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specificity than caspase-1
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Inflammatory cell death, or pyroptosis, is triggered by patho-
genic infections or events. It is executed by caspase-1 (in the
canonical pyroptosis pathway) or caspase-11 (noncanonical
pathway), each via production of a cell-lytic domain from the
pyroptosis effector protein gasdermin D through specific and
limited proteolysis. Pyroptosis is accompanied by the release of
inflammatory mediators, including the proteolytically pro-
cessed forms of interleukin-1� (IL-1�) and IL-18. Given the
similar inflammatory outcomes of the canonical and nonca-
nonical pyroptosis pathways, we hypothesized that caspase-1
and -11 should have very similar activities and substrate speci-
ficities. To test this hypothesis, we purified recombinant murine
caspases and analyzed their primary specificities by massive
hybrid combinatorial substrate library (HyCoSuL) screens. We
correlated the substrate preferences of each caspase with their
activities on the recombinant natural substrates IL-1�, IL-18,
and gasdermin D. Although we identified highly selective and
robust peptidyl substrates for caspase-1, we were unable to do
so for caspase-11, because caspase-1 cleaved even the best
caspase-11 substrates equally well. Caspase-1 rapidly processed
pro-IL-1� and -18, but caspase-11 processed these two pro-ILs
extremely poorly. However, both caspase-1 and -11 efficiently
produced the cell-lytic domain from the gasdermin D precursor.
We hypothesize that caspase-11 may have evolved a specific
exosite to selectively engage pyroptosis without directly activat-
ing pro-IL-1� or -18. In summary, comparing the activities of
caspase-1 and -11 in HyCoSuL screens and with three endoge-
nous protein substrates, we conclude that caspase-11 has highly
restricted substrate specificity, preferring gasdermin D over all
other substrates examined.

The two cellular pathways that transduce recognition of
pathogens by innate immune effector cells to induce cell death
and accompanying cytokine release are the canonical pathway
(which integrates extracellular pathogen recognition) and the
non-canonical pathway (which integrates intracellular cyto-
plasmic pathogen recognition) (1–4). The canonical pathway
operates by recognizing pathogen-associated molecular pat-
terns through membrane-associated Toll-like receptors to
engage signal transduction with up-regulation of components
of inflammasomes. These macromolecular platforms assemble
in the cytoplasm and are essential for recruitment and activa-
tion of inflammatory caspases (5, 6), and sensitization of cells to
a second signal that activates caspase-1 in an inflammasome-
dependent manner. The non-canonical pathway is driven by
intracellular cytosolic sensing of pathogens by caspase-11, the
mouse ortholog of human caspase-4 and -5, and does not
require inflammasome components (1, 7, 8). Although the acti-
vation mechanism of caspase-1 and -11 is not defined, it most
likely mirrors the proximity-induced dimerization model of
initiator caspases in apoptosis (9, 10).

Caspase-1 and caspase-11 cleave gasdermin D (GSDMD),3
forming pores in liposomes by aggregation of N-terminal
GSDMD fragments. Although not yet recorded in vivo, these
pores are thought to also form in the cell membrane (11–14).
The subsequent release of pro-inflammatory mediators via cel-
lular membrane pores defines pyroptosis, a form of regulated
inflammatory cell death (15). The requirement of two inflam-
matory caspases for the different inflammatory pathways is not
well-understood.

Caspase-1, formerly known as ICE (interleukin-converting
enzyme), was originally identified as the protease responsible
for cleaving and activating the 33-kDa pro-IL-1� to its mature
17-kDa form in human monocytic cells (16 –18), a role mir-
rored in mice (18, 19). Caspase-1 also processes pro-IL-18 into
its mature form (20 –22). Although these inflammatory mes-
sengers lack a signal export sequence, after maturation they are
nevertheless released from the cell (23). Akin to caspase-11,
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caspase-1 produces the same cell lytic N-terminal domain of
GSDMD (11–14, 24, 25). Together these caspase-1-mediated
limited proteolytic events provide a rational explanation of how
leaderless cytokines are activated and released from bacterially-
infected macrophages, no export mechanism is required
because the release is from N-GSDMD-permeabilized cells.

Thus there exist three well-recognized substrates for
caspase-1, and at least one substrate in common with
caspase-11 (GSDMD). Genetic evidence based on induction of
non-canonical pyroptosis indicates that caspase-1 and the
canonical inflammasome components Nlrp3 and ASC are
required for processing of pro-IL-1� and pro-IL-18 with the
implication that caspase-11 does not, or cannot, process
these cytokines (1). Given the 53% sequence identity in their
catalytic domains of caspase-1 and -11 and the regulatory
role caspase-11 has been implicated to play, a question that
has remained unanswered is whether efficient catalysis of
caspase-11 on pro-IL-1� and pro-IL-18, the only two members
of the interleukin family that are processed by caspase-1, differs
from caspase-1 hydrolysis. The biochemical characterization of
caspase-1 and -11 presented here addresses this dichotomy.

Screening of proteolytic enzymes with short peptide sub-
strate libraries is a common approach to define their inherent
substrate preferences in the active site, and thus distinguish
closely related proteases. Several chemical- and biological-
based approaches have been developed to dissect protease pref-
erences (26). The most commonly used technology utilized
Positional Scanning Synthetic Combinatorial Libraries (PS-
SCL), introduced by Thornberry and co-workers (27, 28) to
screen human caspases. This seminal research provided a
robust screening platform and a framework defining the major
differences in specificity between inflammatory and apoptotic
caspases. These tetrapeptides have served for many years as
gold standards for developing substrates, inhibitors, and activ-
ity-based probes to study caspases (29) and many other pro-
teases (30). A substantial extension of PS-SCL termed hybrid
combinatorial substrate library (HyCoSuL) (31) employs a wide
set of unnatural amino acids in peptide mixtures, allowing for
detailed exploration of protease-active sites, as we have
employed HyCoSuL to discriminate between human apopto-
tic caspases (32). Accordingly, we employed HyCoSuL here
to explore specificity differences between mouse caspase-1
and -11, and deployed the complementary technique of nat-
ural protein profiling and kinetics to address the individual
roles of caspase-1 and -11 in pyroptosis and inflammatory
cytokine activation.

Results

Expression and purification of mouse inflammatory caspases

To explore and differentiate the substrate specificity of
mouse caspase-1 and caspase-11, we expressed full-length
C-terminally His-tagged versions of each enzyme as well as
caspase activation and recruitment domain (CARD)-deleted
(�CARD) versions (Fig. 1). When expressed in Escherichia coli,
the purified soluble material did not render a full-length
enzyme (Fig. 1B). The purified material from �CARD con-
structs of caspase-1 and -11 revealed two species: an unpro-

cessed catalytic domain comprised of large and small subunits,
and processed large and small subunits (Fig. 1B). The identity of
these �CARD caspase-11 derivatives was confirmed by
MS/MALDI (Fig. 1B). MALDI analysis of caspase-11 recovered
from full-length construct expression revealed removal of the
CARD consistent with cleavage at Phe77/Ser78, which is likely
due to cleavage by an endogenous E. coli protease.

CARD-containing proteins belong to the death domain
superfamily, which consists of 35 family members, all varying in
solubility degree when expressed in E. coli (33). The disappear-
ance of CARDs from the full-length expression constructs
raised three possibilities: 1) the overexpression resulted in
autoprocessing and removal of the CARDs, 2) CARD is insolu-
ble and was trapped in inclusion bodies; and/or 3) CARD is
cleaved by an E. coli protease. To investigate these possibilities
we dissolved cell pellets in 8 M urea and purified all His-tagged
proteins under denaturing conditions. Immunoblotting re-
vealed full-length versions of both enzymes (Fig. 1C), suggest-
ing that the CARD rendered the full-length caspases insoluble
upon expression in E. coli and we are thus only able to purify
CARD-removed proteins.

Although CARD-containing proteins, such as human ASC
and ICEBERG, have been refolded from denatured prepara-
tions (33), our efforts to capture activity following denaturation
and renaturation of caspase-1 or -11 were futile after following
previously reported protocols (34). Accordingly, because of
higher yields, we decided to continue our work with the
�CARD-purified derivatives of these enzymes.

Caspase-1 and caspase-11 substrate specificity

The enzymes were scanned using a HyCoSuL, which
employs 19 natural amino acids and 110 unnatural amino acids
(32). This tactic allows us to explore in depth the chemical space
represented by caspase-active sites. The general formula of the
HyCoSuL library is Ac-P4-P3-P2-Asp-ACC where the primary
specificity determinant (P1) is fixed as Asp, and the upstream
P2–P4 positions are randomized. Caspase-1 and caspase-11 are
not synonymous on this library and each displays characteristic
differences, as visualized by comparison of preferences for nat-
ural amino acids (Fig. 2A). The analysis reveals caspase-1 and
-11 both have a strong preference for histidine in the P2 posi-
tion, and broad tolerance in the P3 position. Caspase-11 accepts
a wide variety of residues at P3, but this position is more restric-
tive for caspase-1. At the P4 position caspase-1 prefers trypto-
phan, whereas caspase-11 favors valine. The region of endoge-
nous substrates spanning the cleavage sites for caspase-1 and
-11 (Fig. 2B) reveals that P4 and P3 somewhat match the optimal
substrate sequence motifs, but that P2 does not, with the opti-
mal histidine not utilized in endogenous protein substrates.

Expanding the screen with unnatural amino acids reveals
that in the P2 position caspase-11 can also recognize His(Bzl),
whereas caspase-1 has much broader specificity recognizing
multiple amino acids, including His(Bzl). Both enzymes present
broad specificity in P3 with caspase-11 even tolerating D-amino
acids to a small extent, however, several amino acids (Bip, Tyr(Bzl),
Bpa) are significantly better recognized by caspase-11 than by
caspase-1. The P4 position shows broad specificity for aliphatic
and aromatic unnatural amino acids for both caspases with
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Trp(Me) being the best for caspase-1 and Tle (tert-leucine) being
the most active toward caspase-11. Detailed amino acid screening
profiles for caspase-1 and -11 are found in Figs. S1–S3.

These characteristics suggested that we may be able to gen-
erate individual caspase-selective substrates, and to this end we
synthesized the top hits for P2, P3, and P4 using natural amino
acids and determined kcat/Km values (Table 1 and Table S1).
WEHD and LEHD-based substrates had already been used to
measure inflammatory caspase activity (35), and thus served as
prior indicators. Indeed, WEHD is the best substrate for
caspase-1 with a kcat/Km of 522,000 M�1 s�1. We found the
WQPD substrate sequence to be highly selective for caspase-1
over caspase-11 (selectivity factor �5,140), and over a panel of
other caspases (Table S3). The best substrates for caspase-11
included PYHD and PMHD tetrapeptides, however, caspase-1
cleaved these substrates even more efficiently with 2–3-fold
higher kcat/Km values. Based on these results, caspase-1 is a
more active enzyme and outpaces caspase-11 on all substrates
containing natural amino acids.

Taking advantage of the unique side chains that unnatural
amino acids present to explore the active sites of caspase-1 and
-11, we synthesized distinctive substrates based on the pre-
ferred unnatural amino acid library screening results (Table 2,
Table S2). To account for potential subsite cooperativity issues

(36, 37) we covered a large amount of sequence combinations,
synthesizing 57 individual substrates, 20 with natural amino
acids and 37 with natural and unnatural amino acids (Tables S1
and S2). We found several substrates that display significant
selectivity for caspase-1 over caspase-11. All these substrates
share some structural similarities: cyclic, aliphatic (Cha), or
aromatic (Phe and Trp derivatives) amino acids at the P4 posi-
tion, Glu or Met(O2) at P3, and Tic or His(Bzl) at P2. Despite the
large diversity of unnatural amino acids used in HyCoSuL none
of these substrates was more selective than the substrate con-
taining the natural amino acids WQPD, and the Cha-Glu-Tic-
Asp unnatural substrate was only slightly more active than the
reference natural amino acid WEHD sequence.

In contrast to caspase-1, more success in obtaining better
substrates for caspase-11 was achieved. We found that the use
of branched, aliphatic amino acids (Tle) at P4, and large, aro-
matic amino acids (Bip, Bpa) at P3 generated substantially
improved substrates, as the Ac-Tle-Bpa-His(Bzl)-Asp-ACC
was hydrolyzed 15.6- and 27-fold faster than the best substrate
containing natural amino acids (Ac-PMHD-ACC) and refer-
ence (Ac-WEHD-ACC) substrates, respectively (Fig. 3). The
extended nature of the cyclic side chains that comprise these
unnatural amino acids may indicate that they could reach sur-
face hydrophobic pockets that natural amino acids cannot

Figure 1. Expression and purification of mouse caspase-1 and -11. A, two constructs, full-length (FL) and CARD-deleted (�), were designed for each enzyme,
see “Materials and methods” for details of the constructs. B, purified �CARD caspase-1 and -11 resulted in a mixture of soluble, unprocessed catalytic subunit
with processed large and small subunits. MALDI-MS analysis revealed molecular mass derivatives of �CARD caspase-11 that coincides with the expected
engineered protein molecular weights. The CARD of FL caspase-11 was removed during expression to generate derivatives whose mass is consistent with
processing at Glu97/Ser98. C, cell pellets expressing full-length enzymes were resuspended in 8 M urea, 50 mM Tris-Cl, 100 mM NaCl buffer, pH 8.0. Purified
unfolded full-length enzymes were detected on 4 –12% BisTris SDS-PAGE with Instant Blue and anti-His or caspase-11 antisera.
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explore, much as seen in the case of binding of peptides based on
unnatural amino acids to the serine protease neutrophil elastase
(38). Unfortunately, even the best caspase-11 substrates were also
efficiently hydrolyzed by caspase-1 so we could not obtain a sub-
strate reasonably selective for caspase-11. Nevertheless, we dem-
onstrated that the application of unnatural amino acids is a good
strategy to enhance catalysis for caspase-11.

In vitro cleavage of pro-IL-1�, pro-IL-18, and GSDMD by
mouse inflammatory caspases

To compare the catalytic efficiency of mouse inflammatory
caspases for endogenous substrates, we incubated the active

site-titrated enzymes with 4 �M recombinant mouse pro-IL-1�,
pro-IL-18, and GSDMD (Fig. 4). To determine the enzyme con-
centration needed to cleave half of the substrate, and thus
derive kcat/Km values according to Equation 2, the incubated
samples were run on SDS-PAGE gels, and the stained gels were
quantified by densitometry scanning. Because the apoptotic
executioner caspase-3 has also been implicated in cleavage of
the proteins we included this enzyme in our analyses.

The respective kcat/Km are presented in Fig. 4, from which
it is apparent that caspase-1 efficiently processes pro-IL-1�,
pro-IL-18, and GSDMD to give the expected derivatives.
Caspase-11 cleaves GSDMD with somewhat comparable effi-
ciency, but is unable to cleave the pro-interleukins, and the

Figure 2. Comparative subsite preferences. A, mouse caspase-1 and caspase-11 were screened on a natural amino acid positional scanning library, see Figs.
S1–S3 for complete data. Relative activities reveal distinctive preferences at the P4 and P3 positions, and a common preference at the P2 position. There
appeared to be no positions that could be used to discriminate caspase-1 from caspase-11 (except possibly Lys in the P3 position), but caspase-11 showed a
preference over caspase-1 for �-branched residues in P4 and large hydrophobic residues in P3. Amino acids close to the dotted diagonal line are equally
tolerated by both caspases. Residue coloring reflects common properties of the amino acid side chains. B, alignment of endogenous mouse substrates of the
inflammatory caspases from the P10–P4� region, with the region corresponding to synthetic substrates shaded.

Table 1
Unique preferred substrates with natural amino acids
Based on screening of a natural amino acid HyCoSuL library, single substrates were
synthesized for caspase-1 and caspase-11. Each substrate was assayed with either
caspase-1 or caspase-11. All synthesized natural amino acid substrates were pre-
ferred by caspase-1, even those that had the highest catalytic numbers for caspase-
11. The selectivity factor represents the catalytic parameter kcat/Km for caspase-1
divided by that for caspase-11. Each experiment was repeated at least three times,
and the kcat/Km values are presented as an average. Standard deviations were below
15%.

Substrate sequence:
Ac-P4-P3-P2-P1-ACC

kcat/Km Selectivity
factorCaspase-1 Caspase-11

M�1s�1

Reference substrates
WEHD 522,000 4,100 127
LEHD 179,000 3,850 47

Caspase-1 preferred
WQPD 257,000 �50 �5,140
FEAD 171,000 �50 �3,420
WQVD 328,000 244 1,340

Caspase-11 preferred
PYHD 22,400 7,070 3.2
PMHD 16,100 7,200 2.2

Table 2
Unique preferred substrates with unnatural amino acids
Based on screening of an unnatural amino acid HyCoSuL library, optimal single
substrates were synthesized for caspase-1 and caspase-11. Each substrate was
assayed with either caspase-1 or caspase-11. Most synthesized unnatural amino acid
substrates were preferred by caspase-1, with only the best caspase-11 substrates
demonstrating about equal catalytic rates with caspase-1. The selectivity factor
represents the catalytic parameter kcat/Km for caspase-1 divided by that for caspase-
11. Each experiment was repeated at least three times, and the kcat/Km values are
presented as an average. Standard deviations were below 15%.

Substrate sequence:
Ac-P4-P3-P2-P1-ACC

kcat/Km Selectivity
factorCaspase-1 Caspase-11

M�1s�1

Caspase-1 preferred
Cha-Glu-Tic-Asp 544,000 609 893
Phe(2Cl)-Glu-Tic-Asp 525,000 1,010 519
Trp(Me)-Glu-His(Bzl)-Asp 524,000 1,700 106
Trp-Met(O2)-His-Asp 512,000 7,140 72

Caspase-11 preferred
Tle-Bpa-His(Bzl)-Asp 89,000 112,000 0.80
Tle-Bip-His-Asp 80,200 109,000 0.74
Pro-Bip-His(Bzl)-Asp 25,900 69,000 0.38
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kcat/Km of 9.0 M�1 s�1 is a maximal estimate, and orders of
magnitude slower than caspase-1 cleavage of the pro-interleu-
kins. Caspase-3 efficiently cleaves pro-interleukins, but displays
a low kcat/Km on GSDMD (Fig. 4). Importantly, the caspase-3
cleavage sites are different from the inflammatory caspase
cleavage sites, and the consequence of this is discussed later.

Discussion

Genetic evidence indicates that caspase-1 processes pro-
IL-1� and pro-IL-18 but caspase-11 does not (1, 39). Both of
these caspases are nevertheless able to induce pyroptosis by
cleaving GSDMD (24, 25). Thus there must be biochemical
characteristics that distinguish these two otherwise closely
related caspases. Working with recombinantly expressed
enzymes, we found these enzymes to be soluble and active after
purification. The lack of CARD domain does not inhibit their
activity as seen in the library profiles and in vitro cleavages of
endogenous substrates. A question of whether CARDs influ-
ence specificity cannot yet be determined. However, substrate
specificity mapping of the CARD-containing caspase-9 reveals
no role in specificity or catalysis for its CARD, and from this
perspective we predict that the specificity and activity of
caspase-1 and -11 would not be influenced by their CARDs.

Since the discovery of human caspase-1 more than two
decades ago, various studies have focused on understanding its
kinetic parameters by designing multiple length substrates
using different approaches (18, 28, 40 – 42). The optimal length
of peptide substrates is four residues (41). Using this peptide
length, initial substrate specificity studies conducted on
caspase-11, and its closest human orthologs caspase-4 and -5,
reported similar specificity to caspase-1 (28, 43), which we con-
firm in Tables S3 and S4.

To better understand the distinctions between caspase-1 and
-11 we employed a screening strategy utilizing HyCoSuL, fol-
lowed by synthesis of individual substrates containing unnat-
ural amino acids. Analysis of these substrates allowed us to
draw several conclusions. First, the use of unnatural amino
acids had no impact on the activity or the selectivity of
caspase-1 substrates, as the sequence WEHD was still among

the best recognized substrates, and WQPD was the most selec-
tive substrate over caspase-11 with a selectivity factor over
5,140. Thus, the WQPD substrate can serve as an excellent
distinguishing marker for caspase-1 detection in cells undergo-
ing pyroptosis. On the other hand, unnatural amino acids were
very useful in caspase-11 profiling. We found that two substrate
containing unnatural amino acids (Tle-Bip-His-Asp and Tle-
Bpa-His(Bzl)-Asp) displayed a 15-fold higher kcat/Km toward
caspase-11 than the best substrate containing natural amino
acids (PMHD). The high increase in enzyme activity was due to
Tle at P4 and Bip/Bpa at P3. We reasoned that these amino acids
produce new binding interactions with the enzyme that could
not be obtained using natural analogs. For instance, Ac-Pro-
Bip-His(Bzl)-Asp-ACC displayed almost 3-fold higher kcat/Km

for caspase-11 over caspase-1, whereas all alleged caspase-11
selective substrates containing only natural amino acids
were hydrolyzed substantially faster by caspase-1. However,
the very best selective substrates for caspase-11, suboptimal
for caspase-1, are still cleaved by caspase-1 with equal or
greater efficiency. Even the very best peptide substrates for
caspase-11 have kcat/Km values of less than 104 M�1 s�1,
which is generally very poor for caspase peptidyl substrates
(32).

At this point we reasoned that the active form of caspase-11
produced in E. coli might lack activity due to folding or confor-
mational issues, and so we tested both caspases on natural sub-
strates obtained from recombinant expression. We were struck
by the very poor cleavage of pro-IL-1� and pro-IL-18 by
caspase-11. The kcat/Km values are so poor (�10,000-fold
lower than caspase-1) that we estimate, through applying
Equation 3 and an estimated enzyme concentration of 10 nM,
that it would take over 3 months for caspase-11 to cleave 50%
of pro-IL-1� and pro-IL-18. In contrast, caspase-1 would
take about 5–10 min to accomplish cleavage under the same
conditions. However, the cleavage rate of GSDMD by
caspase-1 and -11 is more comparable with only a 13-fold
difference in kcat/Km values (half-times for cleavage of 10
min to 2 h).

Figure 3. Structures of the best natural and unnatural fluorogenic substrates for caspase-11. A, one of the most active natural substrate contains the
Pro-Tyr-His-Asp sequence. B, two of the most active caspase-11 substrates containing unnatural amino acids. Extended cyclic and hydrophobic side chains
enhance catalysis compared with substrates with natural amino acids.
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Figure 4. Cleavage rates of substrate proteins by caspases. To test catalytic efficiency of caspases on A, pro-IL-1�, B, pro-IL-18, and C, GSDMD, the indicated
enzymes were active site titrated using Z-VAD-fmk, incubated with 4 �M substrates for 30 min at 37 °C, and run in SDS-PAGE. Gel densitometry of the remaining
uncleaved substrate yielded IC50 values from which catalytic rates kcat/Km were determined according to Equation 1 (“Materials and methods”). The precursor
proteins are shown by a solid black arrowheads, derivatives of each substrate are indicated by the gray or white arrowheads. Importantly, although the apoptotic
caspase-3 cleaved the proteins, each site was distinct from those generated by inflammatory caspase-1 and -11 (white arrowheads). The gels above are
representative of two biological replicates employing different caspase preparations. D, comparative kcat/Km values are described by the colored symbols, as
indicated in the key. Caspase-3 cleaved all three proteins, but at sites distinct from those generated by caspase-1 and -11, as discussed in the text. Data are
averages from two biological replicates, and the error bars indicate standard deviations.
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Taking these results into account we conclude that
caspase-11 has a very restricted substrate specificity, preferring
GSDMD over all other substrates examined. The P4–P1 resi-
dues in GSDMD are LLSD and those in pro-IL-18 are LESD,
and so the only difference in this region that occupies the active
site cleft is at P3, where GSDMD has Leu, and pro-IL-18 has Glu
(Fig. 2B). Examination of Fig. 2 reveals that Glu is preferred to
Leu at P3, so from this perspective pro-IL-18 should be a better
substrate than GSDMD for caspase-11. Clearly this is not the
case, so another explanation must be considered to explain the
rapid and preferred cleavage of GSDMD by caspase-11.

Mechanistically, this is likely to represent a case where
exquisite substrate specificity is created by an exosite on the
scaffold of an otherwise poor enzyme. Originally identified in
thrombin as a mechanism to enhance cleavage of its key sub-
strate fibrinogen (44), exosites are emerging as a critical sub-
strate recognition function in several distinct protease families
including matrix metalloproteases, small ubiquitin-like modi-
fier (SUMO), and ubiquitin-deconjugating enzymes, and cathe-
psins (45–48). Exosites are generally distant from the enzyme
active site and tend to direct proteases toward specific sub-
strates that are normally not well-cleaved. Caspase-11 may rep-
resent such a case, cleaving peptide substrates and pro-inter-
leukins poorly, but cleaving GSDMD well, and has thus
developed a highly selective substrate specificity via a yet to be
identified exosite. Notably, both pro-IL-1� and pro-IL-18 pos-
sess negatively charged residues in the P7–P10 region upstream
of the cleavage site (Fig. 2B). This may preclude efficient bind-
ing by caspase-11 and constitute part of an exosite.

Despite the finding that caspase-11 is an unlikely candidate
for activation of pro-interleukins there is nevertheless evidence
based on in vivo studies and ablation of inflammasome compo-
nents in mice that non-canonical stimuli lead to pro-interleu-
kin processing (1). One potential pathway is via direct activa-
tion of pro-caspase-1 by active caspase-11. We have not been
able to produce pro-caspase-1 by recombinant expression, so
have been unable to test this straightforwardly. However, mice
and human cells ablated in Nlrp3 and ASC, key inflammasome
components, are unable to process the pro-interleukins, lead-
ing to the conclusion that canonical activation of caspase-1 is
required and activation should not be directly via caspase-11 (1,
49 –51) (Fig. 5). The identity of the pathway(s) leading to the
indirect activation of caspase-1 by caspase-11 remains elusive.

Although we have focused on the pro-inflammatory
caspase-1 and -11, it is noteworthy that the apoptotic
caspase-3 also cleaves pro-IL-1�, pro-IL-18, and GSDMD, but
at different sites. Cleavage of human GSDMD by caspase-3
inactivates lytic potential, preventing caspase-1 and -11 from
generating a cell-permeabilizing product (52). Cleavage of
human pro-IL-18 by caspase-3 generates biologically inactive
products (53). Together these observations give credence to the
hypothesis that apoptotic caspases blunt inflammation by inac-
tivating pro-inflammatory cytokines (54) and GSDMD.

Future studies will seek to delineate the pathway that leads
from active caspase-11 to active caspase-1. The pathway may be
cell autonomous or it may involve sensing of cellular contents
released from pyroptotic cells by adjacent cells, leading to
canonical caspase-1 activation. Moreover, evidence presented

here implies that an exosite exists on caspase-11 to secure rapid
cleavage of GSDMD. Given that we have not been able to cap-
ture a substrate selective for caspase-11 over caspase-1, despite
massive peptide-based screening, it is unlikely that a simple
active site-directed strategy will succeed in developing com-
pounds to interfere with the non-canonical pathway over the
canonical one. Accordingly, directing compounds against the
putative exosite may lead to highly selective compounds target-
ing caspase-11, but this will first depend on the characterization
of the exosite.

Materials and methods

Protein construct design, expression, and purification

Constructs encoding full-length mouse caspase-1 and
caspase-11 in pcDNA3(�) Zeocin were the kind gifts of Irma
Stowe and Nobuhiko Kayagaki (Genentech, San Francisco,
CA). Sequences encoding mouse full-length GSDMD, pro-IL-
1�, and pro-IL-18 were purchased from Integrated DNA Tech-
nologies (San Diego, CA) and cloned into the pET29b(�)
(Novagen) containing a C-terminal His tag. CARD deleted
(�CARD) modified versions of mouse caspase-1 (minus amino
acids 2–129) and caspase-11 (minus amino acids 2–99) were
also cloned into the pET29b(�) containing a C-terminal His
tag. �CARD-modified versions of human caspase-1 (minus
amino acids 2–118) and caspase-4 (minus amino acids 2–93)
were cloned into pET15b(�) containing an N-terminal His tag.
�CARD Caspase-5 (minus amino acids 2–132) was cloned into
the pET21b(�) containing a C-terminal His tag. All other
caspases were expressed as previously described (55). All con-
structs were transformed into BL21 (DE3)-competent E. coli.
Expression was induced with 0.2 mM isopropyl �-D-1-thioga-
lactopyranoside for 4 h at 25 °C shaking at 250 rpm. Cells were
collected and pelleted at 4 °C for 10 min at 3,900 � g. The
caspase cell pellets were resuspended in 50 mM Tris-Cl, 100 mM

NaCl, pH 8.0, and lysed via sonication. The GSDMD, pro-IL-
1�, and pro-IL-18 cell pellets were resuspended in 50 mM

HEPES, 100 mM NaCl, pH 8.0.

Figure 5. Pathway model of inflammatory caspase functions. Based on
the kcat/Km values presented in this paper, caspase-11 is unlikely to be
involved in directly processing pro-interleukins, as emphasized by the rela-
tive weights of the arrowed lines. However, monocytic cells treated with non-
canonical stimuli that activate caspase-11 still retain the ability to process the
pro-interleukins. As discussed in the text, there cannot be a direct activation
of caspase-1 by caspase-11, so there must be an intermediate factor(s) that
respond to active caspase-11 by ultimately activating caspase-1, most likely
via the canonical pathway. In contrast, both caspases are able to directly
activate GSDMD in a timely manner to generate pyroptosis.
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Cell lysates were centrifuged at 4 °C for 30 min at 28,000 � g,
supernatants were filtered through a 0.22-�m filter (Millipore)
and the soluble fractions were applied to a 1-ml Ni-chelating-
Sepharose resin (GE Healthcare Life Sciences) in a chromatog-
raphy column. The enzyme-bound resin was washed in 50 mM

Tris-Cl, 500 mM NaCl, pH 8.0, and then enzymes were eluted in
25 mM Tris-Cl, 100 mM NaCl, pH 8.0, with stepwise increments
of imidazole from 12.5 to 100 mM. Human caspase-3 was pre-
pared as previously described (55). Purified protein concentra-
tion was determined by absorbance at 280 nm. Active enzyme
concentration was calculated by carbobenzoxy-valyl-alanyl-as-
partyl-[O-methyl]-fluoromethylketone (Z-VAD-fmk, Cayman
Chemical, 14467-5) titration, see below. Proteins were analyzed
by 4 –12% BisTris SDS-PAGE gels (Novex Life Technologies)
and stained with Instant Blue (Expedeon), or transferred onto a
nitrocellulose membrane and detected with antibodies.

Urea protein denaturation and refolding

Full-length caspase-1 and -11 were expressed and purified as
described above, except that cell pellets were resuspended in 8
M urea, 50 mM Tris-Cl, 100 mM NaCl, pH 8.0. The enzyme-
bound resin was washed in 8 M urea, 50 mM Tris-Cl, 500 mM

NaCl, pH 8.0, and then enzymes were eluted in 8 M urea, 25 mM

Tris-Cl, 100 mM NaCl, pH 8.0, with stepwise increments of
imidazole from 12.5 to 200 mM. Refolding procedures were fol-
lowed as described previously (36).

Antibodies

Caspase-11 antibody was from Novusbio (Littleton, CO)
(NB120 –10454). His-tag polyclonal antibody was from Cell
Signaling Technology (Danvers, MA) (number 2365).

MALDI time-of-flight (TOF)-MS

Purified recombinant �CARD caspase-11 was analyzed by
MALDI TOF/TOF mass spectrometry on a Bruker Daltonics
Autoflex II TOF/TOF mass spectrometer (Bruker Daltonics
Inc., Billerica, MA), in the Sanford Burnham Prebys Proteomics
Facility, to accurately determine the molecular weights of the
bands observed in SDS-PAGE. Enzyme was desalted and con-
centrated using C18 ZipTip (EMD Millipore). A ZipTip was
equilibrated 5 times with 10 �l of 75% acetonitrile (ACN) and
0.1% trifluoroacetic acid (TFA) in water, and washed 5 times in
10 �l of 0.1% TFA, binding of the protein was accomplished by
pipetting up and down 15 times, and the ZipTip was washed
once more as above. Proteins were eluted in 4 �l of 75% ACN
and 0.1% TFA. Sinapinic acid (20 mg/ml) for MALDI matrix
was dissolved in 1 ml of 50% ACN and 0.1% TFA by vortexing
for 1 min. Matrix was spun at 10,000 � g for 1 min to pellet
undissolved matrix. One to one ratios of matrix supernatant
and protein were crystallized on MALDI target plates and
allowed to dry for 5 min at room temperature. Mass spectra
were processed with Flex Analysis 2.4.

Enzymatic assays

Enzymatic activities of purified recombinant inflammatory
caspase-1 and -11 were measured in an opaque 96-well plate
(Costar, Corning). The final assay volume was 100 �l including
enzyme and substrate. Caspase buffer was 10 mM PIPES, 10%

sucrose, 100 mM NaCl, 0.1% CHAPS, 1 mM EDTA, and 10 mM

DTT, pH 7.2. To maintain high enzyme activity, the caspase
buffer used for individual substrate kinetics was supplemented
with 0.75 M sodium citrate. Caspases were incubated in buffer
for 10 min at 37 °C before adding substrate, and activity was
measured by fluorescence detection using a CLARIOstar plate
reader (BMG Labtech) operating in the kinetic mode (ACC
fluorophore; excitation 355 nm, emission 460 nm; and AFC
fluorophore; excitation 400 nm, emission 505 nm), and ana-
lyzed with MARS Data Analysis Software (BMG Labtech) and
Prism (GraphPad Software).

Z-VAD-fmk active site titration

To determine the active concentration of inflammatory
enzymes so that substrate kcat/Km values could be calculated, a
serial dilution series of Z-VAD-fmk was incubated with puri-
fied enzyme for 30 min at 37 °C. The fluorogenic substrate Ac-
LEHD-AFC was added to a final concentration of 100 �M in 100
�l of assay buffer and enzymatic activity was measured as
above. Velocities were plotted against the inhibitor concentra-
tion allowing the calculation of the active enzyme concentra-
tion (55).

Screening of caspase-1 and -11 substrate specificities

A HyCoSuL substrate scanning library was utilized to define
the substrate specificity cleavage preferences of caspase-1 and
-11, essentially as reported before for apoptotic caspases (32). In
brief, three fluorogenic substrate sublibraries (P4, P3, and P2)
were each screened at 100 �M with mouse recombinant
caspase-1 and -11 in a 100-�l final volume. Both enzymes were
used immediately after purification because caspase-11 tends
to become unstable upon storage. The progress of substrate
hydrolysis was monitored for 45 min, but for each substrate
only the linear portion of the hydrolysis curve (15–30 min) was
analyzed to calculate the reaction velocity (relative fluorescent
units/s). Screening of each sublibrary was performed three
times, and the averages were used to calculate caspase-1 and -11
specificity matrixes. For each sublibrary the amino acid with the
highest cleavage rate (relative fluorescent units/s) was set to
100%, and other amino acids were adjusted accordingly.

Synthesis and kinetic analysis of substrates containing natural
and unnatural amino acids

Individual ACC-labeled substrates were obtained via solid-
phase peptide synthesis in N,N-dimethylformamide and puri-
fied as described previously (32). Briefly, ACC-OH was
attached to the Rink Amide resin, Fmoc-Asp(tBu)-OH was
coupled, and elongated by coupling P2-P4 Fmoc-protected
amino acids and acetylation of the N terminus. Side chain pro-
tecting groups were removed and the peptide substrate was
cleaved from the resin using a TFA procedure. Crude products
were precipitated in diethyl ether and purified by HPLC. Purity
of each substrate was confirmed via analytical HPLC and the
molecular weight was determined by mass spectrometry on a
high resolution mass spectrometer WATERS LCT premier XE
with electrospray ionization (ESI) and TOF module.

For each fluorogenic substrate we determined the kcat/Km
parameters toward caspase-1 and -11. To do this, serial dilu-
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tions of substrate were placed in the eight wells of 96-well plates
followed by addition of caspase. The reaction was monitored
for 30 min and the hydrolysis velocity from each well (V) was
plotted against substrate concentration (S) and the V/S slope
was calculated. The kcat/Km parameter was then calculated
according to the Equation 1.

kcat/KM � slope/E (Eq. 1)

Each experiment was performed at least three times and the
average values with S.D. were calculated.

In vitro cleavage of recombinant protein substrates

Active site-titrated recombinant �CARD caspase-1 or -11
was subjected to 2-fold series dilutions and incubated sepa-
rately for 30 min at 37 °C with 4 �M pro-IL-1�, pro-IL-18, or
GSDMD caspase buffer in a final assay volume of 60 �l. Reac-
tions were terminated by heating at 86 °C with 30 �l of 3� SDS
loading buffer to give a final concentration of 1� loading buffer.
Samples were analyzed on 4 –12% BisTris SDS-PAGE gels by
Instant Blue staining. The gels were then scanned and imported
to Image Studio (LI-COR Biosciences) for protein band inten-
sity quantification. Band intensity values were plotted against
enzyme concentration and IC50 values were determined via
GraphPad Prism. Those values were then used to measure cat-
alytic efficiencies of mouse capase-1 and -11 for natural sub-
strates according to the relationship described previously (56).

kcat/KM � ln2/	E1/ 2 � t
 (Eq. 2)

Rearranging this equation and applying a pseudo-first order
approximation yields the half-life for cleavage of a substrate.

t1/ 2 � ln2/	kcat/KM � E
 (Eq. 3)

Here, kcat/Km is the second order rate constant for substrate
hydrolysis, E1⁄2 is the concentration of protease for which half
the substrate is consumed, E is the concentration of enzyme,
and t is the incubation time (57).
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39. He, Y., Hara, H., and Núñez, G. (2016) Mechanism and regulation of
NLRP3 inflammasome activation. Trends Biochem. Sci. 41, 1012–1021
CrossRef Medline

40. Sleath, P. R., Hendrickson, R. C., Kronheim, S. R., March, C. J., and Black,
R. A. (1990) Substrate specificity of the protease that processes human
interleukin-1b. J. Biol. Chem. 265, 14526 –14528 Medline

41. Thornberry, N. A., Bull, H. G., Calaycay, J. R., Chapman, K. T., Howard, A. D.,
Kostura, M. J., Miller, D. K., Molineaux, S. M., Weidner, J. R., Aunins, J.,
Elliston, K. O., Ayala, J. M., Casano, F. J., Chin, J., Ding, G. J., et al. (1992) A
novel heterodimeric cysteine protease is required for interleukin-1� pro-
cessing in monocytes. Nature 356, 768–774 CrossRef Medline

42. Thornberry, N. A., and Molineaux, S. M. (1995) Interleukin-1b converting
enzyme: A novel cysteine protease required for IL-1b production and
implicated in programmed cell death. Protein Sci. 4, 3–12 Medline

43. Kang, S. J., Wang, S., Hara, H., Peterson, E. P., Namura, S., Amin-Hanjani,
S., Huang, Z., Srinivasan, A., Tomaselli, K. J., Thornberry, N. A., Moskow-
itz, M. A., and Yuan, J. (2000) Dual role of caspase-11 in mediating activa-
tion of caspase-1 and caspase-3 under pathological conditions. J. Cell Biol.
149, 613– 622 CrossRef Medline

44. Fenton, J. W., 2nd, Olson, T. A., Zabinski, M. P., and Wilner, G. D. (1988)
Anion-binding exosite of human �-thrombin and fibrin(ogen) recogni-
tion. Biochemistry 27, 7106 –7112 CrossRef Medline

45. Overall, C. M. (2002) Molecular determinants of metalloproteinase sub-
strate specificity: matrix metalloproteinase substrate binding domains,
modules, and exosites. Mol. Biotechnol. 22, 51– 86 CrossRef Medline

46. Drag, M., and Salvesen, G. S. (2008) DeSUMOylating enzymes–SENPs.
IUBMB Life 60, 734 –742 CrossRef Medline

47. Boucher, D., Blais, V., and Denault, J. B. (2012) Caspase-7 uses an exosite
to promote poly(ADP ribose) polymerase 1 proteolysis. Proc. Natl. Acad.
Sci. U.S.A. 109, 5669 –5674 CrossRef Medline

48. Sharma, V., Panwar, P., O’Donoghue, A. J., Cui, H., Guido, R. V., Craik,
C. S., and Brömme, D. (2015) Structural requirements for the collagenase
and elastase activity of cathepsin K and its selective inhibition by an exo-
site inhibitor. Biochem. J. 465, 163–173 CrossRef Medline

49. Schmid-Burgk, J. L., Gaidt, M. M., Schmidt, T., Ebert, T. S., Bartok, E., and
Hornung, V. (2015) Caspase-4 mediates non-canonical activation of the
NLRP3 inflammasome in human myeloid cells. Eur. J. Immunol. 45,
2911–2917 CrossRef Medline

50. Baker, P. J., Boucher, D., Bierschenk, D., Tebartz, C., Whitney, P. G.,
D’Silva, D. B., Tanzer, M. C., Monteleone, M., Robertson, A. A., Cooper,
M. A., Alvarez-Diaz, S., Herold, M. J., Bedoui, S., Schroder, K., and Mas-
ters, S. L. (2015) NLRP3 inflammasome activation downstream of cyto-
plasmic LPS recognition by both caspase-4 and caspase-5. Eur. J. Immu-
nol. 45, 2918 –2926 CrossRef Medline
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