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ABSTRACT
During the past decade, with the significant progress of computational power as

well as ever-rising data availability, deep learning techniques became increasingly

popular due to their excellent performance on computer vision problems.

The size of the Protein Data Bank (PDB) has increased more than 15-fold since

1999, which enabled the expansion of models that aim at predicting enzymatic

function via their amino acid composition. Amino acid sequence, however, is less

conserved in nature than protein structure and therefore considered a less reliable

predictor of protein function. This paper presents EnzyNet, a novel 3D

convolutional neural networks classifier that predicts the Enzyme Commission

number of enzymes based only on their voxel-based spatial structure. The spatial

distribution of biochemical properties was also examined as complementary

information. The two-layer architecture was investigated on a large dataset of 63,558

enzymes from the PDB and achieved an accuracy of 78.4% by exploiting only

the binary representation of the protein shape. Code and datasets are available at

https://github.com/shervinea/enzynet.

Subjects Bioinformatics, Computational Biology, Genomics, Computational Science
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INTRODUCTION
The exponential growth of the number of enzymes registered in the Protein Data Bank

(PDB) urges a need to propose a fast and reliable procedure to classify every new entry

into one of the six standardized enzyme classes denoted by the enzyme classification

number (EC): Oxidoreductase (EC1), Transferase (EC2), Hydrolase (EC3), Lyase (EC4),

Isomerase (EC5), and Ligase (EC6). Previous work, such as by Kumar & Choudhary

(2012), included the use of traditional machine learning techniques requiring a tedious

and crucial feature extraction step based on amino acid sequence alignment or using

structural descriptors without relying on sequence alignment (Dobson & Doig, 2005).

A summary of the main alignment-free methods for EC can be found in Amidi et al. (2016),
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while a systematic review on the utility and inference of various machine learning

techniques for functional characterization is presented in Sharma & Garg (2014) and in

Yadav & Tiwari (2015). Artificial neural networks (ANNs) in particular have often been

used in the past as predictive tools in enzyme activity and catalytic studies. Baskin, Palyulin

& Zefirov (2008) reviews several aspects in building quantitative structure-activity

relationship (QSAR) models using ANNs, while Szaleniec (2012) focuses on the application

of ANNs in QSAR modeling in enzyme reactivity prediction and relevant methodological

issues that arise. In a recent review from Li, Zhang & Liu (2017), the effectiveness of ANNs

for catalysis prediction and design of new catalysts is discussed from the perspective of both

experiment and theory and common challenges are presented.

A limitation in standard machine learning approaches is that the features have to be

predefined, the appropriate choice of features affects the prediction accuracy and there is

limited flexibility for model changes or updates (all preprocessing steps have to be

repeated). These drawbacks are overcome by deep learning techniques that perform a

seamless feature extraction from the input using conventional gradient-based methods or

propagation of activation differences if the interpretability of features is essential

(Shrikumar, Greenside & Kundaje, 2017). With the common availability of data and an

ever-increasing computing power, deep learning approaches, such as convolutional neural

networks (CNNs), proved to be very efficient and outperformed traditional approaches.

Through their successive use of convolutional filters, pooling operations, and fully-

connected layers, they mimic how the brain works as they lead the resulting network to

focus on features that are crucial in solving supervised tasks. Thanks to their potential

to leverage the information contained in considerable amounts of input data, they

appear as a way to automatically construct features that we would have had to handcraft

ourselves otherwise.

The popularity of deep learning applications in the field of computational biology,

bioinformatics, and medical informatics has drastically increased the last years

(Angermueller et al., 2016; Jones et al., 2017;Min, Lee & Yoon, 2017). While deep networks,

such as sparse auto-encoders, recurrent neural networks (RNN) and long short term

memory (LSTM) cells have been exploited for protein structure prediction (Lyons et al.,

2014; Heffernan et al., 2015; Spencer, Eickholt & Cheng, 2015; Nguyen, Shang & Xu, 2014;

Baldi et al., 2000; Sonderby & Winther, 2014; Di Lena, Nagata & Baldi, 2012) and protein

classification (Asgari & Mofrad, 2015; Hochreiter, Heusel & Obermayer, 2007; Sonderby

et al., 2015), convolutional architectures are not very common and have been used mainly

for gene expression regulation (Alipanahi et al., 2015; Lanchantin et al., 2016; Zeng et al.,

2016; Kelley, Snoek & Rinn, 2015; Zhou & Troyanskaya, 2015) and DNA/RNA binding

(Jones et al., 2017). CNNs have been applied for the prediction of protein properties by

Lin, Lanchantin & Qi (2016) and in combination with RNNs comprised of LSTM cells by

Li, Zhang & Liu (2017) for enzyme function prediction based on sequence information.

The closest to our work is a 2D CNN ensemble proposed by Zacharaki (2017) for EC

which exploits mainly, but not purely, the protein structure. It achieved 90.1% accuracy

on a benchmark of 44,661 enzymes from the PDB database. The protein structure was
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represented by multiple 2D feature maps characterizing the backbone conformation

(torsion angles) and the (pairwise) amino acids distances. The results showed that the

purely structural features (torsion angles) had limited contribution. This may be related to

their global nature coming from the 2D representation, which fails to characterize the

local 3D shape.

Recently, architectures directly dealing with 3D structures were tested on various

datasets. Maturana & Scherer (2015) extended the use of CNNs from images to volumes

with a 3D CNN approach called VoxNet. They showed that this strategy could be effective

in solving tasks that lie in the 3D space by benchmarking it on traditional datasets

(from domains such as LiDAR, RGBD, CAD) and subsequently outperforming traditional

approaches. The 3D CNN uses as input volumetric data (of size 32� 32� 32) containing

occupancy information and targets the problem of supervised classification. Other

works such as the one ofHegde & Zadeh (2016) also take advantage of a 3D representation

of the data towards classification. In their work, the authors present two different

representations of it: one via voxels, and the other one via projected 2D pixel images.

Their ensemble of networks slightly outperforms VoxNet on the ModelNet10 dataset and

comes at a higher computational cost.

MATERIALS AND METHODS
Dataset
The dataset used in this study has been retrieved from the RCSB PDB (http://www.rcsb.org),

which contained 63,558 enzymes as of mid-March of 2017. It has been randomly split in

training and testing set with the proportions 80/20%. Also, 20% of the training set has

been put aside for validation and was later used for model selection. The details of each

of those sets have been summed up in Table 1.

Representation space and occupancy grid
It has been established (Illergard, Ardell & Elofsson, 2009) that structure is far more

conserved than sequence in nature. Since evolutionary relationships have been recognized

as a confounding factor for EC, choosing an approach that focuses on spatial

representation will be particularly robust in that respect. For this reason, we aim at

building a model that seamlessly extracts relevant shape features from raw 3D structures.

Accordingly, enzymes are represented as a binary volumetric shape with volume elements

(voxels) fitted in a cube V of a fixed grid size l with respect to the three dimensions.

Continuity between the voxels is achieved by nearest neighbor interpolation, such that for

(i, j, k) ∈ [[0,l-1]]3 a voxel of vertices

ði þ dx; j þ dy; k þ dzÞ j ðdx; dy; dzÞ 2 f0; 1g3

takes the value 1 if the backbone of the enzyme passes through the voxel, and 0 otherwise.

Instead of extracting features from this 3D structure and analyzing the calculated multi-

channel 2D feature maps (as performed in Zacharaki, 2017), we introduce this structure to

the CNN, which optimizes its internal parameters (weights and biases of convolutional
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filters) using the backpropagation algorithm (Rumelhart, Hinton & Williams, 1986).

The output of the convolutional filters comprises the feature maps that are selected by the

method as best performing for the specific classification task.

To construct this shape representation, some preprocessing steps are necessary. First,

protein structure is mapped to a grid of a predefined resolution. The selection of grid

resolution determines the level of complexity/scale retained for the enzymatic structures.

A full resolution is not preferred due to high data dimensionality and because fine local

details are less relevant in characterizing enzymes’ chemical reactions. Thus, in order to

avoid to get trapped into local minima, side chains are ignored and enzymes are

represented exclusively through their “backbone” atoms that are carbon, nitrogen,

and calcium.

Additionally, we note that enzymes do not possess any absolute spatial orientation.

Unlike objects such as chairs or boats that appear usually with a specific orientation,

proteins can have any orientation in 3D conformational space, thus the Cartesian

coordinates defined by the model stored in PDB represent only a frozen in space and

time snapshot of an overall highly dynamic structural diversity. The orientation is

irrelevant to the properties of the protein. This observation underlines the need of either

a rotation invariant representation or of a convention that makes output structures

comparable one to another based on the definition of an intrinsic coordinate system.

We define as origin of this intrinsic coordinate system the consensus barycenter of the

protein as it is defined by taking into account only the four atoms of the backbone for each

residue, and as axes the principal directions of each enzyme calculated by principal

component analysis. Each structure is rotated around its center and the three principal

directions of the enzyme aligned with the three axes of the Cartesian coordinate

system. Instead of defining a common reference frame and aligning the objects before

building the prediction model, other works (Brock et al., 2016; Hegde & Zadeh, 2016;

Maturana & Scherer, 2015) applied rotations around relevant axes for data augmentation.

We decided to spatially normalize the data instead of arbitrarily augmenting them

(by random rotations) because the number of samples is already big enough and an

adequate sampling of all possible orientations would lead to an extremely large dataset

difficult to handle. However, similarly to these works the definition of orientation includes

uncertainties about the direction (left-right, bottom-up), which we tackled also by

data augmentation.

Another critical part of the process is to determine how the enzymes should be fit in

their volumes, as those can be of all types of shapes and sizes. Should we scale enzymes

Table 1 Structure of the dataset.

EC1 EC2 EC3 EC4 EC5 EC6 Total

7,096 12,081 15,290 2,875 1,703 1,632 40,677 Training

1,775 2,935 3,809 743 488 419 10,169 Validation

2,323 3,717 4,762 858 571 481 12,712 Testing

11,194 18,733 23,861 4,476 2,762 2,532 63,558 Total
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separately to make them fit in their respective volumes? Or, on the contrary, should we

scale all enzymes in a uniform manner? We choose to select the second option because of

two reasons. First, doing otherwise would lead enzymes to be represented at different

resolutions. Second, biological considerations invite us to make the convolutional

network aware of the size difference between samples, as those may be an implicit feature

regarding class determination. We already know that our source files provide the

coordinates of the enzymes at a same scale. After all, proteins are comprised of various

combinations of equally sized amino acids. This scaling issue is therefore equivalent to

determining a maximum radius Rmax so that the atom occupancy information contained

in the sphere centered on the barycenter of the enzyme and of radius Rmax fits into V.

This situation is illustrated in Fig. 1.

Rmax has to be large enough so that a sufficient number of enzymes fit the most of their

volume inside V. Conversely, it also has to be small enough so that most enzymes are

represented at a satisfactory resolution.

As a result, a homothetic transformation with center S and ratio � defined by

S center of V and � ¼ l

2
� 1

� �
� 1

Rmax

(1)

is performed on all enzymes to scale them to the desired size.

When l is low, the grid is coarse enough so that the voxels of the structure have a

contiguous shape. Conversely, big volumes tend to separate voxels, which engender

“holes.” In that case, consecutive backbone atoms ðAi
!
;Aiþ1
��!Þ are interpolated by p

regularly spaced new points computed by

ðp � k þ 1Þ � Ai
!þ k � Aiþ1

��!
p þ 1

(2)

Rmax

V

Figure 1 Illustration of the meaning of Rmax with respect to volume V.

Full-size DOI: 10.7717/peerj.4750/fig-1
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where k varies from 1 to p. The latter is determined empirically beforehand on enzymes of

the training set.

A last preprocessing step is to remove potential outliers from the volume. This is done

by eliminating voxels that do not have any immediate neighbor.

The illustration of the output volume obtained for different grid sizes has been

provided in Fig. 2.

Data augmentation
As noted earlier, differences in spatial orientation had to be considered so that volumes

can be comparable one to another.

Keeping the orientation constant, we perform data augmentation by applying

transformations that preserve the principal components along the three axes, i.e., flips

and combination of flips. The number of possible transformations applicable to each

protein is 23-1.
During training, all samples go through the process described in Algorithm 1.

Architecture
We considered shallow architectures in order to develop a framework that can be

trained with common computational means. A grid search of configurations has been

conducted on the training set and led us to consider the two-layer architecture presented

in Fig. 3: input volumes of size 32 � 32 � 32, containing the structural coordinates of

the enzymes encoded in voxels, first go through a convolutional layer of 32 filters of size

9 � 9 � 9 with stride 2. Then, a second convolutional layer of 64 filters of size 5 � 5 � 5

with stride 1 is used, followed by a max-pooling layer of size 2 � 2 � 2 with stride 2.

Finally, there are two fully-connected layers of 128 and six (the number of classes) hidden

units respectively, concluded by a softmax layer that outputs class probabilities

corresponding to the six first-level EC numbers.

Several components of the VoxNet architecture depicted byMaturana & Scherer (2015)

have also been investigated in our network. Leaky ReLU with parameter a = 0.1 is used as

activation layer after each convolutional layer. The L2 regularization technique of strength

A B C

Figure 2 Illustration of enzyme 2Q3Z for grid sizes l = 32 (A), l = 64 (B), and l = 96 (C).

Full-size DOI: 10.7717/peerj.4750/fig-2
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� = 0.001 is applied on the network’s layers. Overfitting is also tackled using dropout

throughout the network.

In summary, this model contains 804,614 distinct parameters (including biases), which

is approximately 13% less than for the VoxNet architecture.

Additionally, the Adam optimizer introduced by Kingma & Ba (2015) has been chosen

for its computational efficiency and low need of hyper-parameter tuning.

The categorical cross entropy is used as loss function, since the latter can be adapted to

multiclass classification. Two approaches are considered for computing this loss. The first

one assesses misclassification error irrespectively of individual class sizes, whereas the

second one takes class imbalance into account and uses customized penalization weights

for each class. In this second approach, the aim is to compensate the lack of training

samples in under-represented classes by providing a greater penalization to the loss in the

event of misclassification than for larger classes.

The cross entropy loss is given by

L ¼ �
X
x2set

X6
i¼ 1

wi � dx;i � logðp̂x;iÞ (3)

Algorithm 1 Summary of the preprocessing steps done to each enzyme at training time

Data: N training enzymes, grid size of l, homothetic transformation ratio �, p interpolations,

probability pflip to flip with respect to each axis.

Input: Raw coordinates contained in PDB files

Output : Volumes of binary voxels representing backbone atoms occupancy

1 foreach of the N enzymes of the training set do

2 Step 1: structural information extraction

3 Extract coordinates of backbone atoms from its PDB file

4 Step 2: holes completion

5 Interpolate consecutive backbone atoms by p new points

6 Step 3: size adjustment

7 Center barycenter S of the coordinates on (0, 0, 0)
8 Homothetic transformation of each point with center S and ratio �

9 Step 4: enzyme orientation

10 Principal component analysis (PCA) transformation

11 Step 5: random augmentation

12 if True with probability pflip then

13 Flip coordinates with respect to the origin along x—axis

14 if True with probability pflip then

15 Flip coordinates with respect to the origin along y—axis

16 if True with probability pflip then

17 Flip coordinates with respect to the origin along z—axis

18 Step 6: voxelization

19 Center barycenter S of the coordinates on l
2
; l
2
; l
2

� �
20 Transform coordinate points into binary voxels
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where p̂x;i is the predicted probability of enzyme x belonging to class ECi, dx,i the quantity

equal to 1 only if enzyme x belongs to class ECi, and wi the weight associated to class ECi.

For the first approach, all weights wi are taken equal to 1. For the weighted approach,

we chose weights according to the formula

wi ¼
max
j2½½1;6��

#ðECj training enzymesÞ
#ðECi training enzymesÞ (4)

which increases the contribution of the under-represented classes by an amount inversely

proportional to their size and in respect to the largest class.

Metrics
Among the various multi-class metrics that have been studied by Sokolova & Lapalme

(2009), we selected the most representative ones to assess the model’s performance. The

metrics are based on the confusion matrix whose elements C(i, j) with i, j ∈ [[1, 6]] indicate

the number of enzymes that belong to class ECi and are predicted as belonging to class

ECj. They include:

� Accuracy which captures the average per-class effectiveness of the classifier:

Accuracy ¼
P6
i¼1

Cði; iÞ
P6
i;j¼1

Cði; jÞ

Input shape

32

32
32

12
12

12

8
8

8

128 6

12

12

12

8

8

8

9

9

9

5

5

5

×32 ×64

+ Dropout(0.2) + Pool(2,2,2)
+ Dropout(0.3)

+ Dropout(0.4)

Output predictions

Figure 3 Drawing of the architecture selected for our experiments. Full-size DOI: 10.7717/peerj.4750/fig-3
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� Precision, recall and F1 score which are calculated per class ECi:

PrecisionECi ¼ Cði; iÞP6
j¼1

Cðj; iÞ
RecallECi ¼ Cði; iÞP6

j¼1

Cði; jÞ

F1ECi ¼ 2� PrecisionECi � RecallECi

PrecisionECi þ RecallECi

For each class, precision gives us an idea of the proportion of correctly classified enzymes

among enzymes that have been classified in that class, while recall highlights the proportion

of correctly classified enzymes among enzymes that actually belong to that class.

� Macro precision, recall and F1 score which express average performance over the six

enzyme classes:

PrecisionM ¼ 1

6

X6
i¼1

PrecisionECi RecallM ¼ 1

6

X6
i¼1

RecallECi

F1M ¼ 2� PrecisionM � RecallM

PrecisionM þ RecallM

Final decision rule
At testing time, several approaches are considered for determining an enzyme’s final class.

� The “None” strategy consists of making a prediction based on the model of the 3D

shape without any transformation.

� In the “flips” approach, the 23-1 possible combinations of flipped volumes are

generated and introduced to the classifier. The final class prediction î is either:

– the class of maximum total probability (probability-based decision), determined by

î ¼ arg max
i2½½1;6��

Xn
j¼1

p̂i;j

with n the total number of flips used during inference and p̂i;j the probability to

belong to class i during flip j

– or the class selected by majority voting (class-based decision), computed through the

formula

î ¼ arg max
i2½½1;6��

Xn
j¼1

d̂i;j

where d̂i;j equals 1 if at flip j, the enzyme is predicted to belong to class i, 0 otherwise.

� The “weighted flips” (W. flips) strategy is also based on fusion of decisions produced for

each flipped volume, but this one weights each decision by a different coefficient, such
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as 1
dxþdyþdzþ1

, which highlights transformations with the least number of flips. Just like

the previous approach, the final result can be determined from either a probability- or

class-based viewpoint.

Hyperparameter selection
Radius Rmax and interpolation parameter p
A crucial point in the presented approach is to make a cogent selection of Rmax.

As previously discussed, this parameter controls the trade-off between the level of

information (l) retained in each volume and the resolution with which they are conveyed

(Rmax). Figure 4 shows the analysis of the dataset from these two perspectives. The graph

on the left helps us assess the minimum radius for which a decent amount of enzymes will

be totally included in the volume, whereas the graph on the right highlights the quantity

of information retained by each radius.

In details, from Fig. 4A we can see that the majority of enzymes can fit in a sphere

with radius between 25 and 75 Å, with a peak around 35 Å. In Fig. 4B, each point (x, y) on

a curve of radius R shows the percentage y of training enzymes that have at least x points

included within radius R around their respective enzyme barycenter. Based on both

graphs, we select a value of Rmax = 40, that is big enough to capture more than half

of enzymes in V, but small enough so that the smallest enzymes have radii of at least

half of Rmax.

Empirical observations show that a grid of l = 32 does not require any atom

interpolation. Therefore, p is set to zero for our computations. For denser grids, e.g.,

with grid size l = 64 or 96, appropriate p values were p = 5 and p = 9, respectively.

Random selection of transformations and samples
Regarding data augmentation, the probability of enzyme flip along each axis has been set

to 2/10. That way for each enzyme, higher numbers of flips have a lower probability of

happening. Also for each pass, approximately half randomly selected enzymes are to be
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Figure 4 Analysis of the distribution of the radii among training enzymes (A) and corresponding

level of information conveyed (B). Full-size DOI: 10.7717/peerj.4750/fig-4
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augmented by flips (or a combination of flips). This process is useful, as it will help us

obtaining a robust classifier.

RESULTS
We trained the model with and without weights adjustment in the loss function using a

fivefold cross-validation scheme. The evolution of performance on one of the folds with

increasing number of epochs is shown in Fig. 5. With the adopted configuration of

hyperparameters, the model converges after 200 epochs.

Cross-validation results associated with our experiments are shown in Table 2. For each

fold, both networks with and without class weights (respectively called “adapted” and

“uniform” models) have been trained on a training set of 50,846 samples and tested on the

remaining 12,712 samples. The cross-validation performance of each model has been

evaluated using each of the five inference schemes described earlier and with both micro-

and macro-level metrics.

Overall, the model that performs best in terms of both accuracy (77.6%) and macro F1

(73.7%) is the one with uniform weights using no data augmentation.

Precision per class on under-represented classes (EC4, 5, 6) is far better on uniformly

weighted models compared to adapted models, with best scores being 97.2%, 97.3% and

97.7%, versus 83.6%, 59.1% and 35.1% respectively. Over-represented classes (EC2, 3)

have roughly the same performance in those two types of model.

It is worth noting that by augmenting the data, the precision per class is noticeably

improved on under-represented classes (EC4, 5, 6) in both uniform and adapted models.

In fact, in the uniformly weighted framework, the best data augmented models achieve

97.2%, 97.3%, and 97.7% versus 92.7%, 88.8%, and 84.9% for the non-augmented one

for EC4, 5, 6 respectively. An interpretation to this fact is that the configurations

produced with flips are good at imitating plausible configurations that hold similar

EC properties. Similarly, using data augmentation during inference for the adapted

framework achieves better performance than when it is not used, with 83.6%, 59.1%,

and 35.1% versus 69.6%, 46.2%, and 32.4% for EC4, 5, 6 respectively.
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Figure 5 Evolution of the network’s performance during the training process with uniform (A) and

adjusted (B) weights. Full-size DOI: 10.7717/peerj.4750/fig-5
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Recall per class on over-represented classes (EC2, 3) are best with uniformly weighted

models (78.5% and 90.9% respectively). It is worth noting that the adapted model

outperforms the uniform one on under-represented classes (EC4, 5, 6) with 71.7%,

66.7%, 66.5% recall per class respectively, compared to 64.5%, 52.5%, and 38.2%

respectively on uniform models. This drastic performance increase was once again

expected, as we know that the adapted-weights network was heavily penalized for its

errors on small classes during the training process.

Uniformly weighted models perform best in terms of F1 scores, ranging from 52.6% for

the smallest class (EC6) to 79.9% for EC1, with a macro F1 of 73.7%.

Computation time
Our architecture was implemented on Python 3 using Keras (Chollet, 2015) on top of a

GPU-enabled version of TensorFlow (Abadi et al., 2015). Enzyme information has been

extracted using the open-source module BioPython, a fast and easy-to-use tool presented

by Cock et al. (2009). The complete training of our model on 50,846 samples took about

5 h on an Intel i7 6700K machine with 32 GB of RAM and a GTX 1080 graphics card.

During the training phase, the code computes batches in parallel and stores them in a

queue in real-time, so that the main computational burden comes from neural network

calculations and not the representation process. The average prediction time of the

function of a single enzyme was about 6 ms without flips, or 50 ms with flips.

DISCUSSION
The general trend is that uniformly weighted models perform well in terms of macro

accuracy, macro precision as well as macro F1 while adapted models are slightly better in

macro recall. More particularly, on under-represented classes (EC4, 5, 6), models perform

better in terms of precision per class when using flip data augmentation, which means

that using data augmentation increases reliability on predictions. This can be explained by

the fact that the classifier has more examples at hand, which makes its predictions more

robust. Interestingly, on under-represented classes, uniform models have the highest

precision per class and the lowest recall per class while adapted models are exactly the

opposite: they have the lowest precision per class and the highest recall per class. The

interpretation of this clear trend is that enzymes coming from under-represented classes are

not always recognized by uniform classifiers as they are biased towards enzymes from

over-represented class because the classifier does not correct for class imbalance. On the

contrary, enzymes from under-represented classes are well recognized by adapted classifiers

as they account for class imbalance, but this comes at a price: by predicting more enzymes

as being in those under-represented classes (false positives), the classifier tends to make a

lot more mistakes which leads to a low precision per class.

Further improvements of the method
In parallel, we investigated possible improvements in the architecture. We introduced

batch normalization (Ioffe & Szegedy, 2015) at several positions of the network and

repeated the same experiments as before. Those were placed after every activation layer,
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as suggested by Mishkin, Sergievskiy & Matas (2017). Also, Leaky ReLU activation layers

were replaced by PReLU (He et al., 2015) layers which enable the network to learn

adaptively the Leaky ReLU’s best a parameter. Although these changes led the network to

converge faster to a stable optimum, the final performance increase was of an order of

magnitude of only one percent and came at a higher computational cost.

In the following, we considered the transition from a binary representation capturing

only shape information to “gray-level” representation capturing also information content.

Several biological indicators such as the hydropathy index (Kyte & Doolittle, 1982), or

isoelectric points (Wade, 2002) can be used to better describe local properties of amino

acids that are the building blocks of the protein structure. From the perspective of

computational analysis, these attributes can be incorporated into the representation

model by attaching to the shape also appearance information. Figure 6 illustrates this idea

showing the volumetric representation of two different attributes (hydropathy on the left

and charge on the right). The different attributes, if up to three, can also be merged into a

single structure visualized in color (RGB) scale. Different approaches to handle multi-

channel volumetric data (images) by CNNs have recently been presented in works such as

those of Zhang et al. (2017), Cao et al. (2016), Kamnitsas et al. (2017) and Nie et al. (2016).

The literature however on the use of deep networks for 3D shapes with multi-channel

appearance is limited. As preliminary analysis, we applied EnzyNet without modification

on the architecture, but with re-training for the adjustments of the weights of the

convolutional kernels. We introduced to the network either a single attribute (as a binary

3D image or gray-level 3D image), such as shape, hydropathy and isoelectric points, or a

combination of these different attributes. Two other ways of information combination

were examined: either each attribute was introduced as a different channel in the CNN, or

the outputs of the single channel networks were combined through a fusion rule.

However, all methods showed an increase of the order of magnitude of one percent.

Further investigation will be required to appropriately harness this added information.

Furthermore, in the current study a relatively small grid size was selected due to

computational limitations. However, as can be seen in Fig. 2 the details of the spatial

structure of proteins can be better differentiated for higher values of l. The next step of this

work would be to adapt the current architecture accordingly into a similar network that

A B

Figure 6 Illustration of the hydropathy (A) and charge (B) attributes incorporated into the shape

model for enzyme 2Q3Z. Each attribute is illustrated in color for better visualization, but it actually

corresponds to a single channel. Full-size DOI: 10.7717/peerj.4750/fig-6
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processes higher-resolution volumes. This could enable the network to capture more

subtle features and potentially boost the performance of the classifier. On the other hand,

the model performance using a finer representation might be more sensitive to possible

inaccuracies in protein structure prediction. Initial tests showed that the appearance of

artifacts in the location of atoms at l = 64 or 96 had a negligible impact on accuracy.

Wei et al. (2015) present a method that enables 3D CNN to deal with multi-label

classification problems. This approach is interesting for us as it allows the extension of our

method to the classification of multi-label enzymes. The obtained performance could

subsequently be compared to previous work Amidi et al. (2017).

Other approaches based on the 3D representation of enzymes are also possible.

Brock et al. (2016) performed very well on the ModelNet dataset using generative and

discriminative modeling. Their voxel-based autoencoder is helpful for assessing the

key features that are correctly learned from the 3D shapes. We could elaborate this

information in order to identify significant features in a pre-training phase aiming to

obtain better prediction performance.
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