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ABSTRACT Evolutionary rescue describes a situation where adaptive evolution prevents the extinction of a population facing a
stressing environment. Models of evolutionary rescue could in principle be used to predict the level of stress beyond which extinction
becomes likely for species of conservation concern, or, conversely, the treatment levels most likely to limit the emergence of resistant
pests or pathogens. Stress levels are known to affect both the rate of population decline (demographic effect) and the speed of
adaptation (evolutionary effect), but the latter aspect has received less attention. Here, we address this issue using Fisher’s geometric
model of adaptation. In this model, the fitness effects of mutations depend both on the genotype and the environment in which they
arise. In particular, the model introduces a dependence between the level of stress, the proportion of rescue mutants, and their costs
before the onset of stress. We obtain analytic results under a strong-selection–weak-mutation regime, which we compare to simu-
lations. We show that the effect of the environment on evolutionary rescue can be summarized into a single composite parameter
quantifying the effective stress level, which is amenable to empirical measurement. We describe a narrow characteristic stress window
over which the rescue probability drops from very likely to very unlikely as the level of stress increases. This drop is sharper than in
previous models, as a result of the decreasing proportion of stress-resistant mutations as stress increases. We discuss how to test these
predictions with rescue experiments across gradients of stress.
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UNDERSTANDING the persistence or decline to extinction
of populations facing environmental stress is a crucial

challenge both for the conservation of biodiversity and the
eradication of pests or pathogens (Gonzalez et al. 2013;
Alexander et al. 2014; Carlson et al. 2014; Bell 2017). In
evolutionary biology, environmental stress describes any con-
ditions in the environment that induces a reduction in indi-
vidual fitness (Koehn and Bayne 1989; Bijlsma and Loeschcke
2005). Here, we will focus on the case where environmental
stress causes a reduction of population mean fitness that is
harsh enough to trigger a decline in abundance (Hoffmann
and Parsons 1997). In such a stressful environment, if her-
itable variation in fitness is available or arises by mutation,

adaptive evolution may allow the population to escape ex-
tinction. This phenomenon has been called evolutionary
rescue (ER) (Gomulkiewicz and Holt 1995). ER is of partic-
ular importance for understanding the emergence of genetic
resistance to drugs or treatments in medicine and agronomy
(Davies and Davies 2010).

Empirical evidence supports the idea that stress levels
critically determine ER probabilities (Samani and Bell
2010; Moser and Bell 2011; Lindsey et al. 2013). For exam-
ple, the probability that bacteria evolve antibiotic resistance
(that is, the probability of avoiding antibiotic-induced extinc-
tion through ER) typically declines sharply, in a strongly non-
linear way, with increasing drug concentration (Drlica 2003).
Evolutionary rescue thus shifts from being highly likely to
highly unlikely over a narrow window of stress levels. This
critical range of stress depends on the strain, especially on
its evolutionary history with respect to exposure to the stress
(Gonzalez and Bell 2013). Stress level, as controlled by
drug concentration, has also been shown to affect the genetic
basis of resistance (e.g., Harmand et al. 2017), with a wider
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diversity of genes and alleles conferring resistance at low
than at high doses. However, the underlying causes for the
relationship between stress level and ER are still poorly un-
derstood. Our aim here is to derive new analytical predictions
for this relationship. In particular, we want to predict the
critical window of stress levels above which ER is very un-
likely, allowing direct comparison with experimental data.

In the theoretical literature (reviewed in Alexander et al.
2014), most ER models predict that ER probability decreases
with increasing stress level, measured by the decay rate of the
stressed population. Indeed, a faster decay of the population
leaves less time for adaptation to occur before extinction
(e.g., Gomulkiewicz and Holt 1995). But beyond this direct
demographic effect, stress level may also have indirect effects
on ER. Indeed, a stressful environment may not only affect
the demographic properties of the population, but also its
rate of adaptation, by modifying the determinants of genetic
variance in fitness (Hoffmann and Parsons 1997; De Visser
and Rozen 2005; Agrawal andWhitlock 2010). First, the rate
of mutations and the distribution of their effects on fitness
change across environments (Martin and Lenormand 2006b;
Wang et al. 2009, 2014; Agrawal and Whitlock 2010). In
particular, the fraction of beneficial mutations was found to
increase in stressful environments (Remold and Lenski 2001,
2004). Standing genetic variation for quantitative traits
(notably fitness components), also frequently depends on
the environment (Hoffmann and Merilä 1999; Sgrò and
Hoffmann 2004; Charmantier and Garant 2005). Finally,
the initial frequency of preexisting variants able to rescue
the population from extinction in a stressful environment
may depend on their selective cost in the past environment.
In light of this empirical evidence, it seems clear that progress
toward understanding and predicting ER across stress levels
requires addressing, in a quantitative way, the joint effect of
stress on the demography and genetic variation in fitness of a
population exposed to stressful conditions. This is our goal in
the present article.

To do so, we develop a model that is a hybrid between two
modeling traditions in ER theory, summarized by Alexander
et al. (2014): discrete genetic models, and quantitative ge-
netic models. Discrete genetic models assume a narrow ge-
netic basis for adaptation (and ER), whereby a single
beneficial mutation can rescue an otherwise monomorphic
population (Orr and Unckless 2008, 2014; Martin et al.
2013; Uecker et al. 2014; Uecker and Hermisson 2016). This
approach was initially proposed for ER by Gomulkiewicz and
Holt (1995), and later extended to account for (i) evolution-
ary and demographic stochasticity (e.g., Orr and Unckless
2008), and (ii) variation in the selection coefficients of mu-
tations that may cause rescue, with an arbitrary distribution
of fitness effects (Martin et al. 2013). However, such models
do not predict how the distribution of fitness effects of mu-
tations vary along gradients of stress level. For this reason,
they make it difficult to jointly address the two fundamental
components of stress mentioned above. On the contrary,
quantitative genetics models of ER inherently address the

influence of stress on the rate of adaptation by assuming that
adaptation (and ER) is caused by evolution of a quantitative
trait whose optimum changes with the environment (Lynch
et al. 1991; Burger and Lynch 1995; Gomulkiewicz and Holt
1995). In these models, both the rate of population decline
and the rate of adaptation under stress depend on the dis-
tance between the phenotypic optima in the past and present
environments. However, analytical predictions are derived
assuming a broad, polygenic basis for adaptation with a sta-
ble genetic variance of the quantitative trait. The population
genetic processes underlying adaptation are not explicitly
modeled, and the stochasticity involved in fixation and estab-
lishment of mutations neglected. These complications are
only explored by simulations (e.g., Gomulkiewicz et al.
2010).

In order to take the best of both approaches, we rely on
Fisher’s (1930) geometrical model (hereafter “FGM”). Fit-
ness variation in the FGM is assumed to emerge from varia-
tion in multiple putative phenotypic traits undergoing
stabilizing selection that depends on the environment. This
model is analytically tractable, while retaining various as-
pects of realism (reviewed in Tenaillon 2014). In particular,
it accurately predicts how fitness effects of mutations change
across environments (Martin and Lenormand 2006b; Hietpas
et al. 2013; Harmand et al. 2017) or genetic backgrounds
(Martin et al. 2007; MacLean et al. 2010; Trindade et al.
2012). The FGM naturally relates environmental stress to
(i) the rate of population decline, (ii) the rate and effect of
rescue mutants, and (iii) their potential costs in the past
environment. Here, we combine this FGM with population
dynamic approaches that account for demographic and evo-
lutionary stochasticity (Martin et al. 2013), in a regimewhere
selection is strong relative to the rate of mutation. We con-
sider rescue in asexual populations, stemming either from de
novo mutations or standing genetic variance. Interestingly,
we show that all effects of stress on demography and on
the distribution of the fitness effects of mutations can be
summarized into a single composite measure of effective
stress level. Evolutionary rescue shifts abruptly from very
likely to very unlikely over a narrow window of effective
stress level, which can be predicted from empirically measur-
able quantities.

Methods

We here detail the ecological (environmental), genetic, and
demographic assumptions of the model, and the approxima-
tions used for its mathematical analysis.

Abrupt environmental shift

Wedefine two environments: (1) a nonstressful one, denoted
as “previous environment,” in which the population has a
positive mean growth rate, and a large enough population
size that demographic stochasticity can be ignored; and (2) a
stressful one, denoted “new environment,” in which the pop-
ulation initially has a negative mean growth rate, and the
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population size is subject to demographic stochasticity. Con-
ditions shift abruptly from the previous to the new environ-
ment at t ¼ 0; at which time the population size is N0:

Eco-evolutionary dynamics

Extinction or rescue ultimately depends on details of the
stochastic population dynamics of each genotype. These are
assumed to be mutually independent (no density or fre-
quency-dependence, see Chevin 2011), and sufficiently
“smooth” (moderate growth or decay) that they can be ap-
proximated by a Feller diffusion (Feller 1951), following
Martin et al. (2013). This approximation reduces all the
complexity of the life cycle into two key parameters for each
genotype i : its expected growth rate ri (our fitness here),
and its variance in reproductive output si: Our simulations
below are performed for discrete generations with Poisson
offspring distributions. In this case, si ¼ 1þ ri � 1 for any
genotype, as long as their growth rate is not too large
(ri � 1 per-generation, see Appendix section I, subsections 1
and 2 and Martin et al. 2013). Note that the approximation
extends to various other forms of reproduction (see Martin
et al. 2013).

To cause a rescue, a resistant mutant (ri . 0) must estab-
lish, by avoiding extinction when rare. The probability that
this happens, for a lineage with growth rate ri . 0 starting
from a single copy is 12 e22 ri (still assuming ri � si;

with si � 1 in the example used in simulations). The num-
ber of individuals from which such mutations can arise de-
clines in time, and we ignore stochasticity in these decay
dynamics. This is accurate as long as the population has large
initial size, of order N0 � 1 (Martin et al. 2013).

Finally, we assume that mutation rates per capita per unit
time are constant over time. This is exact in models with
discrete generations. In continuous-time models, where mu-
tationsoccurduringbirth events,mutation rates varybetween
genotypes with different birth rates, and over time as these
genotypes change in frequency. However, the constant muta-
tion rate model can still be approximately valid (see Martin
et al. 2013).

ER from standing variance vs. de novo mutation

At the onset of stress (t ¼ 0), the population either consists
of a single ancestral clone, or is polymorphic at mutation-
selection balance in the previous environment. In the first
case, we must derive the distribution of fitness effects, in
the new environment, of mutants arising from the ances-
tral clone. In the second case, we must also describe the
potential rescue variants already present in the previous
environment.

Mutations under FGM

We assume that the expected growth rate of a given
genotypic class (its Malthusian fitness, or log-multiplica-
tive fitness in discrete-time models), is a quadratic func-
tion of its phenotype for n quantitative (continuous)

traits. Denoting as z 2 ℝn the vector of breeding values
(heritable components) for all traits, and as o the single
optimum phenotype with maximal growth rmax; the
expected growth rate is

rðzÞ ¼ rmax 2 kz2ok2
.
2; (1)

while the stochastic variance in reproductive success is as-
sumed constant across genotypes.

The key assumption of our model is that the optimum
depends on the environment.Without loss of generality, we set
the phenotypic origin at the optimum in the new environment,
in which o ¼ 0: In the previous environment, the optimum
coincideswith themean phenotype of the ancestral population
(“A”): o ¼ zA ¼ EðzÞ; which implies that the ancestral popula-
tion was well-adapted in its original environment. The fitness
of the mean ancestral phenotype zA in the new environment is
thus rðzAÞ ¼ rmax 2 kzAk2=2 ¼ 2 rD , 0; where rD is its rate
of decay, and the phenotypic magnitude of the stress-induced
shift of the optimum phenotype (from o ¼ zA to o ¼ 0) is
kzAk ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðrD þ rmaxÞ
p

:

Mutations occur as a Poisson process with rate U per unit
time per capita, constant over time and across genotypes,
but potentially variable across environments. Each muta-
tion adds a random perturbation dz to the phenotype,
drawn from an unbiased and isotropic multivariate Gauss-
ian distribution dz � Nð0; l InÞ; where In is the identity
matrix in n dimensions and l is a scale parameter. Note
that, since traits are not our main interest here, we choose
to measure mutation effects on them in units that directly
relate to their fitness effects. Therefore, l can be under-
stood as the variance of mutational effects on traits, stan-
dardized by the strength of selection (see Appendix
section II, subsection 1 for more details). Note that muta-
tion effects are additive on phenotypes (no epistasis), but
not on fitness, because rðzÞ is nonlinear (Martin et al.
2007).

Figure 1 illustrates the rescue process in the FGM. At the
onset of stress (t ¼ 0), the optimum shifts abruptly to a new
position, such that the mean growth rate becomes negative
with 2 rD , 0 (Figure 1C). Meanwhile, the population size
starts to drop from an initial value N0 (Figure 1C), facing
extinction in the absence of evolution. However, one or sev-
eral mutants or pre-existing variants may be close enough to
the new optimum to have a positive growth rate (“resistant
genotypes,” Figure 1, A and B). Thesemay then establish, and
ultimately rescue the population (“rescue genotypes” Figure
1, A and B).

Within the context of the FGM, increasing stress level may
have different effects, also discussed in Harmand et al.
(2017). First, stronger stress may cause a larger shift in the
position of the optimum phenotype, resulting in a larger ini-
tial drop in fitness (higher rD), as assumed in most models of
adaptation to a changing environment (Kopp and Matuszew-
ski 2014). In addition, the maximal possible fitness rmax may
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also be lower in the new than in the previous environment
(reduced environmental quality). Moreover, the mutational
parameters (U and l) may change with stress, causing shifts
in evolvability. Note that a change in lmay reflect a change in
the phenotypic effects of mutations, of the strength of stabi-
lizing selection, or both. For instance, higher stress may re-
lease cryptic genetic variance on underlying phenotypic traits
(Scharloo 1991; Hermisson and Wagner 2004), or cause in-
creased mutation rates via SOS responses in bacteria (Foster
2007). Finally, although less easy to conceptualize, some en-
vironments may change the effective dimensionality of the
landscape. However, in the present paper, we only consider
such changes in dimensionality in the context of rescue from
de novomutations (where it can readily be handled by study-
ing the effect of the parameter n).

As we will see, all our results can be expressed in terms of
five parameters (N0U; rD; rmax; l; n). Table 1 summarizes all
notations in the article.

Strong selection and weak mutation regime

The FGMdescribed in the previous section, produces epistasis
for fitness between different mutations, which makes the
problem highly intractable in general. To make analytical
progress, we assume a regime of strong selection and weak
mutation (SSWM; Gillespie 1983), which allows neglect-
ing multiple mutants and epistasis. This regime arises
when mutation rates are small relative to their typical fit-
ness effect (as detailed below). In our context, this assump-
tion implies that most rescue variants (pre-existing or de
novo) are only one mutational step away from the ancestral

Figure 1 Evolutionary rescue in Fisher’s geometric model (FGM). In all panels, black refers to deleterious and neutral mutations (2rD $ r), blue to
beneficial but not resistant mutations (2rD , r#0), and orange to resistant mutations (r.0), around the dominant genotype of the ancestral
population with phenotype zA 6¼ 0: (A) Fitness landscape (FGM) with growth rate r (z-axis) determined by two phenotypic traits z1 and z2: Dots
represent the distribution of random mutant phenotypes around the dominant genotype of the ancestral population. The growth rate of this
dominant genotype, in the stressful environment, is 2rD; and rmax is the maximal fitness at the phenotypic optimum. (B) Distribution of growth rates
among random mutants arising from the dominant genotype (distribution of mutation effects on fitness) for two decay rates rD ¼ 0:1 (left) and
rD ¼ 0:5 (right). (C) Dynamics of the population size Nt and mean fitness �rt of a population starting from a clone at ‒rD ¼ 20:083 at size
N0 ¼ 105: The black line represents the case without fixation of a beneficial mutation, the blue line the case with extinction in spite of the fixation
of a beneficial, but nonresistant, mutation, and the orange line the case of a rescue. Parameters for the simulations are rmax ¼ 1:5; U ¼ 2*1025;

n ¼ 4 and l ¼ 5*1023:

268 Y. Anciaux et al.



genotype, allowing for two key simplifications. First, with a
purely clonal ancestral populations, we can ignore ER by ge-
notypes that have accumulated multiple de novo mutations.
Second, in populations initially at mutation-selection balance,
we can consider that all mutations arise from a single domi-
nant genotype, optimal in the previous environment. Indeed,
in the SSWM regime at mutation-selection balance, most seg-
regating phenotypes remain within a narrow neighborhood of
the optimum (relative to the magnitude of mutation effects on
traits), so themutation-selection balance is well-approximated
by assuming that all mutations originate from the optimum
phenotype. This is essentially the House-of-Cards approxima-
tion (Turelli 1984) extended to the FGM of arbitrary dimen-
sionality (Martin and Roques 2016).

Overall, the SSWM assumption implies that the evolution-
ary aspects of ER are entirely determined by a single joint
distribution of fitness, in the previous and new environment.
This distribution corresponds to that of mutants arising from
the optimal genotype of the previous environment. We thus
apply the results of Martin et al. (2013), to this particular
distribution.

Note that the SSWM approximations used in this arti-
cle should apply even when multiple single-step mutants

cosegregate (generating “soft selective sweeps,” as detailed
in Wilson et al. 2017). Indeed, the probability of ER as com-
puted for example in Orr and Unckless (2008) or Martin
et al. (2013) and used here, is one minus the probability
that no single mutant arises that ultimately causes ER. This
means that we ignore ER requiring multiple mutational
steps, but allow several single-step rescue mutations to
cosegregate. Consistently, our simulations did not show
any particular deviation from the theory at very mild stress,
where such cosegregation of several single-step mutants is
expected.

Maximal mutation rate for the SSWM regime

We conjecture that the SSWM approximation should be
accurate below some threshold mutation rate UC; i.e.,
whenever U,UC ¼ n2 l=4: Indeed, Martin and Roques
(2016) found that, as long as U#UC; the fitness distribution
at mutation-selection balance corresponds exactly to that
expected under the House-of-Cards approximation (with a
dominant optimal genotype plus its deleterious mutants).
Whether this same condition is sufficient for most rescue
events to stem from single-step mutations is not justified the-
oretically, and was simply tested by extensive stochastic

Table 1 Notations

Notation Description Formula

Nt ; N0 Nt : population size at time t after the onset of the stress.
N0: initial population size at the onset of the stress.

U Mutation rate per individual per unit time.
n Number of traits under stabilizing selection, or phenotypic dimensionality.
l Variance of mutational effects: variance of the phenotypic effects of

mutations, per trait, in a trait space scaled by the strength of
stabilizing selection

dz � Nð0;l InÞ

Uc Critical mutation rate below which the SSWM regime is valid. UC ¼ n2 l=4
z n-dimensional vector z 2 ℝn of (breeding values for) phenotype
zA;o o : optimal phenotype in a given environment o ¼ 0 : new environment

zA : average phenotype of the ancestral population (before the onset of
stress)

o ¼ zA : previous environment

r;s Growth rate (r) and reproductive variance (s) of a given genotype, in the new
environment.

Equation (1)

rmax Maximum possible growth rate in the new environment. rð0Þ ¼ rmax

rD Rate of decay of the ancestral phenotype zA in the new environment. rðzAÞ ¼ rmax 2 kzAk2=2 ¼ 2 rD
c Cost of a mutation: selective disadvantage of the mutant, relative to the

optimal phenotype, in the previous environment.
c ¼ kz2zAk2=2

cHðyÞ Harmonic mean of the cost cjy among de novo mutations with scaled
growth rate y in the new environment

Equation (3)

y Growth rate of a genotype, in the new environment, scaled by rmax. y ¼ r=rmax 2 ½2N;1�
fyðyÞ Probability density function of y among random single step mutations Equation (2)
yD Rate of decay scaled by rmax : yD ¼ rD=rmax

cD Alternative measure of yD cD ¼ 2ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ yD

p
2 1Þ (Equation (6))

a Effective stress level Equation (6)
ac; rcD Characteristic stress level (ac ) or decay rate (rcD) beyond which ER probability

drops below 1=2:
Equation (8)

gðaÞ Function driving the dependence of rescue probabilities on stress levels. Equations (7a) and (7b)
vDN;v

*
DN vDN : rate of rescue from de novo mutations scaled by N0 Equations (5), (7a) and (7b)

v*
DN : corresponding approximation when l � rmax

vSV ;v*
SV vSV : rate of rescue from standing variance scaled by N0 Equations (5) and (10)

v*
SV : corresponding approximation when l � rmax

PR Probability of rescue. PR ¼ 12 e2N0 vR

fSV Proportion of rescue events caused by standing variants Equation (10)
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simulations. Supplemental Material, Figure S1 in File S1 fur-
ther explores the range of validity of this approximation. It
shows, in a rescued population, the proportion of wild type,
single mutant, double mutant, and so on, as a function of the
mutation rate.

Distribution of single-step mutation fitness effects in
the new environment

Let s be the selection coefficient (difference in growth rate),
in the new environment, of a random mutant (with
phenotype z) relative to its ancestor (with phenotype zA).
The distribution of s ¼ rðzÞ2 rðzAÞ ¼ rþ rD among ran-
dom mutants has a known exact form in the isotropic
FGM (Martin 2014; Martin and Lenormand 2015),
from which the distribution of growth rates (r ¼ s2 rD)
in the new environment is readily obtained. It proves
simpler and sufficient (see Appendix section II, sub-
section 2) to consider the scaled (and unitless)
growth rate y ¼ r=rmax 2 ½2N; 1�; such that yD ¼ rD=
rmax 2 ½0;þN� is the decay rate of the ancestor scaled to
the maximum possible growth rate. The scaled growth
rates y ¼ r=rmax have the following probability density
function:

fyðyÞ ¼ exp

 
2

rmaxð2þ yD 2 yÞ
l

! 
rmax

l

!n=2

ð12yÞn=221

3

0F1

 
n
2

;
�rmax

l

�2ð1þ yDÞð12 yÞ
!

Gðn=2Þ ; y 2 �2N; 1�
(2)

where 0F1ð:; :Þ is the confluent hypergeometric function and
GðzÞ is the gamma function. In the SSWM regime, this prob-
ability density function approximately describes de novo
mutations produced after the onset of stress by the whole
population, be it initially clonal or at mutation-selection
balance.

Fitness cost of single-step pre-existing mutants in the
previous environment

Consider the subset of random mutations, among those
that arise from the dominant genotype of the ancestral
population, that have a scaled growth rate within the
infinitesimal class ½ y; y þ dy� in the new environment.
We introduce the conditional random variable cjy; which
is the cost, in the previous environment, of a random
mutant within this subset (thus, conditional on y). This
cost is equal to the negative of the selection coefficient of
the mutation relative to the dominant genotype with
phenotype zA: More precisely, the cost of a mutant with
phenotype z is c ¼ kz2zAk2=2 [using Equation (1),
with o ¼ zA for the previous environment]. Note that,
because the mutation-selection balance in the previous
environment is fully characterized by relative fitnesses,
which do not depend on the maximal growth rate in this

environment, the latter may differ from rmax without
impacting the distribution of the costs cjy and our results.
Importing results from Martin et al. (2013) for the SSWM
regime, the total number of pre-existing variants within
the class ½ y; y þ dy� is Poisson distributed with mean
N0 U fyð yÞ=cHð yÞdywhere cHð yÞ ¼ 1=Ecð1=cj yÞ is the har-
monic mean of the cost cj y among mutations with effect y
in the new environment. This conditional harmonic mean
depends on the joint distribution of mutation effects on
fitness ðc; yÞ across two environments in the FGM (given in
Martin and Lenormand 2015). In our context, the domi-
nant genotype of the ancestral population is optimal in the
previous environment and far from the optimum in the new
environment. In this case, using Equation (9) in Martin and
Lenormand (2015), the resulting conditional harmonic
mean cHðyÞ takes a tractable form [see Equation (A6) for
n$ 2 and (A8) for n ¼ 1 in Appendix section II, subsection
4 and 5]:

cH
�
y
� ¼ 1=Ec

�
1
c
jy
�

¼
( lvðyÞ ; n ¼ 1

l

evðyÞEðn21Þ=2
�
vðyÞ�; n$2;

with v
�
y
� ¼ rmax

l

�
2þ yD 2 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ yDÞð12 yÞ

p
2 y
�
(3)

where EkðzÞ ¼
RN
1 e2zt=tk dt is the exponential integral

function. In most of the article we focus on the case n$ 2;
when considering ER from standing variance. The distribu-
tions of mutation effects on fitness in both the previous
[Equation (3)] and the new environment [Equation (2)]
can then be integrated to yield the probability of ER, as we
show next.

General expression and assumptions for the
rescue probability

Extinction occurs when no resistant mutationmanages to
establish (i.e., to avoid stochastic loss). For compact-
ness, we define a rate of rescue v per individual present
at the onset of stress (i.e., scaled by N0), such that, fol-
lowing Martin et al. (2013), ER probabilities take the
general form (similar to that in e.g., Orr and Unckless
2008):

PR ¼ 12 e2N0v : (4)

The rate of rescue from de novomutations alone isvDN (“DN”
for de novo), while that from pre-existing variance alone
is vSV (“SV” for standing variants). For a purely clonal pop-
ulation, the rate of rescue is v ¼ vDN ;while for a population
initially at mutation-selection balance, it is v ¼ vDN þ vSV

in the SSWM regime assumed here (Martin et al. 2013).
Applied to the context of the FGM using Equations (2)
and (3), the rates vDN and vSV are given by [see Appendix
Equations (A5) and (A7)]:
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vDN ¼ U
rD

Z1
0

pð yÞfyð yÞdy

vSV ¼ U
R1
0

pðyÞ
cHðyÞ fyðyÞdy;

with pðyÞ ¼ 12 e22yrmax=s

(5)

where cHð yÞ; and Eðn21Þ=2ð:Þ are defined in Equation (3)
and pðyÞ is the probability of establishment of a resistant
genotype with scaled growth rate y. 0 in the new environ-
ment. vDN in Equation (5) is simply the average establishment
probability of de novo resistant mutants times the genomic mu-
tation rate, divided by the rate of decay. In previous ER models
(e.g., Orr and Unckless 2008; Martin et al. 2013), which we
denote “context-independent,” the probability of rescue takes
the exact same form as Equation (4). The expressions for the
rates of rescue per capita also take a form similar to Equation
(5): for de novo mutations, vDN ¼ U qR = rD; and for stand-
ing variance, vSV ¼ U qR = cH; where qR is the proportion of
rescuers among random mutations [qR ¼ R 10 pð yÞfyð yÞdy in
Equation (5)] and cH is again the harmonic mean of the cost
of rescuemutations. The important difference is that in previous
models, qR and cH do not depend on rD; while the correspond-
ing quantities in Equation (5) do depend on the rate of decay,
through its effect on fyðyÞ and cHðyÞ:

The linearity of ER rates with the mutation rate U (v}U)
arises here because of the SSWM regime, where multiple
mutations are ignored: it might not hold at higher mutation
rates (when U.Uc). As such, Equation (5) makes no fur-
ther assumption than the SSWM regime (U,Uc); it can
easily be evaluated numerically to provide a general test-
able theory for rescue probabilities across stress levels, in
the FGM. Yet, in order to gain more quantitative/intuitive
insight into the effects of stress, we study approximate
closed forms for the rates in Equation (5).

Small mutational effects approximation

Although selection is assumed to be strong relative to mutation
(U,Uc; SSWM regime), it is still fairly realistic to assume that
mutation effects on traits (and thus fitness) are weak relative
to the maximal growth rate in the new environment, namely
that l � rmax: Taking a limit where l=rmax/0; simpler ex-
pressions for Equation (5) are derived in theAppendix section III.

With this approximation, single-step resistance mutations
are still rare and of large phenotypic effect, in that they pertain
to the tail of themutant phenotype distribution.However, even
resistance mutations typically remain far from the optimum in
the new environment, so that their scaled growth rate is
small: y ¼ r=rmax � 1: Overall, mutation effects must fall
within the range: 4U=n2 ,l � rmax for both the SSWM and
the small mutational effects (SME) approximation to apply
(see Appendix section III). In the Appendix, we study the con-
vergence, as l=rmax decreases, of the results from Equation (5)
to their asymptotic limit (Figure S3 and Figure S4 in File S1).

Stochastic simulations of a discrete-time model

We checked the robustness of our assumptions and approx-
imations using stochastic simulations, where we tracked the
population size and genetic composition of a population
across discrete, nonoverlapping generations. The size Ntþ1

of population at generation t þ 1 was drawn as a Pois-
son number Ntþ1 � PoissonðNt �WÞ; with �W ¼ er the mean
multiplicative fitness (W ¼ er) and Nt the population size,
in the previous generation. The genotypes forming this new
generation were then sampled with replacement from the
previous one with weight Wi ¼ eri : This is faster and exactly
equivalent to drawing independent Poisson reproductive out-
puts for each individual, or genotype. Because of the under-
lying assumptions of the simulations, the corresponding
analytical approximation for the stochastic reproductive var-
iance is si ¼ s � 1 (assuming small growth rates ri � 1).
Mutations occurred according to a Poisson process, with a
constant rate U per capita per generation. Mutation pheno-
typic effects were drawn from a multivariate normal distri-
bution Nð0; l InÞ; with multiple mutants having additive
effects on phenotype, and their fitness computed according
to the FGM [Equation (1)].

Rescue probability was estimated by running 1000 repli-
cate simulations until either extinction or rescue occurred. A
population was considered rescued when it reached a popu-
lation size Nt and mean growth rate �rt such that its ultimate
extinction probability, if it were monomorphic, would lie
below 10212 [expð22 Nt   �rtÞ, 10212]. This is a conservative
criterion: once �rt has become positive, we expect it to remain
so, yielding further increases in population size and thus fur-
ther decreasing the probability of future extinction. We
checked on a subset of simulations that the above procedure
gave the same rescue probabilities as obtained in simulations
performed until the population rebounded back to its (large)
initial size N0.

For rescue frompopulations atmutation-selection balance,
eight replicate initial equilibriumpopulationsweregenerated,
each by starting from an optimal clone and running the same
algorithm with fixed population size (Nt ¼ 106) until the
mean growth rate had visually stabilized to a fixed value
(close to its theoretical equilibrium value �req ¼ rmax 2U,
for U,Uc) for more than 1000 generations. Then the opti-
mum was shifted by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðrD þ rmaxÞ

p
phenotypic units, and

1000 replicate ER simulations were performed (same algo-
rithm as for de novo rescue), from each of the eight replicate
equilibrium populations.

All simulations and mathematical derivations were per-
formed in MATHEMATICA v. 9.0 (Wolfram Research 2012).

Data availability

File S1 contains appendices describing all analytical deriva-
tions and supplemental figures. File S2 provides the details of
the analytical derivations as a Mathematica© source code
(MATHEMATICA v. 9.0Wolfram Research 2012). File S3 pro-
vides the simulation code also as a Mathematica© source
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code (MATHEMATICA v. 9.0 Wolfram Research 2012). Sup-
plemental material available at Figshare: https://doi.org/
10.25386/genetics.5975008.

Results

The ER rates in Equation (5) are analytical but only implicit
functions of the model parameters. In a SME limit, they take
simpler closed forms (indicated by a “*”). As we will see
below, these simpler forms mostly depend on the following
two compound variables, which summarize the various ef-
fects of stress on the fitness landscape:

cD ¼ 2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ rD=rmax
p

2 1
�

a ¼ c2
D rmax

4 l

: (6)

Both cD and a increase with the decay rate rD; decrease with
increasing peak height rmax; and are independent of n: The
parameter a further increases with decreasing variance of
mutational effects l: We can already see how a qualitatively
reflects an “effective stress level”: stress is harder to cope with
if decay rate is larger, the maximum growth rate is lower, and
mutation effects are smaller.

Rescue from de novo mutations

Under the SME approximation and in the SSWM regime
(4 U=n2 , l � rmax) the rate of de novo rescue [Equation
(5)], converges to [Equation (A12) in the Appendix]:

vDN �
l � rmax

v*
DN ¼ U

ð1þ cD=2Þð12nÞ=2

1þ cD=4
gðaÞ; (7a)

v*
DN /

cD=2/0
U gðaÞ; (7b)

with

gðaÞ ¼ e2affiffiffiffiffiffiffiffiffi
p a

p 2 erfc
� ffiffiffi

a
p �

;

where erfcð:Þ is the complementary error function. Equation
(7b) gives the approximate closed form of Equation (7a) for
mild stress ðcD=2 / 0Þ: Note that this approximation con-
verges faster (with decreasing cD) with fewer dimensions,
due to the faster vanishing of the factor ð1þ cD=2Þð12nÞ=2 (in
the limit n ¼ 1 it vanishes for all cD). We now discuss the
biological implications of these expressions.

Effect of FGM parameters on rescue

The partial derivatives of v*
DN in Equations (7a) and (7b) with

respect to the FGM parameters (rD; rmax; l; n) quantify the sen-
sitivities of ER probability to each of them (Appendix section III,
subsection 4). First, note that gð:Þ is a strictly decreasing function
of a:When n.1 andwithmild stress (cD � 2), Equation (7b)
applies and vDN � U gðaÞ: ER then becomes less likely with a
higher decay rate rD; a lower peak rmax and a smaller variance of
mutational effects l; and is independent of dimensionality n: For
stronger stress levels, Equation (7a) applies: these qualitative
dependencies to the parameters still hold, except that ER proba-
bility now decreases with increasing dimensionality.

Sharp drop of ER probability with stress levels

Figure 2 shows the agreement between simulations (stochas-
tic discrete-time demographic model, see Methods) and the
analytical expressions in Equations (5), (7a), and (7b), over a
wide range of stress levels (quantified by rD), and for two
values of rmax and U (Figure S3 in File S1 further explores
the range of validity of the approximation). Interestingly, ER
probability drops sharply with stress levels (with decay rate
rD here), which is well captured by the term gðaÞ alone
[Equation (7b), dashed red lines in Figure 2]. This drop is
much more pronounced than in a context-independent
model (gray lines in Figure 2), where stress does not affect
the distribution of mutation effects. The difference between

Figure 2 Rescue probability from de novo mutations. The ER probability as a function of stress levels, expressed as the initial mean decay rate of the
population, is given for various values of the mutation rate U ¼ 1023 Uc (blue) or U ¼ 1022 Uc (orange) and the maximal fitness reachable in new the
environment rmax ¼ 0:5 (A) or 1:5 (B). Dots give the results from simulations and solid lines (blue and orange) show the corresponding theory computed
numerically [Equation (5)]. The black dot-dashed and red dashed lines give the corresponding analytical approximations Equations (7a) and (7b), respectively.
The gray lines correspond to an equivalent theory without the FGM (named context-independent model as described in the Methods section, “CI”)
modified from Orr and Unckless (2008). This last model was computed using a fixed proportion of resistant mutations equal to the one in Equation (5) for a
rescue probability of 0:5 (which explains why the two curves cross exactly at PR ¼ 0:5). Other parameters are n ¼ 4; N0 ¼ 105; l ¼ 0:005:
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context-independent models and the FGM is that, in the lat-
ter, increased stress implies both faster decay (as in the
former), and fewer and weaker resistance mutations. In the
FGM, these effects on the properties of rescue mutations are
the main drivers of ER probabilities across stress levels.

Composite parameter a describing an effective stress
level

The results in Equations (6), (7a), and (7b) suggest that a
single composite parameter [a in Equation (6)] can capture
the various ways in which stress may alter the parameters of
the fitness landscape, that is, fitness peak height rmax; vari-
ance of mutational effects l; or distance to the optimum rD:
We denote this parameter the “effective stress level.” In Fig-
ure 2, considering the effect of stress only via a [Equation
(7b)] is equally accurate as using the more complex Equation
(7a), or the numerical computation from Equation (5).

This simplification is further illustrated in Figure 3,wherewe
use exact numerical computations from Equation (5) to explore
different possible effects of stress. Regardless of whether stress
affects only the maladaptation of the ancestral clone (rD; blue
symbols), or also the quality of the environment (joint change in
rD and rmax; orange symbols) or the variance of mutational
effects (joint change in rD and l; red symbols), its effect on
the rescue probability is accurately predicted by a (Figure 3B,
black line). As predicted by Equation (7b), the relationship be-
tween rescue probability anda is approximately independent of
dimensionality (compare circles n ¼ 1 and squares n ¼ 6 in
Figure 3B). We also note that Equation (7b) slightly overesti-
mates the “exact” numerical computations of the ER probability
from Equation (5), so it provides a conservative bound when
considering the control of resistant pathogens.

Characteristic stress level

Figure 2 shows that ER drops from highly likely to highly
unlikely around a “characteristic stress level,” which can
be characterized analytically (as detailed in the Appen-
dix section IV, subsection 1). Consider the set of values

of parameters ðN0;U; rmax; rD; l; and nÞ for which the
rescue probability is of given value p 2 ½0; 1�: From Equa-
tion (7b), this corresponds to the set ðrmax; rD; lÞ for
which a ¼ g21½2logð12 pÞ=N0U�. Using the approximation
gðaÞ � a23=2e2 a=ð2 ffiffiffiffi

p
p Þ [from Equations (7a) and (7b)

with a � 1], the corresponding a can be derived explicitly
[Equation (A17)]. In particular, for p ¼ 1=2; the characteris-
tic stress level ac at which the ER probability is 1=2 is [Equa-
tion (A19) in the Appendix]:

ac �
N0U�1

g21
�
logð2Þ
N0U

�
�

N0U�1
0:9logðN0UÞ2 2:7 : (8)

Under the conditions of the SME approximation (detailed in
Methods), Equation (8) applies for large N0U (approximately
when N0U$ 5:104), a necessary condition for this equation to
be self-consistent (detailed in Appendix section IV, subsection 2).

The characteristic stress level ac that a population can
typically withstand increases only log-linearly with popula-
tion size and mutation rate. Consider the characteristic decay
rate rcD for which the rescue probability is PR ¼ 1=2; i.e., the
decay rate that populations can overcome half of the times.
From Equation (8) with ac}ðr c

DÞ2 [Equation (6)], this decay
rate is r cD}

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðN0UÞ

p
for large N0U: For comparison, we

would have rcD ¼ qRN0U=logð2Þ; which is linear in N0U; in
a context-independent model where the proportion qR of ran-
dom mutations causing a rescue is independent of rD: The dif-
ference in the effect of N0U on rescue probability thus stems
from the strong nonlinearity (i.e., sharp drop) of rescue proba-
bility with stress level (decay rate) under the FGM. In the FGM,
overcoming a given environmental harshness requires much
more mutational input than in a context-independent model.

Characteristic stress window

It is also important to predict how sharply the ER probability drops
aroundthecharacteristicstress level.Thisdropcanbecharacterized
by a “characteristic stress window” of a over which the ER prob-
ability drops from75 to 25%. ThewidthDa of thiswindow can be

Figure 3 The effective stress level. Rescue probability for clonal populations vs. initial decay rate rD (A) or the effective stress level a (B). In both panels
the axes are in logarithmic scale, symbols show Equation (5) and colors refer to different effects of increased stress level: blue symbols show only rD
increasing (with rmax ¼ 1:5 and l ¼ 0:005Þ; orange symbols rD increasing and rmax decreasing linearly with rD (according to rmax ¼ 1:525 rD; with
l ¼ 0:005) and red symbols rD increasing and l decreasing linearly with rD (according to l ¼ 0:00521022 rD; with rmax ¼ 1:5). In each case, the results
for both n ¼ 1 (circles) and n ¼ 6 (squares) are shown. The black plain line on the right panel gives the result from Equation (7b): a single composite
measure of stress ðaÞ approximately captures the impact of stress-induced variations in the various parameters ðrD; rmax ;l; nÞ: Other parameters are
N0 ¼ 106 and U ¼ 2*1025:
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scaled by the value of the characteristic stress level ac; to get a
scale-free measure of its steepness (i.e., how sharp the drop in ER
probability is, relative to the stress level around which it occurs).
This gives [from Equation (A20) in the Appendix]:

Da

ac
�

N0U�1

1
1þ 0:7ac

: (9)

The width Da increases with increasing N0U until it saturates
(at � 1:5) (see Appendix section IV, subsection 3 for further
details). However, when scaled by the center of thewindow (ac),
the width of this scaled characteristic stress window drops
below 1 as ac increases [and hence with increasing N0U; from
Equation (8)]. This result shows formally that the drop in ER
probability with increasing stress a gets proportionally sharper
(relative to the position where it occurs) as N0U increases, but
this is entirely driven at large N0U by shifts of a window with
constant absolutewidth. This is illustrated in Figure 4, which also
shows the accuracy of Equation (9) compared to “exact” numer-
ical computations from Equation (5) [as expected, the exact re-
sult deviates from Equation (9) for smaller N0U].

Interestingly, Equation (9) provides a scale-free measure
thatmaybecomparedacrossexperiments,as itonlydependson
the genomic mutational input N0U (via ac). However, like all
results so far, Equation (9) only considers ER from de novo
mutation. We now turn to ER from standing genetic variation.

Rate of rescue from a population at mutation-
selection balance

In the SSWM regime, and for a population at mutation-selection
balance in the previous environment, each rescue event can be
tracked back to either a pre-existing variant, or a de novomutation
(Orr andUnckless 2008, 2014;Martin et al. 2013). The proportion
fSV of rescue events caused by standing variance is then simply
given by fSV ¼ vSV=ðvSV þ vDNÞ: A simple expression can be
obtained again under the SME for n$ 2 [see Equation (A21) in
the Appendix], but the approximation (f*

SV) now further requires
that decay rates are not vanishingly small (l � rmax c2

D=4).

fSV ¼ vSV

vSV þ vDN
�

l � rmaxc
2
D=4

f*
SV ¼ 1þ cD=4

e=cD þ 1þ cD=2

where e ¼ l
n2 1
2 rmax

;

(10)

where cD is defined in Equation (6).
Equation (10) captures the main features of how standing

variance contributes to ER across (nonvanishing) stress levels
(here, decay rate). Contrary to context-independent models,
this contribution changes nonmonotonically with increasing
stress level (Figure 5). At verymild decay rate rD; rescue relies
on mild-effect mutations. The cost of such mutations—and
hence their frequency before stress—is roughly independent
of rD (Martin and Lenormand 2015), while their rate of pro-
duction by de novo mutation decreases as 1=rD (demo-
graphic effect), so the contribution of standing variance to

ER increases with rD at small rD: In contrast at large stress
levels, rescue stems from strong effect mutations. These mu-
tations pay a substantial “incompressible cost” before stress
that increases faster than rD (Martin and Lenormand 2015),
while their rate of de novo production still decreases as 1=rD;
so the contribution of standing variance to ER decreases with
rD at large rD: In the limit of very large yD; the distance be-
tween the two optima is very large and makes the most of
both the cost and decay rate, so that cHðyÞ � rD for all mu-
tations. Hence, de novomutations and standing variants con-
tribute equally to ER in this limit (fSV/1=2).

These different behaviors are illustrated in Figure 5, show-
ing the variation of fSV over a very wide range of scaled
decay rates yD. The limit fSV/f*

SV in Equation (10) pro-
vides a fairly accurate approximation across the full range
of stress levels. The limits when yD/0 and yD/N are in
fact of limited biological interest, as they correspond to stress
levels where ER becomes de facto certain or impossible, re-
spectively. When focusing on the more biologically relevant
range corresponding to the characteristic stress window,
which occurs near the peak in fSV in Figure 5 (see Appendix
section IV, subsection 4), the variation of fSV across stress
levels becomes negligible. As illustrated in Figure 6B, fSV
remains close to 12

ffiffiffi
e

p
[see Appendix Equation (A22)] as

yD varies over a range where ER probabilities span several
orders of magnitude (see Appendix Section IV subsection 5).
Note that this behavior arises when stress only shifts the
optimum (effect on rD), but does not affect peak height
(rmax) or the variance of mutational effects (l).

Therefore the rate of rescue in the presence of standing
variance is approximately proportional to that with only de
novo mutation, with proportionality constant largely inde-
pendent of the decay rate:

v ¼ vDN þ vSV � v*
DN=

ffiffiffi
e

p
; (11)

where e is defined in Equation (10). The rough constancy
of fSV also means that all the results obtained previously
for ER from de novo mutations apply in the presence of

Figure 4 Scaled width of the characteristic stress window Da=ac vs. the
population-scale mutation rate N0U: The dots are obtained by numerical
inversion of the “exact” Equation (5) with two values of rmax ¼ 2 (blue)
and rmax ¼ 0:1 (red). The orange line shows the approximate scaled width
of the characteristic stress window derived in Equation (9). Other param-
eters are n ¼ 4; l ¼ 0:005:
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standing variance, when stress only shifts the optima (as long
as n$2Þ.

The ER probability profile across stress levels (shown
in Figure 6A) is the same as that from de novo muta-
tions alone (Figure 2), but with a higher characteristic
stress [ac �

N0U�1
0:9logðXÞ2 2:7 from Equation (8) with

X � N0U=
ffiffiffi
e

p
]. Moreover, when considering the contribu-

tion from standing variance, the difference between the
FGM and context-independent models (gray line on Figure
6A) is striking. Indeed in the latter, the ER rate from standing
variance (vSV) is independent of the decay rate, hence PR satu-
rates with stress to a constant value 12 expð2 N0 U qR=cHÞ;
where all ER events stem from standing variance.

Finally, note that when considering rescue from preexisting
variance, U may change across environments, from UP (for
previous) to UN (for new). For example, a stress-induced in-
crease in DNA copy error would yield UN .UP: Accounting for
such shifts inmutation rateat theonsetof stress, the total ERrate
simply becomes v � v*

DNð1þ UP=UNð12
ffiffiffi
e

p Þ= ffiffiffi
e

p Þ [from
Equation (11)].

Discussion

Main results

We investigated the persistence of a population of asexual
organisms under an abrupt environmental alteration. We
assumed that this stress causes a shift in a multidimen-
sional fitness landscape with a single peak (FGM), which
the population must “climb” to avoid extinction. In such a
landscape, faster population decline (due to stress-induced
increase in the decay rate rD) necessarily means that resis-
tance mutations are fewer, have lower growth rates in the
presence of stress, and higher costs in its absence. We believe
that this constraint, not included in previous studies, adds a
key element of realism to ER models. In our model, variation
in stress levels may affect the landscape in various ways:
shifting the optimum, changing the peak height, or altering
the phenotypic scale of mutations (or the strength of stabi-

lizing selection). Under a SSWM regime and assuming SME,
all these effects of stress on the distribution of mutation fit-
ness effects are approximately captured by the variation,
across stress levels, of a single composite parameter a;which
is approximately independent of the dimensionality of the
organism (number of orthogonal traits under selection).
The probability of ER drops sharply with this effective stress
level, more so than in previous ER models where the rate of
population decline is decoupled from the input of resistant
mutations. The characteristic stress window over which this
drop occurs only depends on the initial population size
N0 and genomic rate of mutation U: As N0U gets large, the
characteristic stress window reaches an asymptotic width
[Da in Equation (9)] while its center [the characteristic stress
level ac in Equation (8)] shifts toward higher values, approx-
imately as logðN0UÞ:

When standing variance is available (population at muta-
tion-selection balance before stress), its contribution to ER
is dominant, and approximately constant across a wide range
of stress levels that encompasses the characteristic stress
window.

In Table 2, we summarize how these features compare to
properties of previous ER models. We consider only the situ-
ation where stress shifts the position of the optimum, affect-
ing rD (as in previous models), because other effects of stress
we investigate here (rmax and l) are not treated in previous
models.

Genetic basis of ER patterns across environments

Ourmodel allows identification of three ranges of stress levels
that yield different eco-evolutionary patterns, despite all
leading to extinction in the absence of evolution. First, at
low stress levels (a � ac), although evolutionary change is
required for persistence and demographic dynamics typical of
ER may be observed (decay/rebounce), extinctions are de
facto undetectable (ER is pervasive, PR � 1). In this regime,
we expect several resistance mutations to establish and cose-
gregate (frequent “soft sweeps” as in Wilson et al. 2017).
Their number is predictable (� N0vR), but the ultimate com-
position of the population in asexuals will depend on
more complex clonal interference dynamics. Second, at
intermediate stress levels [a ¼ OðacÞ], small variation in
stress conditions has large impact on the probability of
population survival. Over this range, PR � 1=2 so the
expected overall number of rescue mutations in the popula-
tion is less than one [N0vR � 2 logðPRÞ ¼ 0:7]. Therefore,
“hard sweeps” (including from standing variation) should
be the most frequent: a single mutation typically establishes
and rescues the population. Finally, at higher stress levels
(a � ac), very few populations overcome the imposed stress,
and when they do it is typically through a hard sweep
(N0vR � 1).

Estimating parameters and testing the model

Studies on the emergence of resistance to controlled stress
(e.g., antibiotics, fungicides, and chemotherapy in cancer),

Figure 5 Relative contribution of standing genetic variation to ER. The
proportion of ER from standing variance is shown across scaled decay
rates yD: The numerical computation for fSV [using Equations (5) and
(10)], for two values of rmax ¼ 0:1 (blue) and rmax ¼ 0:7 (orange), is com-
pared to the approximate f*

SV [Equation (10), black dashed line]. Other
parameters as in Figure 2.
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especially in microbes, can generate a set of estimates of PR
(the probability of resistance emergence), across stress levels.
In general, to test (or use) predictions from ER models, it is
critical to empirically relate physical measures of stress level
(e.g., concentrations, temperatures, salinities, etc.) with de-
mographic measures (e.g., decay rates). If we assume that the
main effect of stress is to shift optimum positions, given a set
of measurements of rD (“dose-kill curves;” Regoes et al.
2004), the change in ER probability with stress can be pre-
dicted via Equations (7a) and (7b). This simple scenario of
optimum shifting is the one that is considered by most of the
literature on evolutionary ecology across environmental gra-
dients, so it would seem natural to test it first. Furthermore,
this scenario has received empirical support from an analysis
of a few experimental studies of distribution of mutation
effects on fitness across stress levels (Martin and Lenormand
2006b). However, these studies used mild stresses, which
reduce growth without causing population decay. A more
recent study on bacteria facing lethal doses of antibiotics,
i.e., in the presence of decay (Harmand et al. 2017), suggests
that factors other than the position of the optimum may also
change with stress (l; rmax; n). Estimating these extra param-
eters across environments can be challenging. The variance
of mutational effects l and the dimensionality n can be esti-
mated by fitting the distributions of single random mutation
effects on fitness (Martin and Lenormand 2006b; Perfeito
et al. 2014), in a single environment if it is to be assumed
constant, or in each environment otherwise. The maximal
growth rate in the stress could be measured on lines well-
adapted to the environment considered.

The effective stress level a is also amenable to empirical
measurement and circumvents the issue of measuring joint
changes in ðrD; rmax; lÞ with stress. Consider a set of PR esti-

mates across a range of empirically controlled stress levels,
and some knowledge of the genomic (non-neutral) mutation
rate (e.g., as estimated by mutation accumulation experi-
ments) of the species and environment under study (U).
The initial population size N0 is easily controlled by the ex-
perimenter. Then Equation (7b) suggests a simple estimator
of a in each environment: ba ¼ g21ð2 logð12 PRÞ=N0UÞ:

Finally, it is also possible to circumvent the problem of stress-
induced variation in the parameters of the fitness landscape by
consideringmultiplegeneticbackgrounds,inasingleenvironment.
Each background would have a given measurable decay rate rD;
and other parameters (l; rmax; n;U) would be held fixed; while
l; n and U may change with the genetic background, this seems
less likely thanwith the environment. The isotropic FGMassumes
a strict equivalence between shifts in optima (multiple environ-
ments) from a given ancestor phenotype (single genetic back-
ground), and shifts in ancestor phenotypes (multiple genetic
backgrounds) with a fixed optimum (single environment). The
model could thus be applied and tested in this context. This could
yield useful insights into the effect of epistasis (background de-
pendence) on resistance emergence, an issue of notable impor-
tance when considering the fate of horizontally transferred
resistance or multidrug resistance (as discussed in Wong 2017)

Potential implications for resistance management

Our results suggest that stress levels have a strongly nonlinear
impact on ERprobabilities (Figure 2), at least in the context of
abrupt environmental changes, in asexuals. This context may
be particularly relevant to the chemical treatment of patho-
gens (cancer therapy, antivirals, antibiotics, fungicides, her-
bicides, etc.). In particular, the nonlinear impact of stress on
ER, if empirically confirmed, can provide insights regarding
the optimization of treatment regimens or the quantification

Figure 6 ER probability in the presence of standing genetic variation. In each panel, stress only affects the decay rate rD (shifting optimum). In both
panels, blue solid lines show the theory for de novo and standing variance (“DN”+“SV”) computed numerically [Equation (5)] and the gray lines
correspond to an equivalent theory without the FGM (named context-independent model as described in theMethods section, “CI”) modified from Orr
and Unckless (2008). This last model was computed using a fixed proportion of resistant mutations equal to the one in Equation (5) for a rescue
probability of 0:5 (which explains why the two curves cross exactly at PR ¼ 0:5). The dashed red line gives the simpler expression for the overall rescue
rate: v � v*

DN=
ffiffiffi
e

p
: [Equation (11)] with e given in Equation (10) and v*

DN by Equations (7a) and (7b). (A) ER probability in the presence of standing
genetic variation as a function of rD: The dots give the results from simulations. (B) Proportion fSV of rescue from standing variance as a function of rD:
The black dashed-line give the approximate theory from Equation (10) and the dashed red line maxðf*

SV Þ � 12
ffiffiffi
e

p
from Equation (11). The shaded area

shows the range of rD for which the ER probability drops from 0:99 to 1023: Other parameters as in Figure 2.
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of the effect of poor treatment adherence on resistance emer-
gence (e.g., in HIV, Harrigan et al. 2005). Our results point to
the risk that even a slight lowering of drug doses (below
prescribed treatment levels) could radically change the out-
come of the treatment (making it de facto inefficient). On the
contrary, a slight increase in prescribed doses could some-
times prove sufficient to allow efficient eradication.

Limits and possible extensions

Density-dependence and competitive release: Our model
ignores density dependence, but some form may be easily
introduced by considering a single density dependence co-
efficient (common to all genotypes) and using logistic diffu-
sion approximations (Lambert 2005). This would potentially
allow for “competitive release” (Read et al. 2011), whereby
higher stresses may favor the emergence of resistance by
rapidly depleting the sensitive wild-type population, thus re-
leasing limiting resources for resistant genotypes. Previous
models on competitive release assumed that the number of
standing resistant mutants is independent of stress level
(Read et al. 2011; Day and Read 2016). In this case, stress
mostly limits de novo rescue mutation, with limited impact on
the contribution from standing variance. On the contrary, the
FGM imposes a similar drop, with stress, in the rate of rescue
from de novo and preexisting mutants. The positive effects of
competitive release on ER probability may thus be less impor-
tant, in the FGM, than predicted from these previous models.
Note however that more generally, the effect of density depen-
dence on ER ismore safely investigated by accounting explicitly
for the effect of stress on the density-independent intrinsic rate
of increase on the one hand (as done here in a density-inde-
pendent model), vs. on the competition component on growth
(e.g., carrying capacity) on the other hand, than by compound-
ing their effects into an overall density-dependent decay rate
(e.g., Chevin and Lande 2010). This would require modeling
the effect of stress on both the intrinsic rate of increase and the
competition component, possibly through a landscape with
two fitness functions, describing each component.

Anisotropy and parallel evolution in drug resistance: The
present model is isotropic: all directions in phenotype space
are equivalent (in terms of mutation and selection). In con-
trast, module-dependent anisotropy (where particular genes
mutate along favored directions) can lead to substantial
parallel evolution in the FGM (Chevin et al. 2010). Parallel

evolution of resistance, whereby some (portions or sets of)
genes contribute most of the resistance mutations, is often
observed among drug-resistance alleles, and can increase
with stress (Harmand et al. 2017), contrary to parallel evo-
lution in a growing population, which is expected to decrease
with increasing maladaptation (Chevin et al. 2010). Al-
though not explored here, we conjecture that our model
may accommodate mild anisotropy. Indeed, mild anisotropy
(even environment-dependent) might have limited impact. If
mutational covariances between traits merely “turn,” “shrink”
or “expand” the phenotypic mutant cloud, this would approx-
imately amount to a mere change in l in an equivalent iso-
tropic landscape (Martin and Lenormand 2006a; Martin
2014). However, a particular form of strong anisotropy may
also arise where mutant phenotypes (in a given module)
spread along a single favored direction (Martin 2014). Only
this level of anisotropy would generate clear parallel evolu-
tion, and it will likely require implementing a fully anisotropic
model.

High mutation rates: Our results relied on a SSWM approx-
imation. When the mutation rate is higher (e.g., viruses or
mutator bacterial strains), multiple mutants must be
accounted for as a source of ER. These can in principle be
introduced in the framework used here (Martin et al. 2013),
but, especially when applied to the FGM, the results quickly
become intractable. Alternative population genetics assump-
tions would then have to be used, but this is beyond the scope
of the present work.

Conclusion

Recently, the FGMhas received renewed interest for its ability
toprovide testable, quantitative, andoftenaccuratepredictions
regarding patterns of mutation effects on fitness, across
various species and contexts (Tenaillon 2014). The present
model is an attempt to extend its scope to model the evolu-
tion of resistance to stress. We hope that future experimen-
tal tests will evaluate its accuracy and potential to tackle
various pressing applied issues.
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