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ABSTRACT A common challenge arising from the observation of an evolutionary system over time is to infer the magnitude of
selection acting upon a specific genetic variant, or variants, within the population. The inference of selection may be confounded by
the effects of genetic drift in a system, leading to the development of inference procedures to account for these effects. However,
recent work has suggested that deterministic models of evolution may be effective in capturing the effects of selection even under
complex models of demography, suggesting the more general application of deterministic approaches to inference. Responding to this
literature, we here note a case in which a deterministic model of evolution may give highly misleading inferences, resulting from the
nondeterministic properties of mutation in a finite population. We propose an alternative approach that acts to correct for this error,
and which we denote the delay-deterministic model. Applying our model to a simple evolutionary system, we demonstrate its
performance in quantifying the extent of selection acting within that system. We further consider the application of our model to
sequence data from an evolutionary experiment. We outline scenarios in which our model may produce improved results for the

inference of selection, noting that such situations can be easily identified via the use of a regular deterministic model.
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ITNESS landscapes describe the relationship between the

genome of an organism and its evolutionary fitness (de
Visser and Krug 2014). Evolutionary fitness encompasses a
broad range of important phenotypes of an organism, making
the inference of details of fitness landscapes a topic of broad
biological interest. In some important biological systems, ad-
aptation occurs as a rapid and ongoing process (Buonagurio
et al. 1986; Bergland et al. 2014). Where multiple beneficial
mutations arise in a population simultaneously, linkage
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between mutations has a substantial impact upon evolution-
ary processes; a considerable body of literature has charac-
terized the implications of such effects for adaptation (Barton
1995; Gerrish and Lenski 1998; Gillespie 2001; Rouzine et al.
2003; Desai and Fisher 2007; Schiffels et al. 2011; Good et al.
2012; Rouzine and Weinberger 2013).

Where adaptation is sufficiently rapid to be observed, time-
resolved sequence data may be of assistance in measuring the
extent to which a variant is under selection. Under the as-
sumption of a large population size, the evolution of a single
beneficial allele over time can be described by deterministic
differential equations (Hartl and Clark 2007). Given sulffi-
cient observations of a population under study, the simplicity
of this deterministic framework allows it to be extended to
infer selection in far more complicated evolutionary scenarios
(Illingworth and Mustonen 2011, 2013); fitting a determin-
istic model to data provides an estimate of the magnitude of
selection acting upon one or very many alleles. In other sit-
uations, genetic drift is an important factor to account for; in
a small population, changes in allele frequency occurring via
drift may outweigh those caused by selection (Rouzine et al.
2001). In this situation, a variety of methods have therefore
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been developed to consider the evolution of a single-locus,
two-allele system, estimating in a joint calculation the effec-
tive size of a population, and the magnitude of selection act-
ing upon a variant allele (O’Hara 2005; Bollback et al. 2008;
Malaspinas et al. 2012; Mathieson and McVean 2013; Foll
et al. 2014; Lacerda and Seoighe 2014; Ferrer-Admetlla et al.
2016; Schraiber et al. 2016). In a similar calculation, one may
estimate whether or not a change in the frequency of an allele
has arisen through selection or genetic drift. Genetic drift
induces an uncertainty in the future frequency of an allele
(Kimura 1955); accounting for this, alleles that have changed
by more than a given threshold may be identified, enabling
the attribution of selection to genetic variants (Feder et al.
2014; Terhorst et al. 2015; Topa et al. 2015). A similar ap-
proach has been applied to the case where a population is
large, but measurements of allele frequency are of limited
quality; model selection procedures discriminate “neutral”
from “selected” behavior in an allele frequency trajectory
(Illingworth et al. 2014).

Where genetic drift is incorporated into a model, a variety
of approaches to modeling Wright-Fisher propagation have
been adopted (Tataru et al. 2016). Numerical solution of the
stochastic dynamics of the population may be computation-
ally intensive, inspiring the development of more rapid prop-
agation methods and the consideration of potential alternative
solutions (Khatri 2016; Krukov et al. 2017; Nené et al. 2018).
In a recent work, considering a range of potential models for
the demographic history of a population, it was concluded that
deterministic approximations to evolution under drift can
produce accurate estimates of the magnitude of selection
(Jewett et al. 2016). Such models of selection, mutation,
and recombination have been used to generate insights into
viral adaptation (Ganusov et al. 2011; Illingworth 2015;
Sobel Leonard et al. 2017). Time-resolved sequence data
describing pathogenic populations is becoming increasingly
available (Shankarappa et al. 1999; Zanini et al. 2015;
Houldcroft et al. 2017; Xue et al. 2017); in so far as demo-
graphic effects can be ignored in such systems, evolutionary
inference becomes possible at far-reduced computational
cost, making this an important area for methodological de-
velopment and application.

While acknowledging the potential for deterministic mod-
els to generate biological insight, we here present an impor-
tant case in which a deterministic inference of selection from
population sequence data produces a severely deficient result.
In this case, a stochastic approach to inference produces a correct
result, albeit with additional prior knowledge of the system and
at the cost of a substantial amount of computational time.
However, the use of what we term a delay-deterministic model,
including a single extra model parameter, goes a substantial
way to correcting the error in the deterministic calculation.
We propose that under a range of evolutionary circumstances,
the delay-deterministic model provides a useful framework for
inference, combining the speed of a deterministic modeling
framework with the accuracy achievable by more computation-
ally intensive models.
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Materials and Methods

Simulated trajectories under a Wright-Fisher
propagation model

Simulated data from a population was generated according to
a model of sequential mutation and selection steps. In this
study, we wish to consider effects that arise when a population
evolves into new haplotypes via mutation and positive selec-
tion; mutation creating individuals with new and fitter geno-
types that then grow as a fraction of the population under the
influence of positive selection. Such patterns of evolution have
been observed in the experimental adaptation of an influenza
virus to a novel mammalian host (Imai et al. 2012; Wilker
et al. 2013). This imposes strong selection upon the virus;
given the large size of a within-host influenza population
and the high mutation rate of the virus, successive beneficial
mutations may be gained relatively quickly.

In this study, we consider a simplified version of this model,
comprising a population of N individuals occupying a linear
network of L + 1 distinct haplotypes, each haplotype being
separated from the previous one by a single mutation. We
model the fitness of each haplotype as continually increasing
with the gain of each successive mutation, such that the fit-
ness of haplotype i is given by w; =1 + Z}:lsj for some ar-
bitrary set of parameters s; > 0. In this study, we consider
populations with a linear gain in fitness (i.e., with the restric-
tion s; = s for all j), and examples of convex and concave
fitness landscapes, for which this restriction does not apply,
the gain of fitness with each additional haplotype either in-
creasing or decreasing with the gain of each successive muta-
tion (Figure 1). For reasons of computational efficiency, we
restrict our model to systems with up to six distinct haplotypes.

Within a simulated population, we denote the number of
individuals of haplotype i in the population after t generations
by n;(t). Each generation, propagation of the system was
conducted using a simple model of mutation and selection.
Mutation was modeled as occurring between adjacent hap-
lotypes; for a given mutation rate w, the number of mutants
my from haplotype i into an adjacent haplotype j was de-
scribed by a Poisson distribution

(uni(6))

1 e Hmi(t) (1)

P(m; = k) =

Subsequently, the next generation was drawn via a multino-
mial process

! L fi; : n;(t+1)
P(n(t+1))= Hini\t,-s- ol H (nlirtv)vw) (2)

ti=1

where w; is the fitness of the haplotype i, i;(t) is the number
of individuals of haplotype i at time t after the effect of mu-
tation has been accounted for, and w is the mean fitness of the
population. Sequencing of the population was simulated via a
multinomial emission model with sequencing read depth Nj.
So as to understand the performance of our inference model,
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Figure 1 Linear haplotype models used for simulation. In the linear
model, the i haplotype has fitness w; = 1 +is. Convex and concave
models (in which the fitness differences between haplotypes either in-
crease or decrease with distance from the original haplotype) were also

tested. In all models, mutation occurs between adjacent haplotypes with
constant rate u.

we considered versions of the linear system with a variety of
parameters. Simulations were conducted with u = 1075,
population size N € {10°,10°}, and s € {0.1,0.2,...,0.9}
Samples from the population were collected via a multino-
mial process at the times {t;} for k =0,...,K, with sam-
pling ceasing as soon as 99% of the population occupied
the last, and fittest, haplotype in the system. By default,
sampling was conducted to a depth of N; = 103, with a
sample being collected from the population every genera-
tion. Systematic sampling of evolving populations is becom-
ing increasingly feasible (Good et al. 2017); here, a very
thorough sampling of the system was used to grant a clearer
comparison of the different inference methods. To test the
effect of a sparser sampling regime, a range of simulations
were repeated with data collected to a depth of N; = 102
every 10 generations, that is, at t; =0,10,20,.... Our
model simulates the effect of strong selection, with
Ns > 1, but is not restricted to the strong mutation para-
digm of uN > 1 (Rouzine et al. 2001; Park et al. 2010). In
each case, the initial state of the system was defined by
no(0) = N and n;(0) = 0 for all i > 0.

Inference methods

Inferences of selection were conducted using an evolutionary
model to generate inferred haplotype frequencies g;(t) across
time. Given observations of the system, a multinomial log
likelihood was calculated for the system

L ot
Hlall) = S )™

=1

where 0;(ty) is the number of observations of the haplotype i
at the time t;, and the sum is calculated over data from all
observed time points. Three models were used to generate
inferred frequencies. In each model, the inferred frequencies

are generated by the fitness parameters s; (in the case of
the linear system, by the single parameter s) and by the
initial haplotype frequencies {q;(0)}, with an additional pa-
rameter 3 being required for the delay-deterministic model.
Parameters were optimized to identify the maximum log
likelihood.

Deterministic inference model: In the first model, haplotype
frequencies were modeled under the assumption of an infinite
population size. As such, in each generation a fraction of
each haplotype was subject to mutation, specified by the
function M:

M(qi(t)) = (1= w)qi(t) + 1 Y gj(t) )
j

where the sum was conducted over all haplotypesj that differ
from i by a single allele, giving mutation between adjacent
haplotypes as illustrated in Figure 1. Selection was included
in a similarly deterministic manner, with each haplotype in-
creasing or decreasing in frequency according to its fitness,
specified by the function S:

qul( ) (5)

S(qi
(@0) =5 e

where the sum was calculated over all haplotypes. The next
generation is given by

q(t+1) = 5(M(q) ©)

Stochastic inference model: In the second model, allele
frequencies were propagated in exactly the same way as in
the model used for simulation. Stochastic simulations of viral
populations have been used to explore the potential range of
outcomes occurring in viral systems (Russell et al. 2012). To
sample the space of potential outcomes, 1000 replicates of
the model were run for each set of initial parameters s and
{qi(0)}, generating 1000 sets of inferred frequencies g;(t).
The mean value of the likelihoods for these replicates was
then computed, the likelihood for each replicate being cal-
culated using Equation 3. A simple likelihood maximization
approach was used in the optimization; to account for the
stochasticity of the likelihood function, the optimization
routine was prevented from resampling previously tested
model parameters.

Delay-deterministic model: Finally, a delay-deterministic
model was implemented, identical to the deterministic
model described above, but with the addition of a delay
representing the time for establishment of individuals with
a novel haplotype. Specifically, the mutation function of
Equation 4 was modified, with mutation out of a haplotype
occurring only if the frequency of that haplotype was greater
than a specific threshold. Accordingly, mutation was modeled
via the new function M":
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Figure 2 The deterministic model substantially underestimates the correct magnitude of selection for models with multiple haplotypes. Parameters are
shown for values of L between 1 and 5 with (A) uN = 1. (B) uN = 10,000. Points show mean inferred selection coefficients; error bars were determined
from a set of 100 replicate calculations. Lines show the outputs of a linear regression model fitted to the mean values.

M (qi(t)) = (1= L(t)w)qi(t) + m Y Li(6)g;(t) @)
j
where the index function
S 1 qt)=p
li(t) = { 0: otherwise ®)

The parameter 8 was optimized to identify the maximum
likelihood model.

We note that, of the three inference models, the stochastic
model requires an estimation of the total population size, N; for
the sake of computational time, we used the correct value of this
parameter in our inferences. Neither the deterministic or delay-
deterministic models require an estimate of population size.

Application to experimental data: To explore the use of our
approach with experimental data, the deterministic and delay-
deterministic models were applied to influenza sequence data
collected from an evolutionary experiment in which the trans-
mission of a reassortant H5N1 influenza virus was observed
between pairs of ferrets (Wilker et al. 2013). In this experiment,
the evolution of the virus was observed using genome sequence
data generated from samples collected from the inoculum and
from directly infected index ferrets 1, 3, and 5 days after in-
fection, and from the contact ferrets, infected via transmission,
7 and 9 days after contact with the index ferrets. A previous
analysis of these data using a deterministic model inferred that,
during the course of the experiment, new viral haplotypes, gen-
erated via mutation, grew in frequency under very strong
positive selection (Illingworth 2015), matching the essential
characteristics of the model system considered above. Here, de-
terministic and delay-deterministic models were applied to
within-host data from a single animal in the study, denoted
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F3501 in the original work, for which the initial population di-
versity was relatively low. Genome sequence data from the
hemagglutinin segment of the virus were processed using
the method described in a previous publication (Illingworth
2015), identifying loci at which significant change in allele fre-
quency was observed, then processing short-read data spanning
these loci into a set of multi-locus variant calls and inferring
haplotype frequencies that best fit the observed data using a
maximum likelihood model. Mutation was initially modeled
as occurring deterministically between haplotypes, identifying
an optimal model of haplotype fitness using a model selection
procedure, whereby the most parsimonious explanation of the
data was calculated using the Bayesian Information Criterion
(BIC) (Kass and Raftery 1995). Fitness parameters within this
model were then reinferred using the delay-deterministic
framework, comparing fitnesses inferred using each approach.
In common with the default model in the original study, the rate
of mutation was modeled as u = 10™°, using an assumed gen-
eration time of 12 hr (Baccam et al. 2006). We note that this
system departs from the linear arrangement of haplotypes used
in the simulated systems; our simulations are intended to show
where differences between the different models arise.

Data availability

Code used for this work is available at https://github.com/
cjri/delaydet. The authors state that all data necessary for
confirming the conclusions presented in the article are rep-
resented fully within the article.

Results
Linear fitness landscape

In the simulations modeling a linear fitness landscape, the
stochastic and delay-deterministic models produced the most
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Figure 3 Time-dependent dispersion of trajecto-

ries for the case uN =1, L =15, and s = 0.5. Fre-
quencies of each haplotype are shown reading left
to right from the top. In each case, the solid gray

line (sometimes obscured) shows the mean haplo-
type frequency of the simulated data across time,
calculated across 100 simulations. The region
within 1 SD of this frequency is indicated by gray
dashed lines and is shaded. The black line shows
the propagation of the deterministic model in the
case where s =0.5 and the population starts at
the same haplotype distribution as the simulation,

while the blue line shows the results of a maximum
likelihood fit between the deterministic model and
the mean data. The mean maximum likelihood fit

of the delay-deterministic model to the data are

shown as an orange line.
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accurate inferences of selection. Selection coefficients
inferred from the three different models are shown in Figure
2. For each of the values of uN, the deterministic model
underestimates the magnitude of selection, s, for values of
L greater than 1 (that is, where there were three or more
haplotypes in total), with an increasing degree of underesti-
mation as L increases. Where L = 5, the gradient of a linear
regression model fitted to the mean inferred frequencies was
equal to 0.095; roughly one-tenth of what would be given by
a correct inference model. The results obtained also depend
upon the value of uN; where this statistic is larger, the extent
to which the deterministic model underestimated the true
magnitude of selection was reduced; here, for the case,
L = 5 the gradient of the fitted linear model was 0.39. Results
from the stochastic inference model show a good reproduc-
tion of the correct fitness values; linear gradients varied be-
tween 0.98 and 1.02 for the case uN = 1, indicating an
accurate reproduction of selection coefficients as would be
expected given the identical models of propagation. The
delay-deterministic method was close in performance to the
stochastic model, with gradients between 0.88 and 0.97 in-
dicating a small underestimate of the strength of selection.
This underestimate was not reproduced in the case uN =
10,000, for which gradients fitted to the delay-deterministic
outputs were either side of 1. Results from our downsampled
data set showed a slight increase in the variance of fitness

Generation

estimates, but the fundamental pattern of results was pre-
served (Supplemental Material, Figure S1 in File S1). An
analysis of the likelihoods produced under this sampling par-
adigm showed that the delay-deterministic model was fa-
vored under BIC for systems with L = 2 (Figure S2 in File S1).

The results that we obtained can be intuitively understood
via a plot of the evolutionary dynamics of the linear system
(Figure 3). Given a deterministic model with the correct se-
lection coefficient, the population propagates through the
haplotypes substantially faster than does the stochastic
model. In the Wright-Fisher model, given that Nu =1, a
mean of one individual mutates from haplotype O to haplo-
type 1 in the first generation. Following the second genera-
tion, the probability of an individual being found in haplotype
2 is therefore approximately w. In so far as double mutations
are ignored within our model framework, at least one indi-
vidual is required to occupy a haplotype before the next hap-
lotype can be founded via mutation; this leads to a delay of
multiple generations before a single individual reaches the
final haplotype, following which selection ensures the even-
tual fixation of this haplotype. By contrast, in the determin-
istic model, mutation propagates the population rapidly
through the system; after L generations, the final haplotype
is deterministically occupied by a frequency of the population
of order u!. The increased fitness of this final haplotype
therefore takes effect on the system more rapidly, leading
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to the observed faster propagation. When the deterministic
model is optimized, a lower fitness parameter s is inferred to
compensate for this effect, which increases dependent upon
the number of haplotypes in the system. By contrast, the
delay-deterministic model corrects for the error of the de-
terministic model. By imposing a delay on the rate at which
new haplotypes are founded by mutation, the rate of prop-
agation through the haplotypes is controlled, giving an im-
proved fit to the data and therefore a more accurate inference
of selection.

At higher values of uN, differences between the stochastic
and deterministic systems are reduced (Figure S3 in File S1).
As N tends to infinity, the number of individuals mutating
between haplotypes per generation approaches the deter-
ministic limit and the time at which a haplotype becomes
established decreases, with the consequence that less of a
reduction in s is required to fit the model to the data. The
deterministic model therefore provides a good description of
the behavior of the discrete system as u'N in the discrete
model approaches a value much larger than 1. For a within-host
model of influenza, where u may be of the order 10™* (Pauly
et al. 2017), and N potentially as large as 10 (Russell et al.
2012), this implies that a value of L = 4 could lead to failure of
the deterministic model.

Within the delay-deterministic model fits, a broad range of
values of the inferred parameter 3 were obtained, spanning
several orders of magnitude (Figure 4). For cases in which
L>1 and Nu = 1, where the behavior of the deterministic
model is furthest from that of the simulated population, quite
large values of B were inferred, with a range in the median
inferred values from 0.5 to 21%. Much smaller values of 3
were inferred where L = 1 or Nu = 10*. For each of these
cases, the deterministic model provides a better approxima-
tion of the dynamics of the system; the deterministic model
may be considered as a special case of the delay-deterministic
model for which 8 = 0. As such, a smaller value of 8 was
generally inferred. Substantial variation in the inferred value
of B was observed between replicate simulations generated
with the same parameters (Figure S4 in File S1). This sug-
gests that the generation of an analytic approximation for this
value is likely to prove a challenge.

Convex and concave fitness landscapes

Application of the deterministic and delay-deterministic mod-
els to data from the convex and concave fitness landscapes
showed an improved inference of selection coefficients in the
case of the delay-deterministic methods (Figure 5A). How-
ever, in contrast to the calculations for the linear fitness land-
scape, the delay-deterministic method showed substantial
deviation from the correct selection coefficients. We propose
that this arises from the mechanics of the emergence of hap-
lotypes. The time to the emergence of a new haplotype is
dependent upon the gain in fitness obtained by this transi-
tion, and in this case differs between pairs of haplotypes. The
delay-determininstic method only has a single parameter
with which to model this, so produced an approximation to
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Figure 4 Median values of the inferred parameter g from the delay-
deterministic model for simulations conducted with Nu = 1. Each value is
calculated from 100 simulations. Considerable variance was observed in
the optimized parameter for each set of simulations.

the correct result. While an imperfect solution, the inclusion
of a delay parameter granted a substantially better reproduc-
tion of the dynamics of the system. In so far as the determin-
istic model is a special case of the delay-deterministic model,
the maximum likelihood fit of the delay-deterministic model
can never be lower than that of the deterministic model.
Nevertheless, the likelihood fits obtained for these two sys-
tems showed considerable differences between likelihoods
(Figure 5B). We propose that where variation exists in the
fitness differences between adjacent haplotypes, a model in
which independent values of B were fitted to each haplotype
could give a better fit to the data, albeit with a concurrent cost
in the time taken to optimize individual parameters; more
advanced delay-deterministic approaches were not investi-
gated in this study.

Within-host influenza evolution

Application of the deterministic and delay-deterministic
methods to data from an evolutionary experiment (Wilker
et al. 2013) showed only small differences between inferred
parameters. Details of each inference are given in Table S1 in
File S1. Within this system evolution proceeds exceptionally
fast, with mutation into new and highly advantageous hap-
lotypes being inferred to drive the adaptation of the system
over the course of an infection (Figure 6, A and B). Applica-
tion of the delay-deterministic value gave a marginally im-
proved fit to the data, with a maximum likelihood value 0.63
units better than the deterministic model without accounting
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for the additional parameter; under the BIC this does not
represent a significant improvement in the model. The value
of B8 was inferred to be 1.8 X 1071°, smaller than that of any
inferred initial haplotype frequency that was greater than
zero. However, the inferred haplotype fitness values were
very similar between the models, with deviations in fitness
of not much more than 1% (Figure 6C). This final result can
be understood in terms of the arrangement of haplotypes
within the system; although some haplotypes were inferred
to have initially zero frequency, being created by mutation
from other haplotypes, there was insufficient time for haplo-
types that were two or more mutations away to increase to an
appreciable frequency. This result is informative for calcula-
tions performed on biological data sets; even where selection
for novel variants is extreme in nature, a delay-deterministic
model is unlikely to be required to generate correct infer-
ences of selection on timescales of 4-5 days (~10-20 gener-
ations). This result implies that previous inferences of
selection for within-host influenza adaptation using deter-
ministic methods are unlikely to be negatively affected by
the use of a deterministic model of mutation (Sobel Leonard
et al. 2017). Rather, the value of the method will arise over
longer timescales, where the population grows under selec-
tion into haplotypes that are separated by multiple variants
from those that comprise the initial population.

Discussion

Deterministic models of adaptation have been proposed as a
rapid and effective method for inferring selection from time-
resolved sequence data (Jewett et al. 2016). Here, we have

Optimised log Likelihood

highlighted a limitation of such frameworks whereby a de-
terministic model may severely underestimate the magnitude
of selection in a system. This underestimation results from
delays in the propagation of a finite population toward mu-
tationally distant haplotypes; at least one individual is re-
quired to occupy a haplotype before mutation out of that
haplotype may occur. As shown here, as this delay operates
even at high values of Nu; we suggest that a population size
satisfying Nul >> 1 would be required to remove this effect.
As a solution to this problem, we propose an alternative
inference procedure, which we term a delay-deterministic
model. Under this model, the progress of a nominally infinite
population through the system is delayed via the use of an
additional model parameter, bringing the outcome closer to
the behavior of the stochastic system. As such, relative to a
regular deterministic model, an improved inference of selec-
tion is obtained; in the case of a linear fitness landscape,
correct inferences were obtained.

In demonstrating the application of our model, we have
chosen the simplest possible situation in which the effects we
are studying apply; that of a linear set of haplotypes separated
by single mutations. Such a system, with a linear fitness
landsacpe, has previously been considered in an application
to cancer, calculating the time at which a novel haplotype
might arise (Beerenwinkel et al. 2007); while the system we
consider is similar, our research question differs from this
earlier study. We note that our model is not the only approach
that would give a correct inference of selection under the
circumstances of a population entering mutationally distant
haplotypes. For example, inferring an “establishment time”
for each haplotype, at which a haplotype enters a population
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D’b @
Haplotype
fitness Haplotype sequences
18
. 1 AGAGGGCT 9 AGAATACT
5 2 AGAGGGTT 10 ATAATGCT
3 AGAGGACT 11 ATAGGGCT
9 4 AGAGTIGCT 12 ATAGGGTT
7 5 AGAGIGTT 13 ATAGGGCC
6 AGAGTACT 14 ATAGTGCT
. 7 AGAAGGTT 15 ATAGTGTT
1 8 AGAATGTT 16 ATAAGGCT
8

Haplotype frequency

Figure 6 (A) Fitness landscape inferred from experimental data
using the deterministic method. Inferred fitnesses are given for
haplotypes for which the inferred frequency reached = 1% within
the course of within-host evolution. Given haplotypes describe the
sequence of the hemagglutinin segment of the virus at genome
positions 339, 496, 728, 738, 788, 1018, 1020, and 1144. The
haplotypes 9, 10, 13, and 15, marked in darker outline, were
inferred to have zero initial frequencies. (B) Inferred changes in
haplotype frequency over time. Haplotype frequencies are shown
in gray, with the exceptions of haplotypes 1 (blue), 2 (green), 6 (yel-
low), 12 (purple), and 16 (red). (C) Differences in inferred haplotype
fitness values between the deterministic and delay-deterministic
methods shown proportional to the value inferred under the deter-
ministic model.
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at a frequency above the selection—drift threshold (Illingworth
and Mustonen 2012), would likely generate correct results,
albeit at the cost of learning a single parameter per haplotype
in the system. The use of a model of time-dependent selection,
in which selection only begins to affect a haplotype at a specific
point in time (Kessinger et al. 2013), would also give an
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approximately correct inference of selection, delaying the impact
of selection to a point at which the inferred trajectory would fit
the data. However, this again would incur a computational
cost and would require the imposition on the system of the
potentially incorrect assumption of a change in the magnitude
of selection with time. Approximations to the stochastic system



based upon a reproduction of the stochastic distribution of
allele frequencies (Martin and Lambert 2015) may have some
potential for evolutionary inference, albeit this has not to our
knowledge been attempted. The delay-deterministic model we
present here gives a computationally rapid approach to infer
the magnitude of selection, improving upon the accuracy of
the regular deterministic approach.

In comparison with the stochastic model of inference, the
delay-deterministic approach has the computational advantage
of utilizing a framework of deterministic propagation. Whereas
the stochastic model required a large number of replicate
propagations of the model for each set of parameters tested,
the delay-deterministic approach requires only the optimiza-
tion of a single additional parameter. The relative cost of this is
likely to vary considerably depending upon the complexity of
the system in question; in the application to influenza data
considered here, where the model contained tens of parameters
to be optimized, a single additional parameter is not likely to
add substantially to the computational cost, provided that the
optimization procedure is implemented in an efficient manner.
We note that faster implementations of the stochastic frame-
work are likely to be achievable; the recent demonstration of
such methods for the two-allele case suggest the extension to
more generalized population models to be a valuable avenue
for exploration (Khatri 2016; Krukov et al. 2017).

Applying our model to data from an evolutionary experi-
ment, we identified very similar results between the deter-
ministic and delay-deterministic methods; despite very high
magnitudes of selection being inferred to act upon haplotypes
in this case, little difference in the model inferences was found.
Therefore, we propose that our method will be of relevance in
cases where selection is strong and acts over longer time
periods than those of the experiment considered, for which
adaptation was observed over only a small number of gener-
ations. The identification of cases for which the deterministic
model will produce correct or incorrect results is likely to be
possible via application of the model itself; wherever a sub-
stantial proportion of a population is inferred to evolve into a
haplotype that is more than two mutations distant from a
haplotype occupied by the initial population, a delay-deter-
ministic or similar approach should be considered.
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