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ABSTRACT Postharvest aflatoxin contamination is a challenging issue that affects peanut quality. Aflatoxin is produced by fungi
belonging to the Aspergilli group, and is known as an acutely toxic, carcinogenic, and immune-suppressing class of mycotoxins.
Evidence for several host genetic factors that may impact aflatoxin contamination has been reported, e.g., genes for lipoxygenase (PnLOX1
and PnLOX2/PnLOX3 that showed either positive or negative regulation with Aspergillus infection), reactive oxygen species, and WRKY
(highly associated with or differentially expressed upon infection of maize with Aspergillus flavus); however, their roles remain unclear.
Therefore, we conducted an RNA-sequencing experiment to differentiate gene response to the infection by A. flavus between resistant (ICG
1471) and susceptible (Florida-07) cultivated peanut genotypes. The gene expression profiling analysis was designed to reveal differentially
expressed genes in response to the infection (infected vs.mock-treated seeds). In addition, the differential expression of the fungal genes was
profiled. The study revealed the complexity of the interaction between the fungus and peanut seeds as the expression of a large number of
genes was altered, including some in the process of plant defense to aflatoxin accumulation. Analysis of the experimental data with
“keggseq,” a novel designed tool for Kyoto Encyclopedia of Genes and Genomes enrichment analysis, showed the importance of
a-linolenic acid metabolism, protein processing in the endoplasmic reticulum, spliceosome, and carbon fixation and metabolism pathways
in conditioning resistance to aflatoxin accumulation. In addition, coexpression network analysis was carried out to reveal the correlation of
gene expression among peanut and fungal genes. The results showed the importance of WRKY, toll/Interleukin1 receptor–nucleotide binding
site leucine-rich repeat (TIR-NBS-LRR), ethylene, and heat shock proteins in the resistance mechanism.
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Peanut (Arachis hypogaea L.), an oilseed crop, is a suitable
substrate for fungal growth and mycotoxin production,

and is the most susceptible species for aflatoxin production as
compared with other oilseed crops such as soybean (Bean
et al. 1972). Different mycotoxins are formed on peanuts,
e.g., cyclopiazonic acid, zearalenone, trichothecene-toxins,
and aflatoxin (Chang et al. 2013). The latter is the most
common and destructive mycotoxin produced on peanut
and other crops such as corn, cottonseed, rice, wheat, oat,

and barley (Stubblefield et al. 1967; Cotty and Jaime-Garcia
2007; Mateo et al. 2011; Suárez-Bonnet et al. 2013; Dunham
et al. 2017). Aflatoxin has received widespread attention
since the discovery that it was the causative agent of “Turkey
X disease,” a disease that killed 100,000 young turkeys on
English poultry farms in 1960 (Spensley 1963). Aflatoxins
are in an acutely toxic, carcinogenic, and immunosuppressive
class of mycotoxins affecting animals including humans
(Scheidegger and Payne 2003). In addition, aflatoxins are
considered mutagenic agents as they cause oxidative damage
to DNA (Verma 2004). Aflatoxins are classified in four major
classes: B1, B2, G1, and G2 (Ehrlich et al. 2004); however,
aflatoxin B1 is the most potent and carcinogenic naturally
occurring substance known (Squire 1981).

Aflatoxin is produced in agricultural products mainly by
contaminating Aspergillus flavus and A. parasiticus. Not only
are the fungal products harmful, the fungus A. flavus is an
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ascomycetous fungus that can infect humans, plants, ani-
mals, and insects (Klich 2007). In humans, it is the second
leading cause of invasive aspergillosis disease after A. fumigatus
(Hedayati et al. 2007). A. flavus may infect peanut and lead
to aflatoxin accumulation in the field (preharvest aflatoxin
contamination) or during storage (postharvest aflatoxin
contamination).

Abiotic stress is an important factor contributing to pre-
harvest aflatoxin accumulation. Drought-tolerant genotypes,
sufficient irrigation, and best management practices may
reduce preharvest aflatoxin contamination since drought
conditions and heat stress exacerbate aflatoxin contamina-
tion (Kisyombe et al. 1985; Holbrook et al. 2000a; Craufurd
et al. 2006; Nigam et al. 2009). However, better under-
standing of the resistance mechanisms and the development
of resistant genotypes for postharvest aflatoxin contamination
is needed.

Different genetic factors that may affect Aspergillus spp.
infection and/or aflatoxin accumulation have been proposed;
however, the exact role of such factors remains unclear.
Lipoxygenase (LOX) is a gene super family that encodes
dioxygenases. It was found to have a critical role in many
disease-response mechanisms of plants such as those against
nematodes (Gao et al. 2008; Ozalvo et al. 2014), rust (Choi
et al. 2008), downy mildew (Babitha et al. 2004, 2006), and
insects (Wang et al. 2008; Tang et al. 2009; Yan et al. 2013).
However, in peanut it has received most attention for its
potential role in resistance to A. flavus. Burow et al. (2000)
isolated the first peanut LOX, PnLOX1, from a seed cDNA
library and found expression to be enhanced after infection
by A. parasiticus. An opposite result was obtained by
Tsitsigiannis et al. (2005) while studying two more LOXs,
PnLOX2 and PnLOX3, where they observed reduced expres-
sion upon infection by A. flavus. Two additional LOXs were
discovered later, which showed various responses to A. flavus
inoculation (Müller et al. 2014). In addition, LOX expression
differences have been observed upon interaction of Aspergil-
lus spp. with plants other than peanut, e.g., soybean (Bean
et al. 1972; Doehlert et al. 1993; Boué et al. 2005), maize
(Gao et al. 2009; Huang et al. 2013), cottonseeds (Zeringue
1996), and almond (Mita et al. 2007).

Additionally, b-1,3-glucanases, chitinases, pathogenesis-
related proteins 10 and 10.1, ribosome-inactivating pro-
teins, and zeamatin may be related to A. flavus resistance
(Fountain et al. 2014), along with WRKY transcription fac-
tors (Fountain et al. 2015b). Furthermore, the drought
stress-responding compounds such as reactive oxygen spe-
cies (ROS) are highly associated with aflatoxin production
(Jayashree and Subramanyam 2000; Reverberi et al. 2012;
Fountain et al. 2015a) and antioxidant enzymes are highly
coexpressed with fungal growth under infection conditions
(Fountain et al. 2016a).

Cultivated peanut, Ar. hypogaea, is an allotetraploid (2n=
43 = 40) that was formed by spontaneous doubling of a
cross between two diploid progenitors, A. duranensis and
A. ipaensis (Seijo et al. 2004). The whole-genome sequence

of tetraploid peanut is not yet available. However, high-quality,
well-annotated genomes of A. duranensis and A. ipaensis have
been released (Bertioli et al.2016; https://peautbase.org/). The
two subgenomes together have a size of �2.7 Gb with 88,876
annotated proteins. The whole-genome sequence of A. flavus
also has been released (https://www.aspergillusflavus.org/
genomics/). The genome is 40 Mbp, containing 13,478 pre-
dicted genes on eight chromosomes. Aflatoxin biosynthesis
is encoded by a 70-kbp gene cluster and has been exten-
sively studied for A. flavus and A. parasiticus (Yu et al. 2004;
Ehrlich et al. 2005; Georgianna and Payne 2009). Although
only these two fungi are responsible for aflatoxin produc-
tion in food products, the cluster region is conserved across
other species such as A. bombycis and Emericella astellata
(Amaike and Keller 2011). The aflatoxin biosynthetic path-
way is responsive to environmental conditions such as tem-
perature, stress, lipids, and salts (Bhatnagar et al. 2003),
which makes breeding for resistance to aflatoxin produc-
tion challenging.

In this study,we utilized the published peanut andA.flavus
genomes to study the genes that respond to A. flavus infection
and are differentially expressed during fungal interaction
with resistant vs. susceptible peanut genotypes. Extended
analysis comprising self-organizing maps, gene ontology
(GO) term enrichment, Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment, and coexpression network
analysis was conducted.

Materials and Methods

Plant material and infection

ICG 1471 and Florida-07 were planted on the Tifton Campus
of the University of Georgia in June and harvested in October
2015. Thirty seeds from each genotype were inoculated with
fungal spores, alongside 10 mock-treated seeds according
to Korani et al. (2017). Briefly, seeds were surface sterilized
for 15 min under UV light (LABCONCO purified class II
biosafety cabinet, Kansas City, MO). The AF-70-GFP strain
(Rajasekaran et al. 2008) was used for infection at a concen-
tration of 1000 conidia/ml. The fungus was grown on potato
dextrose agar (PDA)medium in petri dishes for 2weeks at 30�,
and conidia were suspended in 0.01% Tween-20 solution. The
seeds were harvested at 16, 32, and 64 HAI (hours after in-
oculation) time points. The experimentswere conducted using
a randomized complete block design (10 seeds/block). Every
individual seed was ground in liquid nitrogen and divided into
three aliquots. The first portion was used for GFP quantifica-
tion, the second for aflatoxin analysis, and the third for RNA-
seq (RNA- sequencing) analysis. Sterilization, all infection pro-
cedures, and GFP and aflatoxin analyses were carried out
according to the methods described previously (Korani et al.
2017). A Student’s t-test was used to test the differences in
GFP expression and aflatoxin contamination between the two
genotypes under infection conditions for every time point
(R v3.2.2) (R Core Team 2014).
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RNA extraction

For every time point and genotype, the third pulverized
portion of six mock-treated seeds and six infected seeds was
used for RNA extraction with QIAGEN RNeasy Plant Mini kit
(QIAGEN, Valencia, CA) according to the manufacturer’s in-
structions. The quality of RNA was checked with an Agilent
2100 Bioanalyzer (Georgia Genomics Facility, University of
Georgia, Athens, GA).

RNA sequencing

DNA was eliminated from the extracted RNA using DNase I,
amplification grade (Invitrogen, Carlsbad, CA) according to
the manufacturer’s instructions. Seventy-two RNA libraries
were constructed using a KAPA stranded RNA-seq library
preparation kit (KR0934-v1.13; Kapa Biosystems, Wilming-
ton, MA) and the Illumina set B indexes (Illumina, San Diego,
CA) according to the manufacturer’s instructions. The integ-
rity analysis and quantification of the libraries were carried
out using an Agilent 2100 Bioanalyzer and Qubit 2.0 Fluo-
rometer (Georgia Genomics Facility, University of Georgia,
Athens, GA). Sequencing was done on an Illumina HiSeq2500
in six lanes, with 12 samples pooled per lane (HudsonAlpha
Institute for Biotechnology, Huntsville, AL).

Differential expression analysis

The sequence quality for all libraries was determined using
FastQC (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/, v. 0.11.4 2015). Trimmomatic v0.36 (Bolger et al.
2014) was used to trim the low-quality bases and filter out
low-quality sequences. The cleaned paired-end reads were
aligned to a Bowtie-indexed (v1.1.0, Langmead et al. 2009)
peanut synthetic tetraploid reference genome, containing the
genomes of A. duranensis and A. ipaensis (Bertioli et al. 2016,
https://peautbase.org/), using Tophat v2.0.14 (Trapnell et al.
2009). Only the cleaned paired-end reads of infected libraries
were aligned to a Bowtie-indexed A. flavus NRRL3357 refer-
ence genome [National Center for Biotechnology Information
(NCBI), txid5059] using Tophat v2.0.14. The raw counts were
calculated using HTSeq v0.6.1p1 (Anders et al. 2015).

Differential expression analysis of counts was carried out
using edgeR (Robinson et al. 2010). DESeq2 (Love et al. 2014)
andNextMaSigPro (Nueda et al. 2014) were used to repeat the
analysis for in silico validation. SupplementalMaterial, Table S1
shows different models used in the analysis. Two models were
applied to test the differences between the genotypes (resistant
and susceptible) due to the infection vs. control treatments; the
second model was applied to test the differences between the
responses of the fungal genes during fungal growth on the two
genotypes for only high aflatoxin-contaminated treatments,
since control treatments had no fungal growth and the low
aflatoxin-contaminated treatment had limited fungal growth.

Cufflinks v2.2.1 (Trapnell et al. 2010) was used to cal-
culate the fragments per kilobase of transcript per million
mapped reads (FPKM), then the Z-score was calculated using
R v3.2.2 (R Core Team 2014). The expression profile of

differentially expressed genes was clustered using self-organi-
zation maps (SOMs) of the kohonen package (R Core Team
2014).

GO enrichment analysis

Libraries GenomicFeatures (Lawrence et al. 2013) and bio-
maRt (Durinck et al. 2005) were used to extract gene
lengths and GO terms from annotation files, respectively.
GO enrichment analysis of differentially expressed genes
was implemented using GOseq v2.12 (Young et al. 2010)
with a correction for gene-length bias.

KEGG enrichment analysis

KEGG enrichment analysis was carried out using the “kegg-
seq” package for the three models described above. The
KEGG enrichment analysis for a synthetic tetraploid genome
requires merging the two subgenomes in one analysis. How-
ever, the available tools for KEGG analysis do not support
combining two species. Therefore, we designed R packages to
carry out this type of analysis designated keggseq. The P-value
was calculated according to Yang et al. (2015) within the
keggseq package, which is freely available to the public under
Massachusetts Institute of Technology (MIT) license and can be
downloaded from https://github.com/w-korani/keggseq.

The keggseq package provides some other advantages
over the available tools. (1) It allows application of KEGG
enrichment analysis for diploids or polyploids with any level
of genome duplication; (2) it generates ready-to-publish
plots and produces graphs of interested pathways that have
differentially expressed enzymes marked; (3) it generates .
csv files containing detailed information of enzymes in-
cluded in pathways of interest; (4) it allows editing of gene
identifiers (IDs) if the user wants to use an annotation
different from KEGG annotation; (5) It is a run-time
package since the data are downloaded directly from the
KEGGs database, so it does not require an internal database
for specific species; and (6) it is step-by-step and easily
implemented.

De novo assembly of transcripts

The unmapped reads of ICG 1471 controls, remaining after
alignment with A. duranensis, A. ipaensis, and A. flavus ge-
nomes, were converted back to paired-end fastq files using
bamtools v2.25.0 (Barnett et al. 2011) and concatenated.
Trinity v. 2.0.6 (Haas et al. 2013) was used to assemble the
concatenated reads with normalization to maximum cover-
age of 503. The transcripts were given IDs starting with
“RC.”

The process was repeated for ICG 1471 treatments, Florida-
07 controls, and treatments with given IDs, starting with
RT, SC, and ST, respectively. The four assemblies were
combined and the redundant transcripts were filtered out
usingEvidentialGenepipeline (http://arthropods.eugenes.org/).
Since the assembly contained sequence from peanut and
sequences from A. flavus, BLAST+ (basic local alignment
search tool; Camacho et al. 2009) was used to cluster the
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assembly into peanut and fungal transcripts by applying
BLASTn for the transcripts against the NCBI nucleotide data-
base. Transcripts that matched plant sequences were identi-
fied as peanut transcripts and those that had fungal matches
were defined as A. flavus transcripts. The peanut filtered
assembly was merged with the peanut tetraploid assembly
produced by Clevenger et al. (2016a). Blast2GO was used
to annotate GO terms of the new transcripts (https://www.
blast2go.com/). Differential expression analysis, GO, and
KEGG enrichment analyses were carried out as described
above in the first model (differences between resistant
and susceptible genotypes due to the infection vs. control)
(Table S1).

Coexpression network analysis

Differentially expressed gene analysis of the fungal response
to the infection was carried out separately for each genotype
using edgeR (Robinson et al. 2010). Since a fungal control
treatment was lacking, the 16-hr treatment was used as con-
trol. In addition, differential expression analysis was carried
out for both genotypes to test the treatment effect (controls
vs. treatments) for time points 32 and 64 HAI for each geno-
type separately. The Z-scores for fungal and peanut genes
were combined in one matrix/genotype with rows for gene
ID and columns for time points. Pearson correlation analysis
was done using the R v3.2.2 package (R Core Team 2014) as
described by Musungu et al. (2016). Only pairs that showed
correlation . 0.99 were loaded into cytoscape network
v3.4.0 (Shannon et al. 2003). As the data set containing the
correlated paired genes of the susceptible genotype was
huge, the network was clustered only for the resistant geno-
type using the MCODE app (Bader and Hogue 2003), and
then the genes that matched those of the susceptible geno-
type matrix were excluded from the clusters of the resistant
genotype.

Data availability

The authors affirm that all data necessary for confirming the
conclusions of the article are present within the article, fig-
ures, and supplementalfigures and tables. TableS1: statistical
models for differential expression analysis; Figure S1: se-
quence read integrity and mapping results; Figure S2: SOM
clusters of differentially expressed genes between genotypes;
Figure S3: KEGG pathway of a-linolenic acid metabolism;
Figure S4: KEGG pathway of protein processing in the endo-
plasmic reticulum; Figure S5: KEGG pathway of the spliceo-
some; Figure S6: KEGG pathway of carbon fixation; Figure
S7: KEGG pathway of carbon metabolism; Figure S8: expres-
sion profile of the novel transcripts; Figure S9: GO/KEGG
enrichment analysis of differently expressed genes between
peanut genotypes due to the infection vs. control of the newly
assembled transcripts; Figure S10: SOM cluster groups of
fungal differentially expressed genes; File S1.xlsx: Z-scores
of differentially expressed genes; File S2.fasta: 2026 novel
peanut transcripts; and File S3.txt: ICG 1471 coexpression
network clusters. All raw data fastq sequences are deposited

at the NCBI (http://www.ncbi.nlm.nih.gov/) under BioProject
PRJNA417591. All raw sequences are deposited as BioSamples
SAMN08000482: SAMN08000553. The keggseq package
is freely available to the public under MIT license and can
be downloaded from https://github.com/w-korani/keggseq.
Supplemental material available at Figshare: https://doi.
org/10.25386/genetics.5984860.

Results and Discussion

Fungal growth and aflatoxin accumulation

It was shown previously that the peanut genotype ICG 1471 is
a strong candidate for resistance to aflatoxin accumulation
upon in vitro inoculation of mature peanut seeds with A.
flavus (Korani et al. 2017). In addition, ICG 1471 has been
reported as a resource for resistance to pre- (Waliyar et al.
2003; Nigam et al. 2009) and postharvest (Waliyar et al.
2008) aflatoxin contamination. Therefore, it was used in this
study along with Florida-07 (Gorbet and Tillman 2009),
which was a susceptible genotype for both pre- and posthar-
vest aflatoxin accumulation (Clevenger et al. 2016b; Korani
et al. 2017).

To estimate the dynamic change in gene expression, in-
fected seeds and their controls were harvested at three dif-
ferent time points: 16, 32, and 64 HAI. Figure 1 shows the
interaction between aflatoxin B produced by A. flavus and the
progression of fungal growth estimated indirectly by relative
fluorescence units of GFP protein signal. The data were con-
sistent with our previous findings (Korani et al. 2017) as ICG
1471 showed less aflatoxin production as compared with
Florida-07 (Table S1). A Student’s t-test revealed no signifi-
cant differences between the two genotypes for GFP relative
fluorescence for the three time points, yet aflatoxin levels
between genotypes were significantly different for all three
time points.

The interaction plots revealed that not only do peanut
genotypes interact differently with the fungus, but also every
individual seed produced different amounts of aflatoxin
within the same genotype/treatment/time point. This sup-
ports previous reports that aflatoxin accumulation is respon-
sive to environmental influence (Blankenship et al. 1984;
Kisyombe et al. 1985; Bhatnagar et al. 2003; Craufurd et al.
2006). The samples that were chosen for RNA-seq analysis
were circled in the figure (Figure 1). Picking such samples
with a diverse range of aflatoxin accumulation gave a realistic
representation of the biological replication; however, it in-
creases SD. Therefore, six biological replicates were used to
study the differentially expressed genes due to genotypic effect.

Peanut genotypic differential expression analysis

The cleaned paired-end reads that were mapped to the syn-
thetic tetraploidpeanut and theA.flavusgenomesarepresented
in Figure S1. Except for the highly fungal contaminated libraries
(treatments of 64 HAI of Florida-07), 3.3–9.9 million paired-
end reads were mapped to the peanut genome for every
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sample. This gave an average of 6 million paired-end reads/
library and a total average of 5.6 million paired-end reads/
library, including the highly contaminated libraries (which

had 2.4–4.4 million mapped fragments/library). These re-
sults showed a reasonable coverage of the 2.7 Gb peanut
genome (Bertioli et al. 2016).

In total, 4272 genes were differentially expressed between
the two genotypes (resistant vs. susceptible) due to the in-
fection by A. flavus (treatment vs. control). The Z-scores are
provided in the supplemental materials (File S1.xlsx). The
general pattern groups represented by SOM clusters are
shown in Figure S2. Since the expression profile included
the dynamic change across the three time points, some
SOM clusters of these genes may have similar general trends
and only differ slightly in the dynamic change from one time
point to another. The clustering showed that some genes
were downregulated due to the infection in the susceptible
genotype and upregulated (Figure S2A) or unaffected
(Figure S2B) in the resistant genotype. Conversely, some
genes were upregulated due to the infection in the suscep-
tible genotype and downregulated (Figure S2C) or unaf-
fected (Figure S2) in the resistant genotype. A fifth group
was upregulated in both genotypes but it was more highly
expressed in the resistant genotype (Figure S2E).

Tomitigate postharvest aflatoxin contamination of peanut,
the resistance mechanisms have to be understood. Therefore,
genes that are responsive to the infection (infection vs.mock-
treatment) were studied. The large number of significant
differentially expressed genes and GO terms generated by
the analysis revealed the complexity of the interaction be-
tween A. flavus and peanut in terms of aflatoxin production
and the significant effect of individual seed physiology on the
process. In addition, it can be misleading, even after cluster-
ing/grouping, to assign a resistance function to a particular
gene or small group of genes of interest; however, KEGG
enrichment analysis gives clues to pathways that are associ-
ated with the resistance response.

GO enrichment analysis of the differentially expressed
genes generated 146 significant GO terms out of 1672 GO
terms found in the annotation of the two subgenomes of
peanut. The 20 most significant GO terms (Figure 2A) in-
cluded several for protein processing, protein polymeriza-
tion, protein complex, unfolded protein binding, protein
folding, protein heterodimerization activity, and protein
binding. The latter GO term represented 529 differentially
expressed genes. On the other hand, KEGG enrichment anal-
ysis (Figure 2B) only generated five significant pathways:
a-linolenic acid metabolism, protein processing in the endo-
plasmic reticulum, spliceosome, carbon fixation, and carbon
metabolism (Figure S3, Figure S4, Figure S5, Figure S6, and
Figure S7, respectively).

As only five KEGG pathways were identified as significant
for resistance (excluding individual seed effects), it can be
assumed that they are the main keys controlling the defense
mechanism in ICG 1471. The most interesting significant
pathway is a-linolenic metabolism, which contains different
components that have been reported as related to or respon-
sive for biotic and abiotic stresses of plants. a-linolenic acid
accounts for 0.37–1.11% of peanut total oil content (Ozcan

Figure 1 Interaction between GFP signals and aflatoxin levels for 16 (A),
32 (B), and 64 (C) hours after inoculation. The red line and points represent
Florida-07 data; the blue line and points represent ICG 1471 data; the cross
marks show the samples that were chosen for RNA-sequencing analysis;
and the ovals reveal the diverse range of aflatoxin contamination. RFU
stands for GFP relative fluorescence unit.
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2010). Although it is a minor component of peanut oil, the
pathway catabolizes a-linolenic acid into jasmonate and
methyl-jasmonate and was significantly regulated in the
resistant genotype ICG 1471. Jasmonates are synthesized
though this pathway in two main cellular compartments:
the chloroplast where a-linolenic acid is converted to
12-oxo-phytodienoic acid (OPDA) in a process initiated
by chloroplast 13S-LOX (Bell et al. 1995), and the perox-
isome where 12-OPDA is localized and converted to jasm-
onates (Stintzi 2000).

LOXs were documented to play a role in Aspergillus
spp. infection and the subsequent aflatoxin contamination
of different crops including peanut (Burow et al. 2000;
Tsitsigiannis et al. 2005; Kumari et al. 2012; Müller et al.
2014), soybean (Bean et al. 1972; Doehlert et al. 1993;
Boué et al. 2005), maize (Gao et al. 2009; Huang et al.
2013), cottonseeds (Zeringue 1996), and almond (Mita et al.
2007). Figure 3 shows nine LOXs that were found among the
differentially expressed genes. BLASTp search against the NCBI
nonredundant protein database was used to estimate their
function; eight were predicted to generate 13-hydroxyperoxides
and six had features of plastidial enzymes.

Additionally, both 12-OPDA and jasmonates were docu-
mented to play independent roles in the wound response of
Arabidopsis, and each influences the expression of an over-
lapping set of genes as well as different sets of responsive genes
(Taki et al. 2005; Sham et al. 2015). In addition, numerous
reports showed the importance of jasmonates in plant responses
to biotic and abiotic stresses, e.g., insects (Thaler et al. 1996;
McConn et al. 1997; Kessler et al. 2004), fungi (Vijayan et al.
1998; Thomma et al. 2000; Mei et al. 2006; Zeneli et al. 2006),
and wounding, (Baldwin et al. 1997) and during development
(Creelman and Mullet 1997). In particular, methyl-jasmonate
was found to delay spore germination, and inhibit mycelial
pigment formation and aflatoxin production of A. flavus
(Goodrich-Tanrikulu et al. 1995). Interestingly, it was found to
enhance aflatoxin production by A. parasiticus (Vergopoulou
et al. 2001). However, Meimaroglou et al. (2009) showed that
methyl-jasmonate might enhance or reduce aflatoxin produc-
tion by A. parasiticus depending on its concentration. Moreover,
fungal pathogens can manipulate, enhance, or suppress jasmo-
nate signaling in plant hosts (Zhang et al. 2017).

Metabolic products such as 10-OPDA, which has a high
phytotoxicity, are produced by the a-linolenic acid metabolism

Figure 2 Gene ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of peanut differently expressed genes between
genotypes due to infection vs. control. (A) The 20 most significant GO terms extracted by GO enrichment analysis and (B) KEGG enrichment analysis
carried out by the keggseq package. Rich_factor: the ratio of differentially expressed genes to the all genes that were annotated in the pathway.
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pathway enzyme 9S-LOX (Sherif et al. 2016). Another route
through the a-linolenic acid metabolism pathway produces
8,11,14-heptadecatrienoic acid using a-dioxygenase 1 (DOX1)
without LOX activity. Both the enzyme and its product were
documented to increase in tobacco during interaction with
Pseudomonas syringae pv syringae (Hamberg et al. 2003). In
addition, DOX1 was upregulated in Arabidopsis after 12-OPDA
treatment (Sham et al. 2015), which functioned to protect the
plant from oxidative stress (De León et al. 2002).

Therefore, evidence suggests that, regardless of the di-
rection of the effect, jasmonates and 12-OPDA produced by
the a-linolenic pathway, in addition to other pathway com-
ponents, have an important role in aflatoxin biosynthesis of
Aspergillus spp. ICG 1471, as a resistant genotype, may regu-
late the synthesis of jasmonates to reduce aflatoxin produc-
tion. On the other hand, Florida-07, as a susceptible genotype
and a high-oleic variety, may not respond to infection with
the same level of jasmonate production, possibly because of
altered substrate amounts or membrane properties in a high-
oleic fatty acid background, thereby resulting in elevated
aflatoxin accumulation. Jasmonate levels will be tested in
the future. Previously, high-oleic lines were shown to have
double the aflatoxin contamination compared to normal
oleic lines with similar genetic background under in vitro in-
oculation conditions (Xue et al. 2003). In the present study,
the magnitude of aflatoxin contamination in Florida-07 is
15 times that of ICG 1471, which is a normal oleic variety.
Therefore, the postharvest aflatoxin resistance conferred by
ICG 1471 surpasses the effect of just having the normal oleic
acid content.

Protein processing in the endoplasmic reticulumalsowas a
significant pathway that may contribute to the resistance
mechanism. However, its role may be integrated with the

a-linolenic pathway since the endoplasmic reticulum contrib-
utes to the formation of peroxisomes (Hoepfner et al. 2005).
Fountain et al. (2016b) showed that alternative carbon sources
have different effects on aflatoxin and kojic acid production
by the fungus; kojic acid has an important role in remediating
damage resulting from ROS. These results reveal the impor-
tance of carbon fixation and metabolism pathways for afla-
toxin production byAspergillus spp. and protection of the fungus
against oxidative damage.

As a synthetic reference genome of tetraploid peanut was
used in our differential expression analysis, some genes/
transcripts having roles in resistance to aflatoxin accumu-
lation may not be represented within the two subgenomes.
Therefore, de novo assemblies were constructed to capture
such novel transcripts. Four assemblies were created
for ICG 1471 control and treatments, and Florida-07 con-
trols and treatments, which generated 61,176, 67,813,
90,543, and 109,068 total transcripts, respectively, and
among them 413, 457, 551, and 505 were new transcripts,
respectively.

To validate the genes and pathways involved in resistance,
analysis of differential expression between peanut geno-
types was repeated using a combined reference transcrip-
tome (88,626 transcripts) that included the 2026 novel
transcripts (supplemental materials: File S2.fasta) and
the previously published tetraploid peanut transcriptome
(86,600 transcripts) (Clevenger et al. 2016a). The differ-
ential expression analysis generated 3879 significant
genes for which Z-scores are given in the supplemental
materials (File S1.xlsx). The expression profile of the novel
transcripts also is given (Figure S8); out of the 2026 novel
genes, 66 were differentially expressed. GO enrichment
analysis identified 406 out of 8530 significant GO terms
(Figure S9A). Most significant GO terms resulting from
genomic analysis (using predicted transcripts) also were
significant in transcriptomic analysis. However, interest-
ingly, KEGG enrichment analysis generated four of the
same significant pathways as with genomic analysis (Fig-
ure S9B), except for a-linolenic acid metabolism, which
was near the significance threshold with a q-value of
0.06. These outputs confirmed the key roles of these five
pathways and their respective genes in the resistance of
peanut to aflatoxin produced by Aspergilli.

Differential expression of fungal genes and
coexpression network analysis

The interaction between peanut seeds and Aspergilli encom-
passes responsive pathways inside the plant and those
inside the fungi, and genes regulating the signaling be-
tween organisms. Furthermore, some fungal genes may
be affected differentially by growth of the fungus on dif-
ferent peanut genotypes. To investigate host–pathogen in-
teraction, differential expression analysis was carried out
for fungal genes, which generated 1197 significant genes
(Z-scores in supplemental materials, File S1.xlsx). SOM
clusters of the expression patterns of these genes (Figure

Figure 3 Differentially expressed lipoxygenases. Left, middle, and right
panels are 16, 32, and 64 hours after inoculation, respectively. The upper
panel is plastidial genes and the lower panel is extraplastidial genes. All
genes except Ad_25 are predicted to generate13-S-hydroxyperoxides.
Ad_25 was not classified. FPKM: Z-scores of fragments per kilobase of
transcript per million mapped reads.
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S10) and GO term enrichment analysis showed 97 signifi-
cant GO terms, out of 4918 in total (Figure 4A). KEGG
enrichment analysis identified eight significant pathways
(Figure 4B): one interconversion pathway (pentose and
glucuronate), one degradation pathway (valine, leucine,
and isoleucine), and six metabolic pathways (fructose/
mannose, galactose, starch/sucrose, glycerolipid, carbon,
and metabolic pathways). Interestingly, seven of these
pathways include carbohydrate processing. These results
are in agreement with previous studies that showed
changes in aflatoxin production by A. flavus or A. parasiticus
using different sugar sources (Davis and Diener 1968;
Abdollahi and Buchanan 1981). Growth of A. flavus on ICG
1471 may result in the production of different sugars than
growth on Florida-07, leading to lower aflatoxin production
by the fungus. A further consequence may be reduced kojic
acid production and a subsequent increase in the sensitivity
of the fungus to ROS. These two hypotheses need to be tested
in future work.

To further investigate the differential response of fungal
genes due to host genotype, coexpression network analysis
based on Pearson correlation was conducted (Figure 5).
In total, 1265 and 1111 differentially expressed peanut
and fungal genes, respectively, were found in A. flavus/
ICG 1471 interaction (for the time points of 64 and 32
HAI for the comparison of treatments vs. controls), which
formed a matrix of 0.5 million correlated pairs (edges).
More (6795 peanut and 1265 fungal genes) were differen-

tially expressed in the A. flavus/Florida-07 interaction,
which created a huge matrix of 14 million correlated pairs
(edges). Figure 5 shows the interspecies peanut/A. flavus
coexpression network for ICG 1471 (Figure 5A) and Florida-
07 (Figure 5D). The MCODE cluster analysis of the ICG
1471 coexpression network generated 45 clusters (supple-
mental materials, File S3.txt). The most interesting clusters
(subnetworks) were 1 and 15; subnetwork 1 had 1037 pea-
nut genes and eight A. flavus genes (Figure 5B), including
gene10037 (AflNA), and subnetwork 15 had 28 peanut genes
and only one A. flavus gene, gene10043 (AflH) (Figure 5C).
AflNA [averantin hydroxylase (EC 1.14.13.174)] and AflH
[versiconal hemiacetal acetate reductase (EC 1.1.1.353)]
encode two upstream enzymes regulating the aflatoxin
biosynthetic pathway.

Out of the 1037 and 28 ICG 1471 peanut genes whose
expression were highly correlated with gene10037 and
gene10043 of A. flavus, respectively, 640 and 24 genes
were not found in the Florida-07/A. flavus matrix. Among
these genes, eight WRKY family transcription factors, nine
toll/Interleukin1 receptor–nucleotide binding site leucine-
rich repeat (TIRNBS-LRRs), six ethylene signaling pro-
teins, and one heat shock protein were upregulated, and
expression was correlated with gene10037. One heat shock
and an ethylene signaling gene were upregulated, and ex-
pression was correlated with gene10043. Figure 6 repre-
sents the expression profile of these genes. Although gene
expression was upregulated in both genotypes for all genes,

Figure 4 Gene ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of differentially expressed A. flavus genes due to
growth of the fungus on resistant vs. susceptible genotypes. (A) The 20 most significant GO terms extracted by GO enrichment analysis and (B) KEGG
enrichment analysis carried out by the keggseq package. Rich_factor: the ratio of the differentially expressed genes to all genes that were annotated in
the pathway.
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ICG 1471 genes were coexpressed with gene10037 or
gene10043 of A. flavus.

Many plant disease-resistance genes encode NBS-LRR
proteins (McHale et al. 2006; Sekhwal et al. 2015). Ethyl-
ene signaling genes were significantly upregulated in re-
sponse to A. flavus infection of maize (Musungu et al.
2016). Heat shock proteins may play a role in plant defense
by affecting R protein stability and their regulation (Lee
et al. 2012). WRKY transcription factors were differen-
tially expressed in the response of resistant and suscepti-
ble genotypes of maize to infection by A. flavus (Fountain
et al. 2015b). In addition, they were found to have an effect
on pathways for ethylene-jasmonate-mediated defense
(Birkenbihl et al. 2012), plant response to heat stress (Li
et al. 2010), and defense triggered by jasmonates, either
negatively (Gao et al. 2011) or positively (Journot-Catalino

et al. 2006). These eight WRKY genes may be important in
controlling jasmonate defense mechanisms. In addition, the
high correlations between expression of these genes in ICG
1471 and gene10037 of A. flavus reveals their importance in
the defense mechanism and suggests that they may be in-
volved in regulation of the a-linolenic acid metabolism path-
way in ICG 1471.

In silico validation of differential expression analysis

In this study, different complex factors were involved in the
RNA-seq experiment, e.g., genotypic effect, A. flavus infec-
tion, and time-course dynamic change. Therefore, three
analytical models were compared (Figure 7). Across all anal-
yses, DESeq2 showed similar results to edgeR for identifying
differentially expressed genes. On the other hand, Next
maSigPro identified many genes that were not discovered

Figure 5 Coexpression network analysis of peanut/A. flavus genes. (A) ICG 1471/A. flavus network. (B) subnetwork 1 of ICG 1471/A. flavus network.
(C) subnetwork 15 of ICG 1471/A. flavus network. (D) Florida-07/A. flavus network; lines represent edges, blue rectangles are peanut nodes, and yellow
rectangles are A. flavus nodes.
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by the other two methods and failed to extract many other
genes that were determined to be differently expressed by
the other two methods.

EdgeR is one of the most common methods used for
differential expression analysis of RNA-seq data. However,
it is not a standard method to handle the time course
experiments as it uses a negative binomial model, which
deals with time points as independent factors (Robinson
et al. 2010). Methods have been designed to account for
time course experiments that used different models such
as Next maSigPro (polynomial regression model) (Nueda
et al. 2014), DyNB (nonparametric Gaussian processes re-
gression negative binomial likelihood model) (Äijö et al.
2014), TRAP (b-negative binomial model) (Jo et al. 2014),
SMARTS (input–output hidden Markov model) (Wise and
Bar-Joseph 2015), EBSeq-HMM (empirical Bayes mixture
model) (Leng et al. 2015), FunPat (different distribution
models) (Sanavia et al. 2015), and timeSeq (negative bi-
nomial mixed-effect model) (Sun et al. 2016). All these
methods had limitations and none was standardized to this
type of analysis. Next, maSigPro was initially designed to
analyze microarray data using polynomial regression and
later was updated to handle RNA-seq data (Nueda et al.
2014). This method relies on R2 factor to extract the sig-
nificant differentially expressed genes, which is considered
a drawback since the threshold is user-defined (Spies and
Ciaudo 2015). Although both edgeR and DESeq2 use a
negative binomial model, DESeq2 has different implemen-
tation, tests, and normalization (Love et al. 2014). Both
gave a reasonable level of analysis validation.

Conclusions

The objective of this study was to identify genetic factors and
biochemical pathways that function to limit aflatoxin pro-
duction in resistant peanut genotypes. Differential expression
analysis revealed five important biochemical pathways regu-
lating resistance. In addition, results captured the fungal
pathways that are differentially affected by fungal infection
and aflatoxin production on resistant vs. susceptible peanut
genotypes. The study highlighted the critical role of the
a-linolenic acid metabolism pathway and certain WRKY
genes likely regulating the jasmonate-based defense path-
ways to mitigate aflatoxin production. To further estimate
the effects of these components on aflatoxin production
and/or identify effective QTL, we have created a population
between ICG 1471 and Florida-07 that is being advanced to
recombinant inbred lines.
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