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ABSTRACT Bayesian multiple-regression methods incorporating different mixture priors for marker effects are used widely in genomic
prediction. Improvement in prediction accuracies from using those methods, such as BayesB, BayesC, and BayesCp, have been shown
in single-trait analyses with both simulated and real data. These methods have been extended to multi-trait analyses, but only under
the restrictive assumption that a locus simultaneously affects all the traits or none of them. This assumption is not biologically
meaningful, especially in multi-trait analyses involving many traits. In this paper, we develop and implement a more general multi-
trait BayesCP and BayesB methods allowing a broader range of mixture priors. Our methods allow a locus to affect any combination of
traits, e.g., in a 5-trait analysis, the “restrictive” model only allows two situations, whereas ours allow all 32 situations. Further, we
compare our methods to single-trait methods and the “restrictive” multi-trait formulation using real and simulated data. In the real
data analysis, higher prediction accuracies were observed from both our new broad-based multi-trait methods and the “restrictive”
formulation. The broad-based and restrictive multi-trait methods showed similar prediction accuracies. In the simulated data analysis,
higher prediction accuracies to the “restrictive” method were observed from our general multi-trait methods for intermediate training
population size. The software tool JWAS offers open-source routines to perform these analyses.
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GENOMIC prediction was proposed by Meuwissen et al.
(2001) to incorporatemarker effects fromwhole-genome

data into genetic evaluation. In genomic prediction, all the
marker or haplotype effects are estimated simultaneously,
and these estimates can then be used to predict breeding val-
ues of individuals not in the training population used to esti-
mate the effects.

Bayesian multiple-regression methods incorporating mix-
ture priors for marker effects are used widely in genomic
prediction, includingvarious extensions to theBayesBmethod
of Meuwissen et al. (2001). BayesB accommodates models
where the prior for each marker effect follows a mixture dis-
tribution with a point mass at zero with probability p and a

univariate-t distribution with probability 12p (Meuwissen
et al. 2001; Gianola et al. 2009; Cheng et al. 2015b). Another
model, BayesC, assumes a mixture with a point mass at zero
with probability p and a univariate normal distribution with
probability 12p for all marker effects, and its extension
known as BayesCp further treatsp as an unknown parameter
with a uniform prior distribution (Habier et al. 2011).

Bayesian multiple-regression methods were first proposed
for single-trait analyses but have been extended to some
particular forms of multi-trait analyses (Calus and Veerkamp
2011; Jia and Jannink 2012). Those extensions have per-
tained to a particular, somewhat restrictive mixture model.
The “restrictive” multi-trait BayesCP presented by Jia and
Jannink (2012) assumes any particular locus affects none
of the traits or simultaneously affects all traits. This assump-
tion of genetic architecture in that multi-trait BayesCPmodel
is violated if some loci have no effect on at least one of the
traits while having an effect on the remaining traits.

In this paper, we propose amore general class ofmulti-trait
BayesCP and BayesB methods, where each locus can have an
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effect on any combination of traits. For example, in a 5-trait
analysis, the restricted model only allows two situations,
whereas ours allows all 32 situations. The previous restric-
tive multi-trait models are special cases of this general class
of models. Further, our model allows the use of a single-site
Gibbs sampler that requires less computing effort than some
alternative Markov chain Monte Carlo approaches, espe-
cially for analyses involving many traits. Methodologies
for the new models are compared to single-trait methods
and the previous multi-trait methods using real and simu-
lated data.

Materials and Methods

Multi-trait marker effects model

For simplicity of our description, but without loss of gener-
ality, we will assume individuals have all traits measured
with a general mean as the only fixed effect, and write the
multi-trait model for individual i from n genotyped individ-
uals as

yi ¼ mþ
Xp
j¼1

mijaj þ ei;

where yi is a vector of phenotypes of t traits for individual i,m
is a vector of overall means for t traits, mij is the genotype
covariate at locus j for individual i (coded as 0,1, and 2), p is
the number of genotyped loci, aj is a vector of allele substi-
tution effects or marker effects of t traits for locus j, and ei is a
vector of random residuals of t traits for individual i. The
fixed effects, or general mean in this case, are assigned flat
priors. The residuals, ei; are a priori assumed to be indepen-
dently and identically distributed multivariate normal vec-
tors with null mean and covariance matrix R; which, in
turn, is assumed to have an inverseWishart prior distribution,
W21

t ðSe; neÞ:
We will show that, employing the concept of data aug-

mentation, the vector of marker effects at a particular locus
aj can be written as aj ¼ Djbj;where Dj is a diagonal matrix
whose kth diagonal entry is an indicator variable indicating
whether the marker effect of locus j for trait k is zero or
nonzero, and bj follows a multivariate normal distribution
in multi-trait BayesCP or amultivariate t distribution inmulti-
trait BayesB.

Multi-trait BayesCP model

Priors for marker effects: The prior for ajk; the allele sub-
stitution ormarker effect of trait k for locus j, is amixturewith
a point mass at zero and a univariate normal distribution
conditional on s2

k :

ajkjpk;s
2
k

�
� N

�
0;   s2

k

�
probabilityð12pkÞ

0 probability  pk

and the covariance between effects for traits k and k9 at the
same locus, i.e., ajk and ajk9 is

covðajk;ajk9jskk9Þ ¼
�
skk9 if   both  ajk 6¼ 0  and  ajk9 6¼ 0
0 otherwise

:

The vector of marker effects at a particular locus aj is written
as aj ¼ Djbj; where Dj is a diagonal matrix with elements
diagðDjÞ ¼ dj ¼ ðdj1; dj2; dj3 . . . djtÞ; where djk is an indicator
variable indicating whether the marker effect of locus j for
trait k is zero or nonzero, and the vector bj follows a multi-
variate normal distribution with null mean and covariance

matrix G ¼
24 s2

1 ⋯ s1t
⋮ ⋱ ⋮

s1t ⋯ s2
t

35 The covariance matrix G is a

priori assumed to follow an inverse Wishart distribution,
W21

t ðSb; nbÞ: Thus, the multi-trait BayesCP model with data
augmentation is written as

yi ¼ mþ
Xp
j¼1

mijDjbj þ ei: (1)

In the most general case, any marker effect might be zero for
any possible combination of t traits resulting in 2t possible
combinations of dj: For example, in a t=2 trait model, there
are 2t ¼ 4 combinations for dj : ð0;   0Þ; ð0;   1Þ; ð1;   0Þ; ð1;   1Þ:
In the restrictive special case of this model described by Jia
and Jannink (2012), only two combinations, i.e., ð0;   0Þ and
ð1;   1Þ; have nonzero probability. Suppose, in general, we use
numerical labels “1,” “2,”. . . ; “l” for the 2t possible outcomes
for dj; then the prior for dj is a categorical distribution

pðdj ¼ “i”Þ ¼ P1Iðdj ¼ “1”Þ þP2Iðdj ¼ “2”Þ þ . . .

þPlIðdj ¼ “l”Þ;

where
Pl

i¼1Pi ¼ 1 with Pi being the prior probability that
the vector dj corresponds to the vector labeled “i”: A Dirichlet
distribution with all parameters equal to one, i.e., a uniform
distribution, can be used for a prior forP ¼ ðP1;P2; . . . ;PlÞ:

As shown below, we consider two Gibbs samplers to draw
samples for all the parameters in this model. Gibbs sampler I
is a single-site sampler, where only one of the t indicator
labels is sampled at a time. Thus, in a 2-trait model, for ex-
ample, this sampler cannot move from ð0;   0Þ to ð1;   1Þ in a
single step without stepping through ð1;   0Þ or ð0;   1Þ for dj:
Therefore, Gibbs sampler I cannot be used for the restrictive
model which excludes ð1;   0Þ and ð0;   1Þ from the state space
for dj: Gibbs sampler II, however, samples all elements of dj
jointly, and can move from ð0;   0Þ to ð1;   1Þ in a single step.
However, Gibbs sampler II is computationallymore intensive
because it requires drawing samples from a multivariate nor-
mal distribution of order t, the number of traits.

Gibbs sampler I for multi-trait BayesCP: Suppose the prior
for dj is a categorical distribution for which the support is the set
of 2t outcomes of dj: For convenience, from now on let “1” de-
note trait k and “2” the other t2 1 traits. In our sampling
scheme, bj1 and dj1 are sampled from their joint full conditional
distributions, which can be written as the product of the full
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conditional distribution of bj1 given dj1 and the marginal full
conditional distribution of dj1: Let u denote all other param-
eters except dj1 and bj1; then our sampling scheme can be
written as

f
�
bj1; dj1

���u; y� ¼ f
�
bj1

���dj1; u; y�f�dj1���u; y�:
The full conditional distributions of bj1; dj1; P; G and R for
Gibbs sampler I, whose derivations are in the Appendix, are
given below. The full conditional distributions of bj1 is

p
�
bj1

���dj1; u; y� ¼
N
�bb0

j1;
�
G11
�21
�

when  dj1 ¼ 0

N
�bb1

j1;
�
C1
j;11
�21
�

when  dj1 ¼ 1
;

8>>><>>>:
with

bb0
j1 ¼ 2

�
G11
�21

G12bj2;

bb1
j1 ¼

�
C1
j;11

�21�
rj1 2C1

j;12bj2

�
;

C1
j;11 ¼ G11 þ R11

Xn
i¼1

m2
ij

C1
j;12 ¼ G12 þ R12Dj2

Xn
i¼1

m2
ij;

rj1 ¼
 Xn

i¼1

w9
imij

!"
R11

R21

#
;

where wi ¼ yi 2m2
P

j9 6¼jmij9Dj9bj9; G11 and G12 are the par-
titions of G21 corresponding to trait k and covariances be-
tween trait k and other traits, respectively. R11 andR12 are the
partitions of R21 corresponding to trait k and covariances
between trait k and other traits, respectively.

The marginal full conditional probability that dj1 ¼ 1 is

f
�
dj1 ¼ 1

���u; y� ¼

n
1þ

 
Pr
�
dj1 ¼ 0; dj2

���P�
Pr
�
dj1 ¼ 1; dj2

���P�H
!21

o21

;

where H ¼

exp

n
2
1
2

 
logC1

j;11 2
cb1
j1

2
C1
j;11

!
2

 
2
1
2

�
logG11 2 cb0

j1

2
G11
	!o

:

The full conditional distribution for P can be written as

f
�
P
���b;D;G;R; y�}Dirichlet

�
n1 þ 1;   n2 þ 1; . . .

�
;

where ni is the number of loci or markers for which dj ¼ “i”:

The full conditional distributions for R; the covariance
matrix for residuals, is an inverse Wishart distribution,
W21

t ðSe þ e9e; ne þ nÞ; where e is the n3 t matrix for resid-
uals whose ith row is e9i : The full conditional distribution for
G; the covariance matrix for bj; is an inverse Wishart distri-
bution, W21

t ðSb þ b9b; nb þ pÞ; where b is the p3 t matrix
whose ith row is b9

i :

Gibbs sampler II for multi-trait BayesCP: The Gibbs sam-
pler above, where only one of the t indicator labels is sampled
at a time, cannot be used for the restrictive model assuming
any particular locus affects all traits or none of them. Further,
if some particular Pi are near zero, the chain might exhibit
mixing problems. Another, more general, but computation-
ally intensive, Gibbs sampler that samples all elements of dj
jointly and may exhibit improved mixing is proposed below.

The full conditional distributions of bj; dj; P; G;and R for
Gibbs sampler II, whose derivations are in the Appendix, are
given below.

Let u denote all other parameters except bj and dj; then
our sampling scheme can be written as

f
�
bj; dj

���u; y� ¼ f
�
dj

���u; y�f�bj

���dj; u; y�:
The full conditional distribution of bj is

f
�
bj

���dj; u; y�}N
�
C21
j rj;C21

j

�
;

where Cj ¼ D9
jR

21Dj
Pn

i¼1m
2
ij þ G21 and

r9j ¼
�Pn

i¼1w
9
imij

�
R21Dj:

The marginal full conditional probability of dj ¼ “i” is

f ðdj ¼ “i”ju; yÞ

¼
f
�
y
���dj ¼ “i”; u

�
f
�
dj ¼ “i”

���P�P
“i”2f“1”;“2”;...;“l”gf

�
y
���dj ¼ “i”; u

�
f
�
dj ¼ “i”

���P�;
where

f
�
y
���dj; u� ¼

���C21
j

���12expn1
2
r9jC

21
j rj

o
:

ThisGibbs sampler canaccommodate the “restrictive”multi-trait
BayesCP that was proposed by Jia and Jannink (2012), which
only allows dj to be a vector of all ones or a vector of all zeros.

Multi-trait BayesB model

The multi-trait BayesCPmodel proposed above can be mod-
ified to accommodate the general multi-trait BayesB model.
Model Equation (1) can also be used for the multi-trait
BayesBmethod. The differences inmulti-trait BayesBmethod
is that the prior for bj is a multivariate t distribution, rather
than a multivariate normal distribution. This is equivalent
to assuming bj has a multivariate normal distribution with
null mean and locus-specific covariance matrix Gj; which is
assigned an inverse Wishart prior, W21

t ðSb; nbÞ:
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The derivations of the full conditional distributions of
parameters of interest for Gibbs samplers are shown in the
Appendix. In themulti-trait BayesBmodel, the full conditional
distributions for all parameters except Gj are similar to the
multi-trait BayesCP model. The full conditional distribution
for Gj; the covariance matrix for bj; is an inverse Wishart
distribution, W21

t ðSb þ bjb
9
j ; nb þ 1Þ:

Data analyses

Real data: Published genotypic and deregressed breeding
valuesbasedonphenotypicdata for LoblollyPine (Pinus taedaL.)
were used (Resende et al. 2012; Daetwyler et al. 2013). Two
disease traits, namely presence or absence of rust (Rust_bin) and
gall volume (Rust_gall_vol) were analyzed. These are the two
traits used in Jia and Jannink (2012). The reported heritabilities
were 0.21 for Rust_bin and 0.12 for Rust_gall_vol. Loci with
missing genotypes were imputed as the mean of the observed
genotype covariates at that locus but loci with a missing rate
. 50% were excluded. After these quality control edits,
4828 SNPs on 807 individuals with deregressed phenotypes
and genotypes on both traits remained.

Prediction accuracy was calculated as the correlation be-
tween the vector of deregressed phenotypes and the vector of
estimated breeding values. Cross-validation using 10 folds
formed the basis for comparing these methods. Paired t-tests
were used for tests of significance of difference in prediction
accuracies between two methods, where prediction accura-
cies for two different methods from each validation fold
were considered as paired samples. The general multi-trait
BayesCP model (MT-BayesCP-G) was compared to a simi-
lar model where the prior for aj is a multivariate normal
rather than a mixture of multivariate normals (MT-BayesC0),
the more restricted multi-trait BayesCP proposed by
Jia and Jannink (2012) (MT-BayesCP-R) and the usual
single trait formulations of the mixture models (ST-BayesC0,
ST-BayesCp). Since BayesC0 is equivalent to random regres-
sion best linear unbiased prediction (RR-BLUP), ST-BayesC0
and MT-BayesC0 are denoted as ST-RR-BLUP and MT-RR-
BLUP below. The prior for the residual covariance matrix
R in all multi-trait methods was an inverse Wishart distri-

bution, W21 ¼
�


0:003 0
0 0:003

�
; 6
	
; for which the mean

of R is


0:001 0
0 0:001

�
; the SD of diagonal elements are

1:431023; and the SD of off-diagonal elements are 0. This
same prior was used for the marker effects covariance ma-
trix G: The priors for the residual variance and marker ef-
fects variance in single-trait analyses were scaled inverted
chi-squared distributions with scale parameter S2 ¼ 0:0005
and degrees of freedom n ¼ 4; for which the mean of the
prior was also 0.001. In the data analyses, multi-trait BayesB
methods provided similar results as multi-trait BayesCP
methods. Thus, only results from BayesCP analyses were
presented below to demonstrate the superiority of our
multi-trait methods.

Simulated data: Simulated data described belowwere used
to quantify the superiority of the generalmulti-trait Bayesian
methods. Two scenarios were simulated. In scenario 1, as a
known ideal condition, the simulated genome consisted of
100 loci on each of two chromosomes that were in Hardy-
Weinberg and linkage equilibria. All these loci were consid-
ered as QTL or causative variants and used in the analyses.
The QTL on the first chromosome had effects only on trait 1
and those on the second chromosome only on trait 2. The
effects of these QTL were simulated from a standard normal
distribution and then were equally scaled to provide unit
genetic variance for each trait in the simulated population
of 8000 unrelated individuals. The phenotypes for these
traits were obtained by adding independent residuals to
the genetic values. Two situations were simulated: (1) her-
itabilities for both traits were 0.5; (2) heritability for trait
1 was 0.2 and for trait 2 was 0.8. The XSim package was
used in the simulation (Supplemental Material, File S1)
(Cheng et al. 2015a).

In scenario 2, both markers and QTL were simulated.
The simulated genome consisted of 100 evenly spaced loci
on each of three chromosomes of length 10 cM. Ten loci
were randomly selected on each chromosome as QTL. Allele
states were sampled from a Bernoulli distribution with fre-
quency 0.5 in the base population. Starting from a base
population of 500 males and 500 females, random mating
was simulated for 500 generations to generate linkage dis-
equilibrium. Random mating was continued for five more
generations to increase the population size to 4000 males
and 4000 females, which were used in the analyses. The
effects of QTL on the first two chromosomes were simulated
following the same strategy in scenario 1, i.e., the QTL on
the first chromosome had effects only on trait 1, and those
on the second chromosome only on trait 2. All QTL on the
third chromosome had effects on both traits. The effects of
these QTL on the third chromosome were simulated from
a standard bivariate normal distribution with correlation
0.5. The phenotypes for these traits were obtained by add-
ing independent residuals to the genetic values. In total,
8000 individuals were simulated with heritability 0.2 for
trait 1 and 0.8 for trait 2.

The same validation approaches were used for these two
simulation scenarios. A total of 500 individuals were used for
testing, and for each training population of size N, 100 repli-
cates of the training population were sampled from the
remaining individuals. The values considered for N were
50, 100, 200, 400, 1000, 2000, 4000, or 7000. The true ge-
netic and residual variances were used to compute the scale
parameters for the priors of the variance components. The
general multi-trait BayesCP model (MT-BayesCP-G) was
compared to the more restricted multi-trait BayesCP (MT-
BayesCP-R) using this dataset.

All analyses were performed using JWAS (Cheng et al.
2018), an open-source, publicly available package for single-
trait and multi-trait whole-genome analyses written in the
freely available Julia language.
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Data availability

The genotypic and phenotypic data used in the real data
analysis are publicly available (Resende et al. 2012). The
scripts used to generate the simulated data are provided as
supplementary information. The authors state that all data
necessary for confirming the conclusions presented in the
article are represented fully within the article.

Results

Real data

The prediction accuracies from all methods for Rust_bin and
Rust_gall_vol are in Figure 1. The prediction accuracies from
all single-trait analyses using JWAS are similar to those in
Resende et al. (2012).

The predictions of Rust_bin exhibited no significant differ-
ence in accuracy between multi-trait and single-trait analyses
withineachmethod(ST-RR-BLUP vs.MT-RR-BLUP;ST-BayesCp
vs. MT-BayesCP-R; ST-BayesCp vs. MT-BayesCP-G).

In contrast, prediction accuracies for the lower heritability
Rust_gall_volwithMT-BayesCP-Gwere significantly higher than
those from ST-BayesCp. MT-BayesCP-G and MT-BayesCP-R
showed similar prediction accuracies. The posterior means of P
for bothmethods are in Table 1.WhenRR-BLUPwas used for the
analysis, however, the advantage of the multiple-trait analysis
(MT-RR-BLUP) over the single-trait analysis (ST-RR-BLUP) for
Rust_gall_vol was not observed.

Simulated data

The prediction accuracies from MT-BayesCP-G and MT-
BayesCP-R methods were compared for varying size (N) of
training populations under two simulation scenarios. In sim-
ulation scenario 1, Figure 2 shows the prediction accuracies
where heritabilities for both traits were 0.5. Figure 3 shows
the prediction accuracies where heritabilities for trait 1 and
trait 2 were 0.2 and 0.8, respectively. When N ¼ 50; both
methods had similar prediction accuracy. For both traits, as
N increased, initially, MT-BayesCP-G became superior to

MT-BayesCP-R, but, as expected, the accuracies of these
methods asymptotically converged (Karaman et al. 2016).
In most cases, the differences in accuracies for both traits
were small. However, in Figure 3, the differences in accura-
cies for trait 1, for which the heritability was 0.2, were sub-
stantial for intermediate values of N. Figure 4 shows the
prediction accuracies for simulation scenario 2. The pattern
observed is similar to Figure 3 under simulation scenario 1.
MT-BayesCP-G was superior to MT-BayesCP-R for intermedi-
ate training population, but as N increased, the accuracies of
these methods asymptotically converged (Karaman et al. 2016).

Discussion

Real data

Significant differences between multi-trait and single-trait
analyses were only observed for Rust_gall_vol within BayesCp
methods (MT-BayesCP-G vs. ST-BayesCp; MT-BayesCP-R
vs. ST-BayesCp). MT-BayesCP-G and MT-BayesCP-R out-
performed ST-BayesCp for Rust_gall_vol, and the accuracy
gain was 26% (from 0.287 to 0.364). The lower-heritability
trait Rust_gall_vol benefited from information on the other
correlated trait Rust_bin. Thus higher prediction accuracy
from MT- BayesCP-G were observed in trait Rust_gall_vol
but not for the high heritability Rust_bin. Results in Jia and
Jannink (2012) showed no difference between MT-BayesCP
and ST-BayesCp because a reducedmarker panel (500markers)
was used.

The fact that RR-BLUP showed no improvement in multi-
trait analyses suggested that benefits from MT-BayesCP-G
may be due to the estimation of the hyper-parameter P: In
the MT-BayesCP-G, the mean of the posterior probability
that a marker has a null effect on Rust_gall_vol was �0.97,
calculated as the summation of posterior mean of P for cat-
egories ð0; 0Þ and ð1; 0Þ: The posterior mean of p, the prob-
ability that a marker has a null effect, in ST-BayesCp for
Rust_gall_vol was 0.74, different from the equivalent value,
0.97, in MT-BayesCP-G shown above. Thus a ST-BayesC

Figure 1 Comparison of single-trait and multi-trait methods for Rust_bin and Rust_gall_vol traits. ST, MT-G and MT-R indicate single-trait, our general
multi-trait and restricted multi-trait analyses, respectively. * indicates a statistically significant (P , 0.01) difference between methods.

Multiple-Trait Bayesian Mixture Models 93



analysis with p ¼ 0:97 was undertaken. Prediction accuracy
from this ST-BayesCp analysis with p ¼ 0:97 was 0.361,
which was similar to the accuracy from MT-BayesCP-G. This
shows that including an additional correlated trait, especially
one with high heritability, will bring in more data into the
analysis, helping variable selection in a low-heritability trait
to become more effective and result in improved prediction
accuracy.

The difference between MT-BayesCP-G and MT-BayesCP-R
is that MT-BayesCP-R assumes a locus has an effect on all
traits or none of them. This assumption regarding genetic
architecture is likely to be seldom true. MT-BayesCP-G and
MT-BayesCP-R, however, showed similar prediction accu-
racies. This can be explained by the estimation of P in
MT-BayesCP-G and MT-BayesCP-R in Table 1. The poste-
rior probability means for ð0; 1Þ and ð1; 0Þ were almost zero
in MT-BayesCP-G and for ð0; 0Þ and ð1; 1Þ are similar in
MT-BayesCP-G and MT-BayesCP-R, suggesting that the as-
sumption of genetic architecture whereby the same loci af-
fect both traits as explicit in MT-BayesCP-R may be valid for
these two disease traits. Note that the lack of difference
between the methods may also result from the limited size
of the training population.

Simulated data

In scenario 1, we simulated bivariate data where each QTL
had an effect on only one or the other of the traits. In
MT-BayesCP-R, if a locus has an effect on one of the traits,
that locus is included in the model for all traits. So, in the
simulated data,MT-BayesCP-Rwould need to include all loci

in the model for both traits. Thus for the trait that had her-
itability 0.2, the contribution of noise to the prediction from
loci on chromosome 2, which had no effect on this trait, is
large relative to the real signal from QTL on chromosome 1.
In contrast, the general variable selection in MT-BayesCP-G
allows loci on chromosome 2, which have no effect on
trait 1, to be excluded from the model for trait 1. Thus when
sufficient datawere available for variable selection to exclude
loci on chromosome 2 for trait 1, MT-BayesCP-G showed a
substantial advantage over MT-BayesCP-R. On the other
hand, for the trait with heritability 0.8, the contribution of
noise to the prediction from the loci on chromosome 1,
which had no effect on this trait, is small relative to the sig-
nal from loci on chromosome 2. Thus MT-BayesCP-G and
MT-BayesCP-R had similar accuracies. As the training pop-
ulation size increased, the contribution of noise to the pre-
diction of a trait from loci which had no effect on this trait,
vanished even when the heritability was low. This was ob-
served for both traits as apparent in Figure 2 and Figure 3.
Since only bivariate data with different heritabilities showed
substantial differences in prediction accuracies, traits with
different heritabilities were simulated in scenario 2. In sce-
nario 2, both markers and QTL were simulated. As expected,
MT-BayesCP-G showed higher prediction accuracy to MT-
BayesCP-R for intermediate training population, but as
N increased, the accuracies of these methods asymptoti-
cally converged (Karaman et al. 2016).

Further, inbothrealandsimulatedanalyses,MT-BayesCP-G
gave equal or higher prediction accuracy thanMT-BayesCP-R.
In addition, MT-BayesCP-R requires drawing samples from
a multivariate normal distribution of order t, whereas Gibbs
sampler I, which can be used for MT-BayesCP-G, requires
sampling from a univariate normal. Thus, in addition to
MT-BayesCP-G giving equal or better performance than
MT-BayesCP-R, MT-BayesCP-G can also be computation-
ally more efficient.

Priors

In practice, genetic variances from previous conventional
analyses are usually used to construct priors for marker effect
variances. For single trait analyses, under some assumptions,

Figure 2 Comparison of multi-trait BayesCP methods for situation 1 under simulation scenario 1.

Table 1 Estimation ofp for alternativemulti-trait BayesCPmethods

Different categories of d

ð0;0Þ ð1; 1Þ ð0;1Þ ð1;0Þ
MT-BayesCP-G 0.966 0.029 0.002 0.003
MT-BayesCP-R 0.971 0.029 NAa NAa

Posterior mean of P were given for different categories of d. Different categories of
d are denoted as ðk1; k2Þ; where k1 ¼ 0 if a marker has a null effect on Rust_bin,
otherwise k1 ¼ 1; and similarly for k2 representing sampled effects for Rust_gall_vol.
a Combinations that do not exist in the restricted model.
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it can be shown that the marker effect variance s2
a can be

obtained as

s2
a ¼ s2

g

ð12pÞ
X

2pjð12 pjÞ
; (2)

where s2
g is the genetic variance, pj is the allele frequency for

locus j, and p is the probability that a marker has a null effect
(Habier et al. 2007; Gianola et al. 2009; Fernando and Garrick
2013). Following a similar strategy, the marker effect covari-
ance matrix G in a two-trait analysis can be obtained as

G ¼ 1X
2pjð12 pjÞ

Q11

p
�
d ¼ ð1; 1Þ�þ p

�
d ¼ ð1; 0Þ� Q12

p
�
d ¼ ð1; 1Þ�

Q21

p
�
d ¼ ð1; 1Þ� Q22

p
�
d ¼ ð1; 1Þ�þ p

�
d ¼ ð0; 1Þ�

266664
377775;

(3)

whereQ ¼


Q11 Q12

Q21 Q22

�
is the genetic covariance matrix and

p
�
d ¼ ð0; 1Þ�; p�d ¼ ð1; 0Þ�; and p

�
d ¼ ð1; 1Þ� are the prob-

abilities a marker has null effects on the first trait but not the
second trait, on the second trait but not the first trait, or on

neither trait. Thus the probability that amarker has an effect on
the first trait can be obtained as p

�
d ¼ ð1; 1Þ�þ p

�
d ¼ ð1; 0Þ�;

which is the denominator of the upper left element in (3). This
strategy relating marker effect covariance matrix to genetic
covariance matrix can be readily extended to .2 traits. Note
that positive definite matrix Q may result in negative definite
matrixG using (3), especially when the prior for the probability
a marker has null effects is far from the real value. In that case,
the diagonal elements of G; which are the marker effect vari-
ances for different traits, can be obtained using (2), where p

may be estimated from previous single-trait analyses, and the
off-diagonal elements of G may be set to zero to guarantee
positive definiteness of G:

Multi-trait variable selection: In regard to a single trait, a
locus either has an effect, or it does not. Hence, the scalar
parameter p (and its complement 12p) completely defines
this circumstance. In a multi-trait setting, it is conceivable
that loci that influence one trait, may or may not influence
other traits. In that circumstance, a vector P is required to
define the genetic architecture. The number of parameters
that constitute the vector P is 2t; which grows rapidly with
the number of traits. In most cases, the researcher will have
little or no knowledge of the likely extent of pleiotropy of loci
that influence two traits, other than knowing or having an

Figure 4 Comparison of multi-trait BayesCP methods under simulation scenario 2.

Figure 3 Comparison of multi-trait BayesCP methods for situation 2 under simulation scenario 1.

Multiple-Trait Bayesian Mixture Models 95



estimate of the genetic covariance. There are two simple
ways to reduce this complexity in priors.

First, one can assume, as did Jia and Jannink (2012), that, in
the context of variable selection, a locus should be selected for all
of the traits or selected for none of the traits, reducing the re-
quired probabilities to being analogous to the single trait p and
ð12pÞ: This approach has the advantage of simplicity, but the
disadvantage that many effects might need to be estimated for
loci that have no effect on a trait, and this may erode the accu-
racy of prediction. This should not be a problem for asymptoti-
cally large datasets, as in that case the fitted locus effects should
converge to zero for those traits not influenced by that locus.

A second simple way to accommodate the multiple trait
circumstance is to assume the 2t parameters can bederived from
t trait-specific parameters. However, when the probability that a
single trait locus has an effect is small for each of two or more
traits, the pair-wise probability that a locus affects all the traits
will be the product of those small probabilities, making it very
difficult for loci to enter the model for all traits simultaneously.

The better way to solve this problem is to use a hyper-
parameter P that completely defines the alternative models
that are required to capture all the alternative forms of ge-
netic architecture.We have shown here how this can be done,
with two alternative Gibbs sampling strategies. One involves
single-site sampling for one locus and trait at a time. The
other samples all the alternative combinations of effects for
one locus considering all traits simultaneously. We have
shown that both are practical with real data and can result
in improved accuracies of prediction in certain circumstances
in terms of genetic architecture and size of dataset.

Conclusions

Many researchers are interested in genome-wide association
studies and finding causal genes and variants. For those re-
searchers, pleiotropy isofconsiderable interest, andtheywould
want to know which loci affect which traits, from a purely
biological perspective. Practitioners are often interested in
“breaking” the genetic correlation, by selecting parents to give
a favorable selection response in respect to multiple trait conse-
quences. In either of these circumstances, with intermediate-
rather than asymptotically large datasets, we believe themethods
described here and available in the open-source, freely-available
JWAS package offer real promise.
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Appendix

Gibbs Sampler Algorithm for Multi-Trait BayesCP-G

Single-site Gibbs sampler for multi-trait BayesCP-G
The full conditional distribution of bj1 can be written as
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�
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Thus when dj1 ¼ 0; the full conditional distribution of bj1 is
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When dj1 ¼ 1; the full conditional distribution of bj1 becomes
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The marginal full conditional distribution of dj1 can be written as
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Thus the conditional probability of dj1 ¼ 1 is
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The full conditional distribution for P can be written as
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where ni is the number of markers with dj ¼ “i”:

Joint Gibbs sampler for multi-trait BayesCP-G
Let u denote all other parameters except bj and dj; then our sampling scheme can be written as
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Gibbs Sampler Algorithm for Multi-Trait BayesB

Single-site Gibbs sampler for multi-trait BayesB
For convenience, from now on let “1” denote trait k and “2” the other traits. Thus, bj can be denoted as



bj1
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and Dj can be

denoted as


dj1 0
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The Gibbs sampler for bjk and djk is derived as below. In our sampling scheme, bj1 and dj1 are sampled

from their joint full conditional distributions, which can be written as the product of the full conditional distribution of bj1

given dj1 and the marginal full conditional distribution of dj: Let u denote all other parameters except dj1 and bj1; then our
sampling scheme can be written as
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Note that, when dj1 ¼ 0;

Cj ¼

G11

j G12
j

G21
j G22

j þ D9
j2R

22Dj2
Pn

i¼1m
2
ij

�
r9j ¼



0
�Pn

i¼1w
9
imij

�
R12

R22

�
Dj2

�

When dj1 ¼ 1;

Cj ¼
"
C1
j;11 C1

j;12

C1
j;21 C1

j;22

#

¼
"

G11
j þ R11

Pn
i¼1m

2
ij G12

j þ R12Dj2
Pn

i¼1m
2
ij

G21
j þ D9

j2R
21Pn

i¼1m
2
ij G22

j þ D9
j2R

22Dj2
Pn

i¼1m
2
ij

#
r9j ¼

�
r1j1 r19j2


¼

 �Pn

i¼1w
9
imij

�
 R11
R21

� �Pn
i¼1w

9
imij

�
R12

R22

�
Dj2

�

Thus, when dj1 ¼ 0; the full conditional distribution of bj1 is

f
�
bj1

���dj1 ¼ 0;b2j1;D2j1;Gj;G2j;R; y
�
}N
�
2
�
G11
j
�21

G12
j bj2;

�
G11
j
�21
�
:

When dj1 ¼ 1; the full conditional distribution of bj1 becomes

f
��

bj1

���dj1 ¼ 1;b2j1;D2j1;Gj;G2j;R; y
�
}N

�
C121
j;11

�
rj1 2C1

j;12bj2

�
;C121

j;11

�
:

The marginal full conditional distribution of dj1 can be written as

Multiple-Trait Bayesian Mixture Models 101



fðdj1 ¼ 1ju; yÞ ¼ f ðdj1; u; yÞP
dj12ð0;1Þ fðdj1; u; yÞ

¼ f ðyjdj1 ¼ 1; uÞfðdj1 ¼ 1; dj2jPÞP
dj12ð0;1Þ f ðyjdj1; uÞf ðdjjPÞ :

¼ f1þ f ðyjdj1 ¼ 0; uÞfðdj1 ¼ 0; dj2jPÞ
f ðyjdj1 ¼ 0; uÞfðdj1 ¼ 1; dj2jPÞg

21

The factor f
�
y
���dj1; u� can be written as

f
�
y
���dj1; u�}R f ðyjm;bj1;b2j1;D;G;RÞfðbj1;bj2jGjÞdbj1
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1
2
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�
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3
R
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h
2
1
2

�
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i
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}
�
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1
2
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}
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�21
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�
2
1
2

 X
i
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j2Cj;22bj2 2 cbj1

2
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!)
:

Note that
P

iw
9
iR

21wi; r9j2bj2;b
9
j2Cj;22bj2 are same when dj1 ¼ 0 or 1. Thus the ratio f ðyjdj1 ¼ 1; uÞ=f ðyjdj1 ¼ 0; uÞ becomes

H ¼
�
C1
j;11

�21
2�G11

j
�1
2exp

 
2
1
2
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j1

2
G11
j 2 cb1

j1C
1
j;11

!!

¼ exp
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j;11 2
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2
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2
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j 2 cb0
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!!o
Thus, the conditional probability of dj1 ¼ 1 is

f1þ
f
�
y
��dj1 ¼ 0; u

�
f
�
dj1 ¼ 0; dj2

���P1;P2:::

�
f
�
y
��dj1 ¼ 1; u

�
f
�
dj1 ¼ 1; dj2

���P1;P2:::

�g21

¼
n

1þ
 
Pj0

Pj1
H

!21
o21

;

where Pj0 ¼ Pr
�
dj1 ¼ 0; dj2

���P� and Pj1 ¼ Pr
�
dj1 ¼ 1; dj2

���P�:
Joint Gibbs sampler for multi-trait BayesB

Let u denote all other parameters except bj and dj; then our sampling scheme can be written as

f
�
bj; dj

���u; y� ¼ f
�
dj

���u; y�f�bj

���dj; u; y�
The marginal full conditional distribution of dj can be written as

f
�
dj

���u; y� ¼
f
�
dj; u; y

�
P

dj
f
�
dj; u; y

� ¼
f
�
y
���dj; u�f�dj���P�P

dj
f
�
y
���dj; u�f�dj���P�:
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Denote wi ¼ yi 2mi 2
P

j9 6¼jmij9Dj9bj9; then
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where Cj ¼ D9
jR

21Dj
Pn

i¼1m
2
ij þ G21

j and r9j ¼ ðPn
i¼1w

9
imijÞR21Dj:

Note that
P

iw
9
iR

21wi is same for different dj: Thus the marginal full conditional distribution of dj can be written as

f
�
dj

���u; y� ¼ f ðyjdj; uÞf ðdjjPÞP
dj
f ðyjdj; uÞfðdjjPÞ;

where
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:

The full conditional distribution of bj is
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