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ABSTRACT As one of the world’s most important food crops, the potato (Solanum tuberosum L.) has spurred innovation in autotet-
raploid genetics, including in the use of SNP arrays to determine allele dosage at thousands of markers. By combining genotype and
pedigree information with phenotype data for economically important traits, the objectives of this study were to (1) partition the
genetic variance into additive vs. nonadditive components, and (2) determine the accuracy of genome-wide prediction. Between
2012 and 2017, a training population of 571 clones was evaluated for total yield, specific gravity, and chip fry color. Genomic
covariance matrices for additive (G), digenic dominant (D), and additive 3 additive epistatic (G#G) effects were calculated using
3895 markers, and the numerator relationship matrix (A) was calculated from a 13-generation pedigree. Based on model fit and
prediction accuracy, mixed model analysis with G was superior to A for yield and fry color but not specific gravity. The amount of
additive genetic variance captured by markers was 20% of the total genetic variance for specific gravity, compared to 45% for yield
and fry color. Within the training population, including nonadditive effects improved accuracy and/or bias for all three traits when
predicting total genotypic value. When six F1 populations were used for validation, prediction accuracy ranged from 0.06 to 0.63 and
was consistently lower (0.13 on average) without allele dosage information. We conclude that genome-wide prediction is feasible in
potato and that it will improve selection for breeding value given the substantial amount of nonadditive genetic variance in elite
germplasm.
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CULTIVATED potato (Solanum tuberosum L.) is unique
among the major, global food crops in that it is autotet-

raploid and clonally propagated. As of 2018, there are 12 pub-
lic breeding programs in the U.S. with a mandate to release
varieties for commercial production, aswell as several additional

programs with a focus on germplasm enhancement. The va-
riety development process begins with botanical seed from
the sexual hybridization of heterozygous clones. Seedlings
are grown in a greenhouse and one or more tubers from each
plant are retained for subsequent vegetative propagation.
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Crossing and seedling tuber production takes 1–2 years—
depending on the breeding program—followed by 1–2 years
of field selection based primarily on visual assessment of
tuber appearance, plant maturity, and yield components (tu-
ber number and size), with some postharvest evaluation of
processing traits such as fry color and specific gravity. Quan-
titativemeasurement of these traits in replicated and/ormulti-
location trials begins in field year (FY) 3 or 4 and continues
for several years. Because it takes 3–4 years to establish clones
as disease-free plantlets in vitro and to produce foundation
seed, new varieties are typically released 10–12 years after
crossing, by which time dozens of traits have been evaluated.
The duration of the potato breeding cycle—from sexual hybrid-
ization to incorporating new clones as parents—is shorter than
the time to variety release, but it is still 5–7 years for most
U.S. programs. Until now, U.S. breeding programs have pri-
marily used phenotypic selection in combination with genetic
markers for a handful of major resistance genes (Lopez-Pardo
et al. 2013).

Theuseofphenotypemeans forparent selection isnot ideal
because the estimates contain additive and nonadditive ge-
netic effects, but only the former are efficiently transmitted to
offspring (Gallais 2003). A number of previous studies have
investigated nonadditive genetic variance in potato using
factorial mating designs to estimate general and specific
combining abilities (Plaisted et al. 1962; Tai 1976; Brown
and Caligari 1989; Maris 1989; Neele et al. 1991; Gopal
1998; Bradshaw et al. 2000). General combining ability
(GCA) is equivalent to the covariance between half-sibs,
which equals 1=4Va þ 1=16Vaa þ 1=36Vd þ . . . for autotetra-
ploid loci in panmictic and linkage equilibrium (Kempthorne
1955c; Gallais 2003). The symbols Va, Vd, and Vaa are the
genetic variances for additive, digenic dominance, and
additive 3 additive epistasis effects, respectively. Specific
combining ability (SCA) is the covariance between full-sibs
ð1=2Va þ 1=4Vaa þ 2=9Vd þ . . .Þ minus twice the covariance
between half-sibs, which leads to an expression containing
only nonadditive genetic variances ð1=6Vd þ 1=8Vaa þ . . .Þ:
The SCA/GCA ratio therefore provides an indication of the
importance of nonadditive genetic variance. Although a wide
range of values for SCA/GCA is found in the aforementioned
references for potato, the general conclusion is that nonad-
ditive genetic variance is important in many contexts.

For pedigreed populations, an alternative approach to
estimating additive genetic variance is via the numerator
relationship, or A, matrix. Kerr et al. (2012) were the first
to publish a complete, recursive algorithm for A in autotetra-
ploids, which has been applied to potato (Slater et al. 2014)
and blueberry (Amadeu et al. 2016) populations. Mixed

model analysis with A also enables selection on additive
values calculated by BLUP (Henderson 1975). Although
pedigree-BLUP is the cornerstone of genetic improvement
for quantitative traits, the method has several limitations:
(1) it depends on accurate pedigree records; (2) it ne-
glects genetic covariance between founders; and (3) the co-
variance is based on expected, rather than realized, parental
contribution.

Genomic selection (GS) has the potential to overcome
these limitations by replacing A with a genomic covariance,
orG, matrix estimated frommarkers (Bernardo 1994; Nejati-
Javaremi et al. 1997; Habier et al. 2007; VanRaden 2008)
or by estimating marker effects directly (Meuwissen et al.
2001). There have been several studies on GS in autotetra-
ploid species (Annicchiarico et al. 2015; Li et al. 2015; Slater
et al. 2016; Habyarimana et al. 2017; Sverrisdóttir et al.
2017), but none have used nonadditive genomic covariance
matrices to partition genetic variance or predict total geno-
typic value. Both topics are addressed in this manuscript,
building on analogous studies at the diploid level (Su et al.
2012; Vitezica et al. 2013; Xu 2013; Muñoz et al. 2014; Jiang
and Reif 2015) and the classical theory of average effects in
tetraploids.

Theory

In a series of articles in 1955 (Kempthorne 1955a,b,c), which
were further distilled in the monograph An Introduction to
Genetic Statistics (Kempthorne 1957), Kempthorne devel-
oped the theory of average effects for arbitrary ploidy, drawing
upon the same mathematical methods used in the ANOVA
for factorial experiments. Key results from this literature are
reproduced here, as well as details on the derivation omitted
by Kempthorne.

For an autotetraploid locus in panmictic equilibrium, assum-
ing random bivalent formation (i.e., random chromosome seg-
regation) and no inbreeding, the genotypic value (gijkl) of
genotype ijkl (each index ranges from 1 to the number of al-
leles, and permutations of the indices are distinct) can be or-
thogonally decomposed into the populationmean (m) plus four
additive effects (ai) corresponding to the four genes, six digenic
dominance effects (bij) for all pairs of genes, four trigenic in-
teractions (gijk), and one quadrigenic term (dijkl):

zijkl [ gijkl 2m ¼ ai þ aj þ ak þ al þ bij þ bik þ bil þ bjk

þbjl þ bkl þ gijk þ gijl þ gikl þ gjkl þ dijkl:

(1)

Equation 1 uses standard notation from the analysis of facto-
rial experiments, where the symbols denote the regression
coefficients and the regressors are implied to be indicator
variables. Focusing on the additive effects and grouping the
other parameters into a residual term, Equation 1 becomes a
regression of genotypic value on allele dosage (Fisher 1941).
The average effects minimize the sum of squared residuals for
the population, which is equivalent to a sum over genotypes
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weighted by genotype frequency pijkl (= pipjpkpl under the
assumptions of the model):

X
ijkl

pijkl
h
zijkl2

�
ai þ aj þ ak þ al

�i2
: (2)

Taking the derivative with respect to the additive effect for
each allele and equating the result to zero generates a set of
normal equations that can be solved (Supplemental Material,
Supporting Methods in File S1) to produce the following
linear constraint:

0 ¼
X
i

piai; (3)

which is identical to the result for diploids. By substituting
Equation 3 into the normal equations (Equation S3, File S1),
the solution for the additive effect of an allele becomes the
average genotypic value of all individuals with that allele
(multiple doses contribute separately), relative to the popu-
lation mean:

ai ¼
X
jkl

pjpkplzijkl ¼ �gi��� 2m: (4)

The residuals from the regression equation for the additive
effects,whichwedenotebyyijkl [ gijkl 2 ðmþ ai þ aj þ ak þ alÞ;
are known as the dominance deviation. In diploids, this devia-
tion uniquely defines one dominance effect for each genotype;
but in tetraploids the dominance deviation comprises digenic,
trigenic, and quadrigenic effects (Equation 1). The tetraploid
solution for the digenic effects corresponds to regressing the
dominance deviation on the dosage of pairs of alleles, which
involves minimizing the following sum of squared residuals:

X
ijkl

pijkl
h
yijkl2

�
bij þ bik þ bil þ bjk þ bjl þ bkl

�i2
: (5)

Taking thederivativewith respect to thedigenic effect foreach
allele pair and equating the result to zero generates a set of
normal equations that can be solved (Supporting Methods,
File S1) to produce the following linear constraint for any
allele i:

0 ¼
X
k

pkbik; (6)

which is the same result for diploids. Substituting Equation
6 into the normal equations (Equation S6, File S1) leads to the
solution

bij ¼
X
kl

pkpl yijkl ¼ �gij�� 2m2ai 2aj: (7)

By now the pattern is clear and the least-squares solution for
the trigenic effects can be written as

gijk ¼ �gijk� 2m2ai 2aj 2ak2bij2bik2bjk: (8)

Having solved for the additive, digenic, and trigenic terms; the
quadrigenic effect dijkl is the residual in Equation 1.

Thebreeding value (BV)of an individual is definedas twice
the mean genotypic value of its progeny relative to the
population mean. Under the model assumptions, all six pos-
sible gene pairs for tetraploid genotype ijkl have equal fre-
quency in its gametes which, in conjunction with Equation 7,
leads to the following expression:

BVijkl ¼ 2
�
1
6

�
�gij�� þ �gik�� þ �gil�� þ �gjk�� þ �gjl�� þ �gkl��

�
2m

�

¼ ðai þ aj þ ak þ alÞ þ
1
3
ðbij þ bik þ bil þ bjk þ bjl

þbklÞ ¼ uþ 1
3
v:

(9)

Equation9 shows that breeding value equals the total additive
value (u) plus 1/3 of the total digenic dominance (v), but it is
conventional to refer to the additive value as “breeding
value” because the contribution of digenic dominance dimin-
ishes exponentially: 1/3t after t generations (Gallais 2003).
This is analogous to the situation in diploids (and polyploids)
with regard to additive 3 additive epistasis, as it contributes
to a breeding value with a coefficient of 1/2 but is generally
omitted when referring to breeding value.

Materials and Methods

Training population

Phenotype data for a training population (TP) of 571 round
white clones was collected between 2012 and 2017 at the
University ofWisconsin (UW–Madison) Hancock Agricultural
Research Station (number of clones trialed per year is in
Table S1 in File S1). Between 2012 and 2015, all clones were
entries in the National Chip Processing Trial (NCPT) which
were contributed by 11 public U.S. breeding programs. In
2016 and 2017, FY3 and FY4 selections from the UW–Madison
breeding program were included in addition to the NCPT
clones. The NCPT uses a two-tier evaluation system, with
one plot per location for tier 1 clones and two plots per loca-
tion for tier 2 clones. FY3 clones were evaluated with a single
plot, and FY4 clones were evaluated with two plots in
2016 and one plot in 2017. All plots contained 15 seed pieces,
planted with 30-cm in-row spacing and 91 cm between rows.
Trials were planted in late April and harvested in early
September, with vine desiccation 2–3 weeks before harvest.

Phenotype data for three traits—yield, specific gravity, and
fry color—are included in this study. Total yield is based on
the weight of all harvested tubers and reported in Mg ha21.
Specific gravity was determined by water displacement, us-
ing 2–3 kg of tubers per plot (Wang et al. 2017). Fry color was
measured in March of each year after 6 months of storage
(1 month at 12.8� for wound healing, followed by 5 months
at 8.9�), using 1-mm slices fried for 130 sec in vegetable oil at
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182�. For the 2012–2014 trials, fry color was measured on a
1–10 visual scale, while for the 2015–2017 trials it was mea-
sured on the L* lightness scale using the D25 HunterLab
Colorimeter (Hunter Associates Laboratory). Fry color mea-
surements on the visual scale (x) were converted to L* using
the formula L*=21.37x+ 63.7, which is based on a linear
regression analysis of 70 clones phenotyped with both
methods.

TP samples were genotyped with either version 1 or
version 2 of the Solanaceae Coordinated Agricultural Proj-
ect potato SNP array, which have in common a set of
8303 markers used for this study (Hamilton et al. 2011;
Felcher et al. 2012). Tetraploid genotype calls (coded 0–4)
were made using version 1.6 of the ClusterCall package
(Schmitz Carley et al. 2017) in R (R Development Core
Team 2015), which calibrates the relationship between
signal intensity from the array and allele dosage for each
marker based onmultiple F1 populations. In addition to the
Atlantic 3 Superior, Wauseon 3 Lenape, and Rio Grande 3
Premier Russet populations used by Schmitz Carley
et al. (2017); two more calibration populations were
used: Waneta 3 Pike (da Silva et al. 2017; n = 184) and
A06084-1TE 3 Castle Russet (n = 245). Default parame-
ters were used except for min.train = 3, which required a
marker to be called in at least three of the five calibration
families. The curated marker set contained 3895 polymor-
phic SNPs with $95% concordance across samples (File
S2).

The numerator relationship matrix A was calculated with
R package AGHmatrix (Amadeu et al. 2016) using pedigree
records maintained by the authors as well as a public data-
base (van Berloo et al. 2007). After removing uninformative
ancestors, there were 185 founders (clones with no parent)
and 1138 total clones in the pedigree (File S3).

Genomic covariance matrices

In the Theory section, average effects were derived for an
arbitrary number of alleles. For biallelic SNPs, additional
simplifications are possible. Consider alleles B and b with
frequencies p and q, respectively. In this case, Equation
3 becomes paB þ qab ¼ 0; which reduces to the following
well-known formulas involving a[aB 2ab :

aB ¼ qa

ab ¼ 2 pa: (10)

If X denotes the dosage of B, then the total additive value is

u ¼ XaB þ ð42XÞab ¼ ðX2 4pÞa[Wa; (11)

whereW is a centered genotype because 4p is the population
mean of X. To obtain a similarly parsimonious expression for
the total digenic dominance v, we follow the example of
Wricke and Weber (1986) and introduce the parameter
b[bBB 2 2bBb þ bbb: When combined with Equation 6, the
result is (Supporting Methods, File S1)

bBB ¼ q2b

bBb ¼ 2 pqb

bbb ¼ p2b (12)

v ¼ �
6p22 3pX þ 1

2
XðX2 1Þ	b[Qb: (13)

For mixed model analysis, Gij quantifies the covariance be-
tween the additive values for clones i and j relative to the
additive genetic variance s2

A :

Gij ¼ s22
A cova½ui; uj� ¼ s22

A cova½Wia;Wja�
¼ s22

A WiWjvara½a� ¼ s22
A WiWjs

2
a: (14)

The covariance in Equation 14 involves the expectation with
respect to a � Nð0;s2

aÞ; but the additive genetic variance s2
A

is based on the theory of average effects in which the expec-
tation is with respect to genotypes. To relate the two variance
components, the expectation with respect to both parameters
is used:

s2
A ¼ Ea;X

�
u2

	
2 Ea;X ½u�2 ¼ Ea½a2�EX ½W2�2 Ea½a�2EX ½W�2

¼ 4pqs2
a:

(15)

Upon substituting Equation 15 into Equation 14 and extend-
ing the analysis to m loci in linkage equilibrium, the result is

Gij ¼
Pm

k¼1WikWjkPm
k¼14pkqk

⇒ G ¼ WWTP
k4pkqk

: (16)

The digenic dominance matrix Dij is defined similarly as the
covariance between dominance values relative to the domi-
nance genetic variance, based on the expectation with re-
spect to b � Nð0;s2

bÞ :

Dij ¼ s22
D covb½vi; vj� ¼ s22

D covb½Qib;Qjb� ¼ s22
D s2

bQiQj:

(17)

Using the following result for the dominance genetic variance

s2
D ¼ Eb;X

�
v2
	
2 Eb;X ½v�2 ¼ s2

bEX
�
Q2	 ¼ 6p2q2s2

b; (18)

the D matrix is

Table 1 Covariance structures for the total genotypic value (g) in
Equation 20

Model Var[g]

A IVr + AVa

G IVr + GVa

G+GG IVr + GVa + (G#G) Vaa

G+D IVr + GVa + DVd

G+GG+D IVr + GVa + (G#G) Vaa + DVd

g, total genotypic value.
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D ¼ QQTP
k6p

2
kq

2
k
: (19)

For the covariance between additive 3 additive epistatic ef-
fects, we used the Hadamard product of the G matrix,
denoted by G#G (Henderson 1985; Su et al. 2012).

Mixed model analysis of the TP data set

Stage-wise analysis of the multi-year TP data set was per-
formed using ASReml-R version 3 (Butler et al. 2009) and a
diagonal weight matrix to account for the varying precision
of the estimates in the first stage (Smith et al. 2001; Damesa
et al. 2017). Stage one was an analysis within a year, in-
cluding blocking effects when present and modeling the
genotype effect for each clone as fixed. The covariance ma-
trix (Vj) for the vector of genotype effect estimates (m̂j) in
year j was obtained from the inverse of the coefficient ma-
trix of the mixed model equations (Henderson 1975),
which is returned as Cfixed in the asreml object. Stage
two was a multi-year analysis based on the following linear
model:

m̂ij ¼ fþ gi þ yj þ ðgyÞij þ fij: (20)

In Equation 20, the parameter f is the intercept, gi is a ran-
dom effect for genotype, yj is a fixed effect for year, (gy)ij is a
random effect for the genotype 3 year interaction, and the
variance of the residual fij is (vij)21, where vij is the i-th di-
agonal element ofV21

j from stage one (Damesa et al. 2017).
File S4 contains the genotype effect estimates (m̂ij) and cor-
responding weights (vij) used in the multi-year analysis.

After fitting a baseline model with independent genotype
effects (var[gi] = Vg), five genetic models with different co-
variance structures for gi were tested (Table 1). The variance
of the genotype 3 year interaction (var[gyij] = Vgy) was
estimated in the baseline model and constrained at that value
for the other models. This allowed for the partitioning of the
genetic variance (Vg) into additive (Va) and residual (Vr)
genetic components for models A and G. Models G+GG,
G+D, and G+GG+D involved the estimation of nonadditive
variance components for digenic dominance (Vd) and/or
additive 3 additive epistasis (Vaa). Variances are reported
using the standardization proposed by Legarra (2016) to
make them comparable, in which the parameter estimate is
multiplied by the difference between the mean of the diagonal

elements and the mean of all elements of the covariance
matrix: Goodness of fit was assessed by the Akaike informa-
tion criterion (AIC), defined as the deviance minus twice the
number of variance parameters (Piepho 2009).

Our objective was to compare how well the different co-
variance models predicted the total genotypic value g of un-
observed clones. Each of the models in Table 1 has the form
g ¼ uþ r; where u is a sum of average effects and r is the
residual genetic effect. Genomic predictions were calculated
as BLUP½u�[ û from a stage-two analysis (Equation 20) with-
out response values (m̂) for clones in the validation set, using
the variance parameter estimates fromASReml-R and custom
scripts to solve Henderson’s mixedmodel equations (Henderson
1975). The validation data were calculated as BLUP½g�[ ĝ
from a stage-two analysis with all clones, assuming indepen-
dent clone effects (i.e., the baseline model). The reliability
(r2gĝ) of the validation datawas calculated from the prediction
error variance (PEV) by 12 PEVi=Vg for clone i (Clark et al.
2012). To estimate prediction accuracy (rûg) from predictive
ability (i.e., the Pearson correlation between the genomic
predictions and validation data, rûĝ), the latter was divided
by the square root of the mean reliability (i.e., broad-sense
heritability) of the validation data (Dekkers 2007). Because
the mean-squared error of the accuracy estimate worsens as
the reliability of the validation data decreases (Ould Estagh-
virou et al. 2013), only validation data with reliability $0.6
were used.

Genome-wide prediction in F1 populations

As part of various research projects, six unselected F1 popu-
lations (Table 2) were evaluated at the same location as the
TP during the same time period. Populations W12011,
W12012, and W12060 were evaluated for yield and specific
gravity with a single plot of 12 plants per clone in 2015 and
2016. Populations W9817 and W10010 were evaluated for
yield with two 8-plant plots in 2013 and one 20-plant plot in
2014 (Rak and Palta 2015). Population W3L was evaluated
with a single plot for specific gravity for 4 years (2012–2015),
but yield was only measured in 2014 and 2015; there were
6 plants per plot in 2012 and 10 plants per plot in 2013–2015
(Frederick 2017). Phenotype data were analyzed separately
for each F1 population using a linear model with fixed effects
for year and independent random effects for clone. Genetic
and residual variance components were estimated with
ASReml-R and used to calculate BLUPs for validation. The

Table 2 Parentage, population size, and number of polymorphic markers in unselected F1 populations

Population Mother (A90) Father (A90) < G90 > Population size No. markers

W12011 W6360-1rus (0.01) Silverton Russet (0.01) 0.059 58 1580
W12012 W8736-6rus (0.06) Silverton Russet (0.01) 0.062 55 1744
W12060 Russet Norkotah (0.01) Canela Russet (0.01) 0.062 65 1376
W9817 Liberator (0.16) W4013-1 (0.12) 0.070 76 2311
W10010 Tundra (0.31) Bannock Russet (0.01) 0.066 48 1629
W3L Wauseon (0.20) Lenape (0.25) 0.070 167 1999

A90, 90th percentile of pedigree relationship with the training population; G90, 90th percentile of G coefficient between an F1 individual and the TP;,G90., the average G90

for the F1 population.
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BLUPs and corresponding reliabilities (which were used to
estimate accuracy from predictive ability, as described above)
are provided in File S5; however, yield BLUPs for W12011
and W12060 were excluded because of low reliability
(,0.6).

The F1 populations were genotyped using the same SNP
array as the TP. Tetraploid genotype calls (coded 0–4) were
made in two ways: (1) as described above (using CC.anypop
in the ClusterCall package) for the same set of 3895 markers
selected for the TP, and (2) using the CC.bipop function. Poly-
morphic markers with identical calls for the two approaches
were used for prediction (File S6). Genomic predictions for
each F1 population were calculated as BLUP½u� from a stage-
two analysis of the entire TP (Equation 20), using the TP
variance estimates with multi-population covariance matri-
ces (“G_New” from Wientjes et al. 2017) to account for dif-
ferent allele frequencies in the TP vs. F1 population. If eW and
~Q denote scaled versions of the matrices defined previously:

eW ¼ WffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k4pkqk

p eQ ¼ QffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k6p

2
kq

2
k

q ; (21)

then, using the subscripts 1 and 2 to denote the different
populations, the covariance matrices are

G ¼
� eW1 eWT

1
eW1 eWT

2eW2 eWT
1

eW2 eWT
2

�
D ¼

� eQ1
eQT
1

eQ1
eQT
2eQ2

eQT
1

eQ2
eQT
2

�
: (22)

Data availability

All marker, pedigree, and phenotype data needed to repro-
duce the results in thismanuscript are provided in File S2, File
S3, File S4, File S5, and File S6:

File S2: Marker data for the TP (.csv).
File S3: Pedigree table for the TP (.csv).
File S4: Clone means by year for stage-two analysis of the TP

(.csv).
File S5: Clone BLUPs for the six F1 populations (.csv).
File S6: Marker data for the F1 populations (.csv).

Results

Pedigree information was used to calculate the numerator re-
lationship, or A, matrix for a TP of 571 clones. All but 13 clones
had a pedigree depth (maximumnumber of generations from a
founder) of at least 7, with a median depth of 10 generations
(distribution in Figure S1 in File S1). For autotetraploids, di-
agonal element Aii is related to the inbreeding coefficient Fi—
defined as the probability that two randomly chosen genes,
sampled without replacement, are identical by descent—via
the equation Aii = 1+3Fi (Gallais 2003). Values for Aii

ranged from 1 to 1.55, with a mean of 1.05, so the most
inbred clone in the population had Fi = 0.18.

In the G-BLUP method of GS, the covariance between
additive values is proportional to a G matrix calculated from
markers (instead of A). We calculatedG using 3895 polymor-
phic markers from the potato SNP array for which accurate
allele dosage information was available. The overall scaling
of G is such that the mean of the diagonal elements equals
1 at panmictic equilibrium, which is very near the observed

Figure 1 Comparison of off-diagonal elements for the additive covari-
ance matrices estimated from markers (G) vs. pedigree (A) for the TP of
571 clones. The dashed line is the linear regression using all pairs of
clones (G = 0.66A–0.06, R2 = 0.41) and the solid line is the regression
(G = 0.79A–0.09, R2 = 0.51) when distant relationships (A , 0.05) are
excluded.

Figure 2 Comparison of off-diagonal elements for the digenic domi-
nance (D) vs. additive (G) covariance matrices estimated from markers
for the TP of 571 clones.
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value of 0.99. As further confirmation, the observed fre-
quency of heterozygotes was inspected as a function of allele
frequency and found to be in close agreement with the
expected values under panmixis (Figure S2 in File S1).

Ghas been called the “realized relationshipmatrix” because it
captures Mendelian segregation around the expected value A
(Hayes et al. 2009). This connection is themotivation for regres-
sion analysis between G and A (VanRaden 2008) and is shown
in Figure 1 for our potato data set. The dashed line is thefit of the
linear model when all off-diagonal elements are used (G =
0.66A–0.06, R2 = 0.41), which underestimatedG at high values
of A. By excluding very distant relationships (A , 0.05), the
model fit improved overall and at the upper end, as shown by
the solid black line (G = 0.79A–0.09, R2 = 0.51). These results
are based on the assumption of no double reduction, i.e., that
diploid gametes do not contain genes from sister chromatids; but
in potato the probability of double reduction varies from 0 at the
centromere to as high as 0.07 at the telomere (Bourke et al.
2015). In the context of a polygenic trait, with genes distributed
across the entire chromosome, the effective value of the double
reduction parameter is expected to be small. When the proba-
bility of double reductionwas increased to 0.05 for computingA,
the goodness of fit and intercept for the regression were unaf-
fected but the slope decreased from 0.79 to 0.73.

Figure 2 compares the off-diagonal elements of the
digenic dominance covariance matrix D against the corre-
sponding elements of G. For close relationships, Gij $ 0.4,
G and D were highly correlated (r = 0.81); but when these
pairs were excluded the correlation dropped to 0.08. The
overall scaling of D is such that the mean of its diagonal
elements equals 1 at panmictic equilibrium, which is very
near the observed value of 0.99.

A potential concern when using genomic relationship ma-
trices is that estimates of genetic variancemaybe too lowdue to
insufficient marker density. Yang et al. (2010) presented a
method to assess (and correct) this issue. First, the markers
are randomly partitioned, such that one half represent QTL
and the other half markers; G (or D) is then calculated using
each half separately; and finally GQTL is regressed onto Gmark.
For both the G and D matrices in our data set, the mean re-
gression coefficient after 100 iterations was 1.00 (SD 0.01),
indicating sufficient marker density under the assumption that
markers are sampled from the same distribution as QTL.

Variance components

Phenotype data for three economically important traits were
analyzed: total yield, specific gravity (as a proxy for drymatter

content), and potato chip fry color after 6 months of storage.
Initially, genotype effects were modeled as independent to
estimate the total genetic variance (Vg) and the variance of
the genotype 3 year interaction (Vgy). The Vg estimate was
higher than Vgy for all traits, ranging from 2.73 higher for
yield to 5.63 higher for specific gravity (Table 3).

By adding another random effect to the baseline model,
with covariance proportional to A or G, the genetic variance
(Vg) was partitioned into additive (Va) and residual genetic
variance (Vr), the latter corresponding to the independent
clone effect (Table 1). Both A and G lowered the AIC com-
pared to the baseline model for all traits, with the G matrix
producing a better fit for yield and fry color vs. the A matrix
for specific gravity (Figure 3). Using A, the proportion of ge-
netic variance due to additive effects was 0.52 for specific
gravity, 0.59 for yield, and 0.76 for fry color (Figure 4). When
G was used, the additive genetic variance estimates were re-
duced by 0.12–0.18 of the total genetic variance, depending
on the trait.

For specific gravity and fry color, including additive 3 ad-
ditive epistasis lowered the AIC compared to the additive
G-BLUP model; but the AIC increased when dominance was
included (Figure 3). For these traits, a substantial amount of
the estimated additive variance in the G model became
additive3 additive epistasis in the G+GGmodel: Va dropped
from 34 to 20% of Vg for specific gravity and from 63 to 45%
for fry color, with 44–51% of the genetic variance captured by
G#G (Figure 4, SE in Table S2 in File S1). For yield, neither
dominance nor additive 3 additive epistasis improved the
AIC compared to G-BLUP, and only 10% of the genetic vari-
ance was captured by D or G#G compared to 45% for the
residual clone effect.

Prediction accuracy

Many studies use random cross-validation to assess the accu-
racy of genome-wide prediction. However, in the context of a
pedigreedbreedingpopulation, this approach leads to training-
set individuals that are descendants of individuals in the
validation set, which is unrepresentative of how GS will be
used in practice and may produce unrealistically high accura-
cies. To avoid this pitfall, we used the pedigree depthmetric to
partition the population into a set of 168 candidates for selec-
tion (depth $12) and a set of 403 clones ancestral to this
group (depth ,12) as the training set. The selection candi-
dates were further narrowed by excluding clones with insuffi-
ciently reliable data for validation, leaving 54 clones for yield,
132 clones for specific gravity, and 49 clones for fry color (with
mean reliability in the range 0.71–0.72 for all traits).

Figure 5 shows the accuracy (left) and regression coeffi-
cient (right) when using each of the models in Table 1 to
predict total genotypic value in the validation set. Prediction
accuracy using only the A matrix was just over 0.5 for total
yield vs. 0.4 for specific gravity and fry color. Replacing Awith
G improved accuracy for yield by 0.03 and fry color by 0.06,
but decreased the accuracy for specific gravity by 0.07, which
is consistent with the trend observed for AIC. Including

Table 3 Variance parameter estimates for the total genotypic
value and genotype 3 year effect

Variance
component

Yield
(Mg2 ha22)

Specific
gravity

Fry color
(L*2)

Vg 88 26.5 3 1026 5.1
Vgy 33 4.7 3 1026 1.4

Vg, total genotypic value; Vgy, genotype 3 year effect.
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dominance improved yield accuracy by 0.01 and including
epistasis improved specific gravity accuracy by 0.05. Based on
the AIC results for fry color, we expected higher accuracywith
the G+GG model, but this was not observed. Including epis-
tasis reduced prediction bias for fry color and specific gravity,
with regression coefficients .0.9 for the G+GG model com-
pared to 0.75–0.78 for G-BLUP.

To investigate the effect of training population size on
accuracy, 200 random subsets of the TP were taken at N =
100, 200, and 300 clones (Figure S3 in File S1). For all three
traits, prediction accuracy decreased as the TP was reduced.
Fry color accuracy was the most sensitive, dropping by 0.28
when population size was reduced from 403 to 100, com-
pared to accuracy decreases of 0.14 and 0.19 for yield and
specific gravity, respectively.

We also determined accuracy when using the entire (N =
571) TP to predict yield and specific gravity in six unselected
F1 populations (Table 4). The F1 populations ranged in size
from 48 to 167 clones, and the number of polymorphic
markers ranged from 1376 to 2311 (Table 2). Several of
the parents had little pedigree relationship to the TP because
they were russet clones, which is a distinct market category
from the round, chip-processing type. Prediction accuracies
ranged from 0.06 to 0.63 with G-BLUP, with no discernible
connection between accuracy and pedigree relationship to
the TP. The G+GG+D model performed very similarly, with
no difference in average accuracy (to two decimal places)
across the eight cases in Table 4. To assess the value of tet-
raploid allele dosage, predictions were made with “diploidized”
marker data (Gdip) in which the three heterozygotes were
recoded to be identical. The accuracy of the Gdip model was
consistently lower, with an average loss of 0.13.

Discussion

This is the first study to connect the classical theory of genetic
variance partitioning in tetraploids with covariance matrices

constructed from genome-wide allele dosage information.
Our results are based on a two-stage analysis in which the
genotype estimate for each clone3 environment combination
was calculated in stage one by assuming independent effects,
and in stage-two genomic covariancematrices were used.We
note that not all references to two-stage analysis in the liter-
ature employ this convention; often a single genotype mean
across all environments is estimated in the first stage. In our
data set, there were 849 genotype3 year means estimated in
stage one for the 571 clones (File S4), and this partial repli-
cation is expected to improve the precision of the variance
component estimates compared to analyzing a single mean
per genotype in stage two (Kruijer et al. 2015).

Thepartial replication across years also allowed for explicit
modeling of a residual genetic effect with no covariance
structure in addition to the additive, dominance, and epistatic
random effects. We interpret the residual genetic effect to
include higher-order nonadditive effects (e.g., trigenic dom-
inance, additive3 dominance epistasis) and genetic variance
not captured by the markers. The latter might appear to be
ruled out based on our analysis of the G andDmatrices using
the Yang et al. (2010) method, but this assumes QTL are
drawn from the same distribution as the markers. In reality,
low-frequency alleles are underrepresented on the potato
8303 SNP array and are expected to contribute residual ge-
netic variance (Vos et al. 2015). The estimates for Vd and Vaa

were sensitive to whether the residual genetic effect was in-
cluded in themodel. Without it, Vaa for yield was estimated at
40 (SE 14) Mg2 ha22, which is 45% of the total genetic var-
iance (88 Mg2 ha22). When the residual effect was included,
most of this variance shifted into Vr. This phenomenon and
the large SE of the estimates (Table S2 in File S1) suggest that
the partitioning of the nonadditive genetic variance is uncer-
tain, probably because of limited population size.

Figure 4 Partitioning of genetic variance in the TP of 571 clones for five
different covariance structures (see Table 1). Va, additive variance; Vaa,
additive 3 additive epistasis; Vd, digenic dominance; Vr, residual genetic
variance (for independent clone effects).

Figure 3 Comparing goodness of fit in the TP for different genetic co-
variance structures (see Table 1) using the AIC relative to a baseline model
with independent clone effects.
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Atfirst glance, ourfinding thatmoreof thegenetic variance
was additive for yield (45%) compared to specific gravity
(20%) seems unexpected. Diallel studies have typically found
the ratio between SCA and GCA to be higher for yield. Tai
(1976) reported SCA/GCA = 3.8 for yield vs. 0.6 for specific
gravity, and Bradshaw et al. (2000) reported SCA/GCA =
0.75 for yield vs. 0.06 for specific gravity. Whereas these ear-
lier studies used unselected populations, the clones in our TP
had been selected for high specific gravity at least once, and
in many cases for 2–3 years. Specific gravity (which is closely
correlated with dry matter content) is one of the most impor-
tant traits for the chip processing market, and strong selec-
tion early in the variety-development process is practiced
because the trait shows relatively little genotype 3 environ-
ment interaction (Table 3; Wang et al. 2017). Our results
suggest that, in the tail of the phenotype distribution for
specific gravity, the partitioning of genetic variance is shifted
toward nonadditive effects.

A unique feature of our study compared to previous reports
of GS in autotetraploid species, such as alfalfa (Annicchiarico
et al. 2015; Li et al. 2015) and potato (Habyarimana et al.
2017; Sverrisdóttir et al. 2017), was the use of SNP array data
rather than genotyping by sequencing (GBS). A major benefit
of the SNP array for polyploids is the ability to accurately
determine allele dosage (Voorrips et al. 2011; Schmitz Carley

et al. 2017), but the cost of the array is determined by sales
volume and can be prohibitively expensive for GS in small
breeding programs or minor crops. GBSmethods achieve low
per-sample costs by poolingmany samples into one library for
sequencing; but much higher read depth (per sample–marker
combination) is needed for accurate genotype assignment in
tetraploids compared to heterozygous diploids. By compar-
ing GBS with KASP markers in potato, Uitdewilligen et al.
(2013) recommended 60–803 read depth to differentiate
the three heterozygous genotypes, which agrees well with
theoretical calculations (J. B. Endelman, unpublished data).
For GS, a pressing question is whether paying for more se-
quencing to improve estimates of allele dosage provides a
return on investment in terms of prediction accuracy and
ultimately genetic gain. A completely general answer may
be elusive due to complex interactions between GBSmethod,
population, and phenotype; but our finding that diploidiza-
tion of the marker data consistently reduced prediction accu-
racy in the F1 populations (by 0.13 on average) highlights the
need for further research.

In plant breeding, both the total genotypic value and
additive value are relevant for selection. For many crops,
the unit of commercial production (i.e., inbred, F1 hybrid,
or vegetative clone) is the same genotype evaluated by the
breeder and therefore selection should be based on total

Figure 5 Prediction accuracy (left) and bias (right)
when using all clones with pedigree depth ,12 to
predict clones with pedigree depth$12. SpGr, specific
gravity.

Table 4 Prediction accuracy in unselected F1 populations

Population Trait (reliabilitya) G model accuracy G+GG+D accuracy Gdip accuracy

W12011 SpGr (0.74) 0.63 0.61 0.36
W12012 Yield (0.66) 0.31 0.31 0.06
W12012 SpGr (0.70) 0.27 0.32 0.16
W12060 SpGr (0.84) 0.25 0.29 0.13
W9817 Yield (0.82) 0.06 0.06 0.08
W10010 Yield (0.82) 0.12 0.11 0.14
W3L Yield (0.65) 0.34 0.34 0.16
W3L SpGr (0.85) 0.33 0.33 0.19

Gdip, G matrix based on diploidized marker data; SpGr, specific gravity.
a Mean reliability of the validation data.
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genotypic value. When selecting new parents, however, only
the additive value should be considered because nonadditive
effects are less efficiently transmitted to progeny. We have
demonstrated the feasibility of this paradigm for potato using
the G+GG+D model, although questions remain regarding
its optimal implementation. Formany issues, further progress
will require larger populations genotyped with less ascertain-
ment bias.
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