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The 14-3-3 proteins are a family of proteins that are highly expressed in the brain and particularly enriched at synapses. Evidence
accumulated in the last two decades has implicated 14-3-3 proteins as an important regulator of synaptic transmission and
plasticity. Here, we will review previous and more recent research that has helped us understand the roles of 14-3-3 proteins at
glutamatergic synapses. A key challenge for the future is to delineate the 14-3-3-dependent molecular pathways involved in
regulating synaptic functions.

1. Introduction

14-3-3 refers to a family of homologous proteins that consist
of seven genetic loci or isoforms (β, γ, ε, η, σ, ζ, and τ) in ver-
tebrates. The name 14-3-3 was given based on the fraction
number and migration position on DEAE-cellulose chroma-
tography and subsequent starch-gel electrophoresis during
its initial biochemical purification process [1]. 14-3-3 pro-
teins exist as homo- or heterodimers, in which each 14-3-3
monomer shares a similar helical structure and forms a
conserved concave amphipathic groove that binds to target
proteins via specific phosphoserine/phosphothreonine-con-
taining motifs [2–7]. Through protein-protein interactions,
14-3-3 functions by altering the conformation, stability,
subcellular localization, or activity of its binding partners.
To date, 14-3-3 proteins have been shown to interact with
hundreds of proteins and are implicated in the regulation
of a multitude of cellular processes [8, 9].

14-3-3 proteins are highly expressed in the brain, com-
prising ~1% of its total soluble proteins. Thus, it comes to
no surprise that 14-3-3 proteins are involved in a variety
of neuronal processes, such as neurite outgrowth, neural
differentiation, migration and survival, ion channel regula-
tion, receptor trafficking, and neurotransmitter release
[10–12]. In addition, 14-3-3 proteins are genetically linked
to several neurological disorders, including neurodegenera-
tive diseases (e.g., Parkinson’s, Alzheimer’s, and Creutzfeldt-

Jakob diseases), neurodevelopmental diseases (e.g., Lissence-
phaly), and neuropsychiatric disorders (e.g., schizophrenia
and bipolar disorder) [13–15], thus making them a potential
therapeutic target [16, 17]. In recent years, a number of small
molecule 14-3-3 modulators have been discovered that could
be used to either stabilize or inhibit 14-3-3 protein-protein
interactions [18, 19]. However, as 14-3-3 proteins are
involved in diverse cellular processes, it is highly desirable
to further characterize and develop compounds that have
enhanced isoform specificity as well as can selectively
modulate the 14-3-3 interaction with a critical target in a
particular pathway.

14-3-3 proteins are generally found in the cytoplasmic
compartment of eukaryotic cells. In mature neurons, how-
ever, certain 14-3-3 isoforms are particularly enriched at syn-
apses, suggesting their potential involvement in synaptic
transmissions [20, 21]. Indeed, evidence accumulated in the
last two decades reveals that 14-3-3 is an important modula-
tor of synaptic neurotransmissions and plasticity. In this
review, we will discuss the functional role of 14-3-3 proteins
in the regulation of glutamatergic synapses.

2. Functions of 14-3-3 at the Presynaptic Site

Early evidence that 14-3-3 might regulate synaptic transmis-
sion and plasticity came from genetic and functional studies
of the fruit fly Drosophila. The gene leonardo encodes 14-3-
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3ζ, one of the two Drosophila 14-3-3 homologs that is abun-
dantly and preferentially expressed in mushroom body neu-
rons. Mutant leo alleles with reduced 14-3-3ζ proteins
exhibit significant deficits in olfactory learning and memory,
suggesting a functional role of 14-3-3 in these processes [22].
A subsequent study further determined that the 14-3-3ζ
protein progressively accumulates to the synaptic boutons
during maturation of the neuromuscular junction (NMJ),
where it colocalizes with the synaptic vesicles containing
the neurotransmitter glutamate [23]. Based on electrophys-
iological analyses, Leonardo mutants show impaired pre-
synaptic functions at NMJ, including reduced endogenous
excitatory junctional currents (EJCs), impaired transmis-
sion fidelity, and loss of long-term augmentation and post-
tetanic potentiation (PTP). The evoked transmission deficit
in leo is more severe under lower external Ca2+ concentration,
suggesting a possible defect in Ca2+-dependent presynaptic
transmission in the absence of 14-3-3ζ proteins.

Following those studies in Drosophila NMJs, the involve-
ment of 14-3-3 proteins in the presynaptic site of glutamater-
gic synapses was further investigated in the vertebrate
nervous system. One potential mechanism is thought to be
mediated by 14-3-3 binding to RIM1α, an active zone protein
that is essential for presynaptic short- and long-term plastic-
ity [24, 25]. Early biochemical studies have provided the first
evidence that 14-3-3 binds to RIM1α through its N terminal
domain, raising the possibility that 14-3-3 regulates neuro-
transmitter release and synaptic plasticity through the regu-
lation of RIM1α [26]. A later study further confirmed this
protein-protein interaction and identified that PKA phos-
phorylation of serine-413 at RIM1α (pSer413) is critical for
14-3-3 binding [27]. Moreover, electrophysiological assays
in cultured cerebellar neurons suggested that recruitment of
14-3-3 to RIM1α at pSer413 is required for a presynaptic
form of long-term potentiation (LTP) at granule cell and
Purkinje cell synapses in the mouse cerebellum [27–29].
However, apparently contradictory evidence came from later
efforts to examine the involvement of 14-3-3 and RIM1α
interaction in presynaptic long-term plasticity using in vivo
animal models. In one of these studies, a line of knock-in
mice was generated to substitute RIM1α serine-413 with ala-
nine (S413A), thereby abolishing RIM1α phosphorylation at
S413 and 14-3-3 binding. Surprisingly, electrophysiological
examination of the RIM1α S413A knock-in mice failed to
detect a significant defect in presynaptic LTP, either at parallel
fiber ormossyfiber synapses [30]. In agreementwith thisfind-
ing, an acute in vivo rescue experiment showed that deficits of
mossy fiber LTP in RIM1α−/− mice can be rescued by expres-
sion of the phosphorylation site-deficient mutant of RIM1α
(S413A) [31]. Thus, it remains unclear whether 14-3-3 bind-
ing to S413 phosphorylated RIM1α plays a significant role in
the regulation of presynaptic long-term plasticity.

A better-understood action of 14-3-3 at the presynaptic
site is its role as the modulator of ion channels [32, 33], which
include voltage-gated calcium (Ca2+) channels that play a
central role in neurotransmitter release by mediating
Ca2+ influx at nerve terminals [34]. In particular, CaV2.2
channels undergo cumulative inactivation after a brief, repet-
itive depolarization, thus markedly impacting the fidelity of

synaptic transmission and short-term synaptic plasticity
[35, 36]. 14-3-3 modulates inactivation properties of CaV2.2
channels through its direct binding to the channel pore-
forming α1B subunit. In cultured rat hippocampal neurons,
inhibition of 14-3-3 proteins in presynaptic neurons aug-
ments short-term depression, likely through promoting the
closed-state inactivation of CaV2.2 channels (Figure 1) [37].
As 14-3-3 binding can be regulated by specific phosphor-
ylation of the α1B subunit, this regulatory protein complex
may provide a potential mechanism for phosphorylation-
dependent regulation of short-term synaptic plasticity.

3. Functions of 14-3-3 at the Postsynaptic Site

The role of 14-3-3 at the postsynaptic site emerged more
recently from the studies of various 14-3-3 mouse models.
One of them, the 14-3-3 functional knockout (FKO) mice,
was generated by transgenic expression of difopein (dimeric
fourteen-three-three peptide inhibitor) that antagonizes the
binding of 14-3-3 proteins to their endogenous partners in
an isoform-independent manner, thereby disrupting 14-3-3
functions [38–41]. Transgene expression is driven by the
neuronal-specific Thy-1 promoter which produces variable
expression patterns in the brains of different founder lines,
making it possible to assess the behavioral and synaptic alter-
ations associated with expression of the 14-3-3 inhibitor in
certain brain regions [42, 43]. Inhibition of 14-3-3 proteins
in the hippocampus impairs associative learning and mem-
ory behaviors and suppresses long-term potentiation (LTP)
at hippocampal CA3-CA1 synapses of the 14-3-3 FKO mice
[41]. Through comparative analyses of two different founder
lines with distinct transgene expression patterns in the subre-
gions of the hippocampus, it was further determined that
postsynaptic inhibition of 14-3-3 proteins may contribute
to the impairments in LTP and cognitive behaviors. These
observations thus revealed a postsynaptic function for 14-3-
3 proteins in regulating long-term synaptic plasticity in
mouse hippocampus.

What might be the molecular targets of 14-3-3 proteins at
the postsynaptic site of hippocampal synapses? In the 14-3-3
FKO mice, there is a significant reduction of the NMDA
receptor-mediated synaptic currents in CA1 pyramidal neu-
rons which express the 14-3-3 inhibitor. Consistently, the
level of NMDA receptors (NMDARs), particularly GluN1
and GluN2A subunits, is selectively reduced in the postsyn-
aptic density (PSD) fraction of 14-3-3 FKO mice that exhibit
deficits in cognitive behaviors and hippocampal LTP [41].
Considering the critical role that NMDARs play in mediating
LTP at hippocampal CA3-CA1 synapses [44], 14-3-3
proteins likely exert their effects on postsynaptic sites
through the regulation of NMDA receptors, either directly
or indirectly (Figure 2).

NMDARs are heterotetramers composed of two obliga-
tory GluN1 subunits and two regulatory subunits derived
from GluN (GluN2A-2D) and GluN3 subunits [45, 46].
14-3-3 is known to promote surface expression of NMDA
receptors in cerebellar neurons through its interaction with
PKB-phosphorylated GluN2C subunits [47]. A more recent
study also showed that inhibiting endogenous 14-3-3 proteins
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using difopein greatly attenuate GluN2C surface expression
in cultured hippocampal neurons [48]. However, it remains
to be determined whether 14-3-3 proteins directly interact
with other subunits of NMDAR and have similar effects on
their surface expression. Alternatively, 14-3-3 might indi-
rectly regulate the PSD level of NMDARs by modulating
other critical steps of NMDAR synaptic trafficking, such as
dendritic transport and synaptic localization [45, 49]. There-
fore, further studies are needed to better understand the exact
mechanism underlying 14-3-3 proteins’ regulation of NMDA
receptors. Interestingly, the synaptic level of certain 14-3-3
isoforms is reduced in GluN1 knockdown mice, but not by
subchronic administration of an NMDAR antagonist in
wild-typemice [50]. It raises a possibility that a reciprocal reg-
ulation between 14-3-3 and NMDARs may take place at the
postsynaptic site.

14-3-3 proteins also modulate other glutamate receptors
at the postsynaptic membrane. For example, 14-3-3 interacts
with GluK2a, a subunit of the kainate receptor (KAR) that
mediates postsynaptic transmission, synaptic plasticity, and
neuronal excitability [51]. 14-3-3 binding slows desensitiza-
tion kinetics of GluK2a-containing KARs. In 14-3-3 FKO
mice, expression of the 14-3-3 inhibitor in CA3 neurons
leads to a faster decay of KAR-EPSCs at hippocampal mossy
fiber-CA3 synapses [52]. This study provides another

potential mechanism by which 14-3-3 proteins regulate syn-
aptic functions at the postsynaptic site.

In addition to modulating the level and biophysical prop-
erties of postsynaptic glutamate receptors, 14-3-3 functions
by regulating synaptogenesis. In the 14-3-3 FKO mice, there
is a reduction of both dendritic complexity and spine density
in the cortical and hippocampal neurons where the 14-3-3
inhibitor is extensively expressed [53]. A similar reduction
in dendritic spine density was observed in 14-3-3ζ-deficient
mice in BALB/c background [54, 55]. On the contrary, over-
expressing 14-3-3ζ in rat hippocampal neurons significantly
increases spine density [56]. Collectively, studies on these
animal models provide in vivo evidence for a significant role
of 14-3-3 proteins in promoting the formation and matura-
tion of dendritic spines.

While the molecular mechanism for 14-3-3 dependent
regulation of synaptogenesis remains elusive, several
in vitro studies have proposed 14-3-3 proteins as impor-
tant regulators of cytoskeleton and actin dynamics, which
are critical for controlling the shape, organization, and
maintenance of dendritic spines in postsynaptic neurons
[57, 58]. Earlier studies showed that 14-3-3ζ regulates
actin dynamics through its direct interaction with phos-
phorylated cofilin (p-cofilin) [57]. Cofilin is a major actin
depolymerizing factor. Reduction of p-cofilin enhances
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Figure 1: 14-3-3 regulates presynaptic short-term plasticity by modulating CaV2.2 channel properties. 14-3-3 binding reduces cumulative
inactivation of CaV2.2 channels and sustains Ca2+ influx and neurotransmitter release (a). Inhibition of 14-3-3 accelerates CaV2.2 channel
inactivation and enhances short-term synaptic depression (b).
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the activity of cofilin, promotes the turnover of actin
filaments, and consequently destabilizes dendritic spines
[55, 56]. Moreover, a different group identified cofilin
and its regulatory kinase LIM-kinase 1 (LIMK1) as bind-
ing partners of 14-3-3ζ and suggested that interactions
with the C-terminal region of 14-3-3ζ inhibit the binding
of cofilin to F-actin [59]. However, a direct interaction
between 14-3-3 and cofilin/p-cofilin was challenged by a
later study, in which Sudnitsyna et al. demonstrated that
14-3-3 only weakly interacts with cofilin, and they sug-
gested that 14-3-3 proteins most likely regulate actin
dynamics through other regulatory kinases such as LIMK1
or slingshot 1 L phosphatase (SSH) [60]. In fact, 14-3-3ζ
has been shown to directly bind with phosphorylated
SSH and lower its ability to bind F-actin [58].

More recently, Toyo-oka et al. showed that 14-3-3ε and
14-3-3ζ bind to δ-catenin and potentially regulate actin
dynamics through δ-catenin [11, 61]. Catenin activates the
Rho family of GTPase that results in the phosphorylation
and activation of LIMK1. Loss of 14-3-3 proteins results
in stabilization of δ-catenin through the ubiquitin-
proteasome system, thereby decreasing LIMK1 activity
and reducing p-cofilin level. Therefore, it is possible that
14-3-3 proteins may promote F-actin formation and spino-
genesis by interacting with multiple elements in the regula-
tory pathways of the actin polymerization/depolymerization
cycles (Figure 2).

4. Conclusion

The glutamatergic synapses mediate the majority of excit-
atory neurotransmission in themammalian brain. Regulation
of the property and connectivity of glutamatergic synapses
represents amajormechanism for activity-dependentmodifi-
cation of synaptic strength and is critical for higher brain
functions. 14-3-3 proteins have emerged as one of the impor-
tantmodulators at these synapses. It is particularly interesting
that 14-3-3 binding and function are generally regulated
by phosphorylation, which is a well-established molecular
process underlying synaptic plasticity. Thus, 14-3-3 can
potentially integrate multiple signaling pathways and plays
a significant role in dynamic modification of glutamatergic
synapses. As demonstrated by recent animal models, 14-3-
3 deficiencies in rodent brain often result in the onset of
abnormal behaviors, which might correspond to symptoms
of neurological disorders.

Abbreviations

NMJ: Neuromuscular junction
EJCs: Excitatory junctional currents
EPSCs: Excitatory postsynaptic currents
PTP: Posttetanic potentiation
LTP: Long-term potentiation
difopein: Dimeric fourteen-three-three peptide inhibitor

NMDAR

F-Actin G-Actin

14-3-3

Spinogenesis

(1)

(2)

LTP

Figure 2: 14-3-3 regulates NMDA receptors and actin dynamics at postsynaptic sites. (1) 14-3-3 proteins facilitate targeting of
NMDARs to the postsynaptic density, thereby regulating long-term potentiation; (2) 14-3-3 proteins might promote spinogenesis by
facilitating F-actin formation.
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FKO: Functional knockout
PSD: Postsynaptic density
LIMK: LIM kinases
SSH: Slingshot.
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