition by SNIPER-
(ER)s of MCF-7 orthotopic breast tumor xenografts in nude mice. a, represen-
tative tumors. Scale bar, 10 mm. The tumor volume (b) or weight (c) represents
the mean � S.D. (error bars) of each group (mice, n � 7 each; tumors, n � 14
each; *, p � 0.05 in two-tailed Student’s t test compared with vehicle; #, p �
0.05 in two-tailed Student’s t test compared with SNIPER(ER)-87). Mice were
administered vehicle or SNIPER(ER)s (30 mg/kg) intraperitoneally, every 24 h.
d, treatment with SNIPER(ER)s did not induce significant body weight loss in
mice after 16 days.
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appropriate antibodies. Immunoreactive proteins were visual-
ized using the Immobilon Western chemiluminescent HRP
substrate (Millipore) or Clarity Western ECL substrate (Bio-
Rad); light emission intensity was quantified using an LAS-3000
lumino-image analyzer equipped with Image Gauge version 2.3
software (Fuji, Tokyo, Japan). The antibodies used in this study
were as follows: anti-ER� rabbit monoclonal antibody (mAb)
(Cell Signaling Technology (Danvers, MA), 8644), anti-ER�
rabbit polyclonal antibody (pAb) (Santa Cruz Biotechnology,
Inc. (Dallas, TX), sc-542 and sc-543), anti-cIAP1 goat pAb
(R&D Systems (Minneapolis, MN), AF8181), anti-cIAP1 rat
mAb (Enzo Life Sciences (Farmingdale, NY), 1E1-1-10), anti-�-
actin mouse mAb (Sigma, A5316), anti-XIAP rabbit pAb (Cell
Signaling Technology, 2042), anti-GAPDH rabbit pAb (Santa
Cruz Biotechnology, sc-25778), anti-lamin B1 goat pAb (Santa
Cruz Biotechnology, sc-6216), anti-histone H3 goat pAb
(Santa Cruz Biotechnology, sc-8654), anti-PARP rabbit pAb
(Cell Signaling Technology, 9542), anti-caspase-6 rabbit
pAb (Cell Signaling Technology, 9762), anti-caspase-7 rabbit
mAb (Cell Signaling Technology, 12827).

Measurement of binding affinities of ER� and IAPs

The bindings between test compounds and cIAP1, cIAP2, or
XIAP were determined by a time-resolved FRET assay using
His-IAP proteins (XIAP, cIAP1, or cIAP2), FITC-Smac, Tb-SA,
and biotinylated anti-His antibody, as described previously
(14).

The binding between test compounds and the human ER�
protein was determined using the PolarScreenTM Estrogen
Receptor-� Competitor Assay Green (Thermo Fisher Scien-
tific, A15882) containing recombinant ER� full-length protein,
Fluormone ES2 Green2, and ES2 screening buffer. Purified ER�
and Fluormone ES2 were diluted with assay buffer to final con-
centrations of 25 and 4.5 nM, respectively, and 4 �l of each
dilution was added to each well of a 384-well black low-volume
assay plate (Greiner, 784076). Then 2 �l of the ES2 screening
buffer, containing test compounds or DMSO, was added to the
well. The plate was subjected to centrifugation and incubated at
room temperature for 1 h; then the intensity of the fluorescence
polarization signal was measured by a plate reader (Envision,
PerkinElmer Life Sciences). Wells containing ER� and Fluor-
mone ES2 were used as a positive control, and wells containing
only Fluormone ES2 were used as a negative control. IC50 val-
ues and 95% confidence interval were calculated by XLfit (ID
Business Solutions, fit model 204) from the data expressed as
percentage of control inhibition.

Immunoprecipitation

MCF-7 or T47D cells were treated with the indicated con-
centrations of the indicated compounds, in combination with
10 �M MG132, for 3 h. Cells were lysed using immunoprecipi-
tation lysis buffer (10 mM Hepes, pH 7.4, 142.5 mM KCl, 5 mM

MgCl2, 1 mM EGTA, and 0.1% Triton X-100), containing pro-
tease inhibitor mixtures, rotated for 15 min at 4 °C, and centri-
fuged at 15,000 rpm for 10 min at 4 °C to obtain the superna-
tants. Lysates that had been precleared with naked protein
G-Sepharose were immunoprecipitated with protein G-Sep-
harose beads that were preincubated with anti-ER� rabbit pAb

(Santa Cruz Biotechnology, sc-543) for 2 h at 4 °C. The precip-
itates were washed with immunoprecipitation lysis buffer four
times and analyzed by Western blotting.

siRNA transfection

MCF-7 or T47D cells were transiently transfected with a
gene-specific siRNA or a negative control siRNA (Qiagen,
Valencia, CA) using Lipofectamine RNAi MAX reagent (Life
Technologies, Inc.). The siRNA sequences used in this study
were as follows: human ER�-1 (5�-CGACAUGCUGCUGGC-
UACAUCAUCU-3�), ER�-2 (5�-UCACAGACACUUUGAU-
CCACCUGAU-3�), ER�-3 (5�-GACCGAAGAGGAGGGAG-
AAUGUUGA-3�), cIAP1–1 (5�-UCUAGAGCAGUUGAAGA-
CAUCUCUU-3�), cIAP1-2 (5�-GCUGUAGCUUUAUUCAG-
AAUCUGGU-3�), cIAP1–3 (5�-GGAAAUGCUGCGGCCAA-
CAUCUUCA-3�), XIAP-1 (5�-ACACUGGCACGAGCAGGG-
UUUCUUU-3�), XIAP-2 (5�-GAAGGAGAUACCGUGCGG-
UGCUUUA-3�), and XIAP-3 (5�-CCAGAAUGGUCAG-
UACAAAGUUGAA-3�).

Cell viability assay

Cell viability was evaluated by crystal violet staining. Cells
were treated with graded concentrations of the SNIPER com-
pounds for 72 h and then stained with 0.1% crystal violet
(Wako, Osaka, Japan) in 1% ethanol for 15 min at room tem-
perature. Cells were rinsed thoroughly with distilled water and
then lysed in 1% SDS. The absorbance of the cell lysate at 600
nm was measured using an EnVision multilabel plate reader
(PerkinElmer Life Sciences).

In vivo protein knockdown

All procedures of the animal experiments were reviewed and
approved by the Institutional Animal Experiment Review Com-
mittee of the National Institute of Health Sciences (NIHS), and
those experiments were conducted in accordance with the
guidelines approved by the Care and Use of Animals published
by the Institutional Animal Ethical Committee. Mice were
housed in pathogen-free animal facilities at the NIHS with 12-h
light/dark cycles and were fed rodent chow and water ad libi-
tum. For Fig. 7a, female 6-week-old BALB/c mice (Clea Japan,
Tokyo, Japan) were randomized and divided into eight treat-
ment groups (n � 3) and then treated with vehicle or 30 mg/kg
SNIPER(ER)s for 24 h or 48 h. For Fig. 7 (b and c), each suspen-
sion of 1 � 107 MCF-7 cells was mixed with an equal volume of
Matrigel (Corning Inc.) and injected (100 �l total) into the left
and right mammary fat pads of 6-week-old female BALB/c
nude mice (Clea Japan). After cell inoculation, �-estradiol solu-
tion was subcutaneously injected into the neck twice at inter-
vals of 6 days. Fourteen days after the last �-estradiol injection,
tumor-bearing mice were randomized and divided into two or
three treatment groups as follows: for Fig. 7b: 1) vehicle treat-
ment for 24 h (n � 3), 2) 30 mg/kg SNIPER(ER)-87 treatment
for 24 h (n � 2), 3) 30 mg/kg SNIPER(ER)-110 treatment for
24 h (n � 2), and 4) 30 mg/kg SNIPER(ER)-126 treatment for
24 h (n � 2); for Fig. 7c: 1) vehicle treatment for 48 h (n � 3), 2)
30 mg/kg SNIPER(ER)-87 treatment for 48 h (n � 3), 3) 30
mg/kg SNIPER(ER)-110 treatment for 48 h (n � 3), and 4) 30
mg/kg SNIPER(ER)-126 treatment for 48 h (n � 3). Com-
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pounds were administered via intraperitoneal injection. After
the indicated treatment periods, the mice were sacrificed, and
tissues were excised. Total lysates from the ovaries and tumors
were analyzed by Western blotting.

In vivo tumor growth inhibition

Each suspension of 1 � 107 MCF-7 cells was mixed with an
equal volume of Matrigel (BD Biosciences) and inoculated (100
�l total) into the left and right mammary fat pads of 6-week-old
female BALB/c nude mice (Clea Japan) that had received an
�-estradiol pellet (6 �g/day) (Innovative Research of America,
Sarasota, FL) under the neck skin. After 4 days, mice bearing
tumors of �100 mm3 in size were randomized and divided into
two groups (n � 7). One group served as a control for the dosing
vehicle; the other groups were administered SNIPER(ER)-87 or
SNIPER(ER)-110 (30 mg/kg, intraperitoneally, every 24 h),
respectively. Tumor volumes were measured every 2 days using
a caliper and calculated according to the standard formula:
(length � width2)/2. At 16 days, mice were sacrificed, and the
tumors were weighed and excised.

Cell cycle analysis

After treatment, cells were gently trypsinized and washed
with serum-containing medium. Cells were collected by cen-
trifugation and then washed with PBS and fixed in 70% ice-cold
ethanol for 1 h on ice. The cells were then washed, treated with
1 mg/ml RNase A for 1 h at 37 °C, and stained in PI solution (50
�g/ml in 0.1% sodium citrate, 0.1% NP-40). The stained cells
were analyzed in a FACScan flow cytometer (BD Biosciences).

Measurement of apoptosis by flow cytometer

Apoptosis was analyzed with an annexin V-FITC apoptosis
detection kit (BioVision). After treatment, cells were gently
trypsinized and washed with serum-containing medium. Cells
were collected by centrifugation and then washed with PBS and
resuspended in binding buffer. The cells were stained with
annexin V-FITC and PI at room temperature for 5 min in the
dark, according to the manufacturer’s instructions, and ana-
lyzed in a FACScan flow cytometer (BD Biosciences).

Statistical analysis

Student’s t test was used to evaluate differences among the
experimental groups. Values of p � 0.05 were considered
significant.
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