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Abstract

Flaviviruses, such as dengue, Japanese encephalitis, tick-borne encephalitis, West Nile, yellow 

fever, and Zika viruses, are critically important human pathogens that sicken a staggeringly high 

number of humans every year. Most of these pathogens are transmitted by mosquitos, and not 

surprisingly, as the earth warms and human populations grow and move, their geographic reach is 

increasing. Flaviviruses are simple RNA–protein machines that carry out protein synthesis, 

genome replication, and virion packaging in close association with cellular lipid membranes. In 

this review, we examine the molecular biology of flaviviruses touching on the structure and 

function of viral components and how these interact with host factors. The latter are functionally 

divided into pro-viral and antiviral factors, both of which, not surprisingly, include many RNA 

binding proteins. In the interface between the virus and the hosts we highlight the role of a 

noncoding RNA produced by flaviviruses to impair antiviral host immune responses. Throughout 

the review, we highlight areas of intense investigation, or a need for it, and potential targets and 

tools to consider in the important battle against pathogenic flaviviruses.
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1. INTRODUCTION

The Flavivirus genus includes over 50 arthropod-borne viruses (arboviruses).1 Yellow fever 

virus (YFV), after which the genus is named, was the first virus demonstrated to cause an 

arthropod-borne illness.2 Additional significant human pathogens, including the four dengue 

viruses (DENV), Japanese encephalitis (JEV), West Nile (WNV), Zika (ZIKV), and tick-

borne encephalitis (TBEV) viruses, belong to the genus.1,3

Universal countermeasures to combat the spread of flaviviruses are limited to preventing 

contact between the arthropod vectors and humans using public health approaches. YFV can 

be effectively combatted with the use of a highly effective vaccine, although this strategy is 

limited by expense and the willingness of nations to embark on widespread vaccination 

campaigns. There is one DENV vaccine approved for specific populations in several 

countries, but concerns about untoward effects have been raised recently.4,5 Other promising 

DENV vaccine candidates are in clinical trials,6,7 and the search for an effective DENV 

vaccine suggests much more intense study. There are approved JEV vaccines, which are safe 

and relatively effective.8 There are no approved vaccines to prevent WNV or ZIKV in 

humans. No antiviral therapeutics are approved to treat infected individuals nor are any 

antiviral treatments available that could prevent infection of at-risk populations. There exists 

significant need to reduce the impact of flaviviruses on the human population; however, this 

altruistic goal will require a much better understanding of flavivirus biology.

In this review, we focus on the biochemistry and molecular biology of mosquito-transmitted 

flaviviruses, particularly three (DENV, YFV, and ZIKV) transmitted by Aedes mosquitos 

because of their epidemic potential and toll on human health. Among these we will primarily 

highlight the four DENV because in terms of public health impact these are the most 

important mosquito-transmitted viruses. In several sections of the review we focus with an 

RNA centric lens and highlight the importance of RNA–RNA and RNA–protein interactions 

in the life cycle of these pathogens. Whenever possible we indicate important areas where 

Barrows et al. Page 2

Chem Rev. Author manuscript; available in PMC 2018 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



our understanding of this biology is incomplete and point out exciting new avenues of 

investigation. We also refer the readers to previous reviews9–13 and the book entitled Dengue 
and Dengue Hemmorhagic Fever edited by Gubler, Ooi, Vasudevan, and Farrar.14

It is our expectation that the study of flavivirus biology will lead to the discovery of 

fundamental processes operative in human cells. Indeed, there are historical precedents 

where virology has revealed new molecular biology of the cell (e.g., the discovery of introns 

in precursors to mRNAs15,16). Additionally, we posit that a detailed understanding of these 

viruses will reveal new targets for prevention and therapy.

1.1. Dengue Viruses

DENV are four closely related but antigenically distinct viral serotypes (DENV1, DENV2, 

DENV3, and DENV4) that cause very similar disease spectrum in humans.14 DENV re-

emerged in the late 20th and early 21st centuries due to increased geographic distribution of 

the mosquito vectors, Aedes aegypti and Aedes albopictus, and the lack of effective vector 

control methods, vaccines or antiviral treatments.17,18 Today, DENV circulates in tropical 

and subtropical regions throughout the world, causing ~100 million cases of dengue fever 

(DF) and, less commonly, severe dengue.19

Dengue is most frequently a subclinical infection, but DF can present as a self-limited illness 

with a high fever, severe aches, and other flu-like symptoms.12 Rarely progression to severe 

dengue can result in plasma leakage that leads to respiratory distress, shock, severe bleeding, 

and death.12

1.2. Yellow Fever Virus

Although many infections are subclinical, yellow fever may progress to a severe, lethal 

disease. Symptomatic yellow fever begins with an acute illness, termed the “period of 

infection”, with symptoms including fever, chills, headache, and other flu-like symptoms.20 

This symptomatic period is then followed by the “period of remission” where symptoms 

lessen.20 Most symptomatic individuals will clear the virus and recover at this point; 

however, one-quarter of affected persons progress to the “period of intoxication” marked by 

symptoms consistent with a hemorrhagic fever with the addition of jaundice, a defining 

clinical feature.20 Up to one-half of the patients who reach the “period of intoxication” die 

from yellow fever, but those who survive fully recover.20 An excellent vaccine (YFV-17D) 

exists that prevents yellow fever;21 however, no treatment is available that may reduce the 

severity of, or improve the outcome of, yellow fever.

Yellow fever is a historically important human disease that was often experienced as 

epidemics with severe consequences for local populations. Today, YFV is endemic to 

regions of Africa and South America,22 where YFV transmission between primate 

populations and mosquito vectors in sylvatic cycles serves as a natural reservoir.23 

Fortunately, YFV re-emergence is restrained by local vaccination campaigns, virus 

surveillance, and internationally coordinated outbreak responses.24 Recent outbreaks 

highlight that we are far from controlling yellow fever. An outbreak in Angola and the 

Democratic Republic of the Congo in 2016 caused 7627 confirmed and reported cases with a 

case fatality rate of ~14%25 and stressed the worldwide vaccine supply. More recently, an 
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outbreak in Brazil reached worrisomely close to cities with large populations and low 

vaccination rates such as Sao Paolo.26

1.3. Zika Virus

ZIKV was isolated in 1947 in the Ziika Forest in Uganda27 and remained a footnote among 

neglected tropical diseases until November 2015 when accumulating cases of microcephaly 

in Brazil were associated with a ZIKV epidemic several months prior.28–30 The best 

evidence suggests that there were multiple introductions of ZIKV into the United States.31 

For general reviews on ZIKV and ZIKV infection (Zika), see Weaver et al. (2016) and 

Aliota et al. (2017).32,33 ZIKV genetic material has been amplified from mothers diagnosed 

with Zika and carrying affected fetuses,34 from the amniotic fluid bathing an affected fetus,
35 and from neural tissues in fetuses diagnosed with microcephaly.35,36 Multiple in vivo and 

in vitro infection models demonstrated that ZIKV infection can disrupt neuro-development.
37–41 Finally, a prospective case-control study found an increased risk for microcephaly 

associated with congenital ZIKV infection.42 A recent report suggests that a single amino 

acid change (S139N) in the ZIKV structural protein, prM, of American strains increases 

infectivity in human and mouse neural progenitor cells and pathogenicity in mouse models,
43 but the relevance of this variant to the human microcephaly observed in the Americas 

remains to be determined. ZIKV is the first of the widely distributed arboviruses to be 

considered as a significant risk factor for human congenital malformations (however, see 

section 1.4 on JEV).

Although most infections are likely mosquito transmitted, ZIKV can spread directly from 

person to person through sexual contact or vertically from mother to fetus.44 This sets ZIKV 

apart from other pathogenic flaviviruses and creates significant and unexpected public health 

concerns. Zika is usually asymptomatic, and most symptomatic infections are mild and 

resemble those observed with dengue: rash, fever, arthralgia, conjunctivitis, myalgia, 

headache, and retro-orbital pain.44 There have been reports of hematospermia and symptoms 

resembling prostatitis following infection,45 and viral RNA and infectious virus have been 

detected in the semen of men weeks after clearing of acute symptoms.46 Most symptomatic 

ZIKV infections are self-limited and resolve in less than a week; however, there are 

documented cases of severe Zika in patients with other underlying conditions.47 Moreover, 

Zika has been strongly associated with neurological sequelae, most commonly Guillain–

Barré Syndrome, but also meningo–encephalitis and myelitis.44,48

1.4. Japanese Encephalitis Virus

Among flaviviruses, the antigenically related Japanese Encephalitis Virus (JEV) serogroup 

includes several neuroinvasive human pathogenic viruses.49 The namesake, JEV, causes 

serious illness, and many cases are fatal or result in persistent neurological damage50 

Recently, with the public attention on ZIKV as a teratogenic virus, a renewed interest has 

developed in observations that JEV can cross the placental barrier with severe consequences 

for the developing fetus.51 JEV is maintained in the environment in an avian–mosquito 

cycle, but zoonosis may be assisted by an intermediate mosquito–pig cycle that brings the 

virus into closer contact with humans, which are dead-end hosts.50 JEV is endemic 
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throughout India, Southeast Asia, Indonesia, and parts of Australia.50 Fortunately, there is an 

effective vaccine.8,52

1.5. West Nile Virus

West Nile Virus (WNV), which belongs to the JEV serotype, is broadly distributed 

throughout the world and maintained in the environment by an avian–mosquito life cycle. 

Incidental infections may cause disease in humans or agriculturally important animal species 

including horses.53 One-quarter of human infections develop nonspecific symptoms of a 

viral infection.54 Less than 1% of infections result in West Nile neuroinvasive disease, which 

may manifest as meningitis, encephalitis, and acute flaccid paralysis.54 Although full 

recovery from uncomplicated West Nile fever can be expected, infection is associated with 

prolonged fatigue. WNV neuro-invasive disease may be lethal or recovery may require 

specialized care with symptoms persisting beyond a year from infection.54 Anti-WNV 

therapeutics or vaccines are in various stages of development.55

1.6. Tick-Borne Flaviviruses

Ticks serve as vectors for a variety of flaviviruses. Tick-borne flaviviruses (TBFs) are 

important agricultural and human pathogens, although humans are dead-end hosts.56 Tick-

borne encephalitis virus (TBEV) is the most frequently encountered human pathogen among 

TBFs, and viral subtypes vary regionally with a geographic distribution that spans from 

Europe to Asia.56 Powassan virus is the only recognized human pathogenic TBF in North 

America.57

TBEV isolates exhibit degrees and types of pathogenicity, for instance, TBEV and Omsk 

hemorrhagic fever virus (OHFV) share 90% identity at the amino acid level, yet TBEV and 

OHFV cause encephalitis and hemorrhagic disease, respectively.58 In vivo evidence relying 

on viral genetic chimeras located critical determinates of encephalitis caused by TBEV to 

residues within the open reading frame of the RNA-dependent RNA polymerase (RdRp)/

methyltransferase (NS5 see section 2.5).58 Comparative studies using chimeric viruses built 

from the genomes of highly pathogenic and low pathogenic isolates located virulence factors 

in the variable region of the 3′ UTR (see discussion in section 5).59,60 Recently, TBEV was 

reported to preferentially replicate in neuronal dendrites,61 and cis-acting RNA sequences 

within the TBEV 5′ UTR are required to direct the localization of TBEV RNAs to 

dendrites.62 Studies comparing TBEV isolates should contribute to our understanding of the 

diverse pathologies associated with flaviviruses.

2. BIOCHEMISTRY AND MOLECULAR BIOLOGY OF FLAVIVIRUSES

2.1. Virion

2.1.1. Viral Surface—Flaviviruses share a common virion structure,13 and among these 

the structures of DENV and ZIKV are particularly well characterized. The mature DENV 

virion is a roughly spherical enveloped 50 nm diameter particle.63 The outermost layer of 

the virion is a glycoprotein coat made of repeating units of 180 copies of envelope (E) 

protein in combination with the viral membrane (M) protein.63 The surface reveals 

icosahedral symmetry and consists of 30 “rafts” each consisting of three E dimers.63–66 
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Elegant early work demonstrated that the E protein of flaviviruses is composed of the stem-

membrane domain and three other domains, namely, DI, DII, and DIII, where DI bridges DII 

and DIII.67 The fusion loop located at the tip of DII is important for interaction and fusion 

with the host membrane and is exposed after removal of the pr peptide from the immature 

form of M (prM). DIII on the other hand is thought to bind to the host receptors.68–70

Although the viral envelope is often portrayed as a static structure, the E protein structures 

exist as a dynamic and heterogeneous population lending to an atomic model of the virion 

that breathes over time (reviewed by ref 71). Viral breathing72 may be impacted by 

environmental73–75 or viral genetic factors.66,76,77 Viral breathing may manifest as delayed 

viral neutralization by specific antibodies78 and may have a significant role during viral–

receptor interactions.79

ZIKV shares many structural similarities with other members of its genus, such as the size 

of the immature and mature particles (namely, 60 and 50 nm in diameter), and the overall 

architecture of the surface of the virion. Nonetheless, there have been attempts to elucidate 

structural differences to ZIKV that could explain transmission patterns and tissue tropism 

not commonly observed with other human flaviviruses.

Two groups have elucidated the structure of mature ZIKV at atomic or near atomic 

resolution.80,81 Both groups showed interesting features of the E protein in ZIKV relative to 

previous structures of DENV, for example, the glycosylation pattern of the envelope protein. 

Indeed, ZIKV E glycosylation proves more similar to the neurovirulent WNV.80,81 ZIKV 

has one glycosylation site at Asn154, whereas DENV has two, at Asn67 and Asn154. These 

sites have been shown to be important for binding specific host membrane receptors, and 

differences in the glycosylation pattern of the E protein of various flaviviruses could explain 

differences in their cellular tropism. ZIKV E protein glycosylation is dispensable for viral 

propagation in cell culture; however, this post-translational modification is necessary for 

robust ZIKV viral replication in mouse models and in mosquitos.82,83 The group of S. Lok 

noted an insertion of an alanine residue at position 340 in ZIKV DIII that leads to 

differential positioning of DII and DIII and permits a hydrogen-bond network between five 

adjacent E proteins not seen in DENV2.81 The authors conclude that this leads to a more 

compact structure for ZIKV, which could play a role in ZIKV tropism, transmission, and 

pathogenesis.

Much emphasis has been put on the thermostability of ZIKV compared to DENV; however, 

it is not clear how thermostability explains the ability of ZIKV to infect the human 

genitourinary tract and persist in various bodily secretions such as cervical mucus, sperm, 

and urine. In fact, viral genetic studies are not fully consistent with the conclusions about 

thermostability.84,85 We posit that chemical stability may be an equally if not a more 

important consideration. With the pH ranging from ~4.4 in the vagina to ~7.9 in the 

Fallopian tube,86 one can hypothesize that the unique structural features of ZIKV make it 

more fit to thrive in various pH conditions of the female reproductive tract.

2.1.2. Interior of the Virion—Contained within the viral envelope is the viral genome 

complexed with capsid (C) protein, which together form the viral ribonucleoprotein (RNP). 
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The composition of the viral interior is presumed to be one viral genome and several 

hundred copies of C. C is a basic 12 kDa dimeric protein with asymmetric charge 

distribution, suggesting that one side of the protein, which has a high number of positively 

charged residues, interacts with viral RNA and the other, which is nonpolar, with the viral 

membranes and perhaps E protein.87 The C protein of Kunjin virus (a strain of WNV) forms 

tetramers on crystallization, creating a positively charged channel with a diameter of 11 Å.88 

Since this channel cannot accommodate double-stranded RNA we posit that C preferentially 

binds to single-stranded regions of the viral genome. Therefore, we proposed that the virion 

RNP consists of highly structured regions, primarily but not exclusively the untranslated 

regions (UTRs), devoid of C protein, and unstructured or poorly structured regions that form 

a complex with C.89

2.1.3. Viral Genome: Primary, Secondary, and Tertiary Structure—The flaviviral 

genome is a positive-strand RNA that contains a type I cap at its 5′ end and 

characteristically lacks a poly-A tail at its 3′end.13 The structure and function of the 5′ cap 

will be described in more detail in the section on RNA modifications (section 2.1.4). The 

viral genome encodes a single polyprotein that is co- and post-translationally cleaved by 

viral and host proteases into 10 mature viral proteins (C-prM-E-NS1-NS2A-NS2B-NS3-

NS4A-NS4B-NS5)90 (section 2.4). Surrounding the protein-coding region of the viral 

genome are two highly structured UTR’s of ~100nt at the 5′ end of the genome and ~400–

700nt at the 3′ end.90

The 5′ and 3′ terminal regions of the flavivirus genome consist of multiple RNA sequences 

and structures that are essential for replication and translation of the viral genome (see 

review by Gebhard et al.91). The 5′ terminal region of the genome can be broken into two 

domains. The first of these domains is all within the 5′UTR and contains the branched stem-

loop A (SLA) structure, a feature conserved throughout the flavivirus genus (Figure 1).92 

The SLA serves as a promoter for viral replication, likely through direct recruitment of the 

RdRp (NS5).93–95 Downstream of the SLA is a uridine-rich region that acts as a spacer 

between the two 5′ terminal domains and enhances viral replication.94 The second domain 

of the 5′ terminal region extends from the 5′UTR into the C ORF. This domain contains the 

5′ upstream of AUG region (5′UAR) that folds into a second stem-loop structure (SLB), the 

downstream of AUG region (DAR), the C coding region hairpin (cHP), the 5′ cyclization 

sequence (5′CS), and the downstream of 5′CS pseudoknot (DCS-PK).96–100 All of these 

elements have been shown to play roles in viral RNA replication, some through direct 

interactions with corresponding elements in the 3′UTR (5′UAR, DAR and 5′CS) (Figure 

1).91 The cHP has also been shown to play an important role in start codon recognition.99 

Recently, Liu et al. (2016) identified a conserved RNA switch, the 5′-UAR-flanking stem 

(UFS), which extends the SLB structure and enhances recruitment of NS5 and RNA 

synthesis.101

The 3′ terminal region of the flaviviral genome can be broken into three distinct domains, 

all of which reside within the 3′UTR.97,102 Domain 1, previously known as the variable 

region, is the least conserved in the 3′UTR and is most notable for the presence of two stem-

loop structures (SLI and SLII) that form pseudoknots (PK1 and PK2) (Figure 1).91,103,104 

Because of their resistance to the 5′ to 3′ exonuclease, Xrn1, these two structures are 
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known as exonuclease-resistant (xr)RNA1 and xrRNA2 (Figure 1). These two structures are 

important for the formation of two forms of the subgenomic flaviviral RNA (sfRNA). These 

sfRNAs (sfRNA1 and sfRNA2) play critically important roles in the suppression of host 

innate immunity and adaptation to different hosts (see section 5 and published 

reviews91,103,104). The xrRNA structures from Murray Valley encephalitis virus and ZIKV 

have been solved at atomic resolution, and provide an elegant explanation for the 

exonuclease resistance of these RNAs.105,106

Domain 2 of the 3′ terminal region contains either one (e.g., ZIKV and YFV) or two (e.g., 

DENV and JEV) conserved dumbbell structures, DB1 and DB2 (Figure 1), which harbor 

sequences that are essential for both replication and translation.107–109 These dumbbell 

structures are predicted to form pseudoknot structures (PK3 and PK4) that are essential for 

their role in translation and may also function as additional Xrn1-stalling sites in a species-

specific manner (see section 5).104,107,110–113

Domain 3 of the flavivirus genome is highly conserved in all members of the flavivirus 

genus and contains the 3′DAR, 3′CS, and 3′UAR sequences that interact with the 

corresponding regions located at the 5′ end of the genome and are required for 

circularization and replication of the viral genome (Figure 1). Finally, this domain contains 

the 3′ stem-loop structure (3′SL), which is flanked on its 5′ end by the short hairpin 

(sHP)97,90,114 and is required for RNA synthesis.115,116

Circularization of the flavivirus genome is mandatory for replication and is mediated by 

direct interaction of the RNA sequences and structures present in the 5′ and 3′ terminal 

regions102,117,118 (Figure 1). The presence of inverted complementary sequences in the C 

gene (5′CS) and the 3′UTR (3′CS) was first proposed by Hahn et al. and has since been 

shown to be indispensable for mediating circularization of the genome.97,102 In addition to 

the 5′-3′CS interaction, direct interactions between the 5′UAR and the 3′UAR and between 

the 5′DAR and the 3′DAR are also required.102 These interactions have been characterized 

by extensive mutagenesis and have been directly visualized using atomic force microscopy.
96 Gamarnik and colleagues provided compelling data that the equilibrium between linear 

and circular forms of the genome are essential for efficient flaviviral replication.91,119

Identification and characterization of the aforementioned sequences in the 5′ and 3′terminal 

regions of the flavivirus genome have been enabled by the implementation of phylogenetic 

and computational prediction analyses followed by mutagenesis in reverse genetics systems 

to assess the effect on viral growth kinetics. Secondary structures predicted in silico have 

been verified by chemical and enzymatic structure probing methodologies (reviewed in refs 

91 and 103). To date, these studies have primarily been directed at the 5′ and 3′ terminal 

regions that together account for less than 10% of the full viral genome. One notable 

exception is a study by Proutski et al., where the authors utilized a computational approach 

to identify local RNA secondary structure across the viral genome and identified a multitude 

of potential secondary structures throughout the previously unexplored open reading frame.
120 The presence of structures in this region is suggestive of additional functional elements 

that may play a role in the viral life cycle outside of their protein coding function.
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Recently, the application of selective 2′-hydroxyl acylation analyzed by primer extension 

(SHAPE) chemistry and next-generation sequencing to predict local secondary structures 

has enabled full genomic structure mapping of viruses (e.g, human immunodeficiency virus 

(HIV) and hepatitis C virus (HCV)).121–124 Although these studies relied on purified, 

refolded RNA to characterize structures in these viruses, the rapid advancement in this 

technology now allows for full genome secondary structure prediction in vivo.125,126 Full 

genomic analysis of structures in the flavivirus genome native state within the virion and in 

an active infection may allow us to unravel the critical elements responsible for toggling 

between translation, replication, and packaging. A deeper understanding of the molecular 

switch between these critical processes may provide insight into potential constraints placed 

on the viral sequences and provide new opportunities to block these fundamental steps in the 

viral life cycle.

2.1.4. Viral Genome: RNA Modifications—RNA modifications are becoming 

increasingly recognized as important regulators of cellular gene expression.127 In 

flaviviruses, RNA methylation by viral enzymes has documented roles in infection.128,129 

Recent studies also demonstrate that flavivirus genomes are methylated by host 

methyltransferases (MTase) with important consequences for infection.

2.1.4.1. Methylation of the Flavivirus Genome 5′ End Is Critical for Virus 
Infection: RNA polymerase II transcripts are modified during synthesis with a cap structure 

(m7GpppN) added to the initial base of the RNA through a 5′-5′ linkage (reviewed in ref 

130). Multiple enzymes participate in these reactions: (i) RNA triphosphatase, (ii) 

guanylyltransferase, and (iii) N7-guanine MTase. The 5′ γ-phosphate is removed by the 

RNA triphosphatase to make it a substrate for capping by a guanylyltransferase. Subsequent 

guanosine cap methylation at N7 produces a “type 0” cap structure.131,132 The mRNA is 

additionally acted upon by a ribose MTase which adds a 2′-O-methyl group to the 

penultimate nucleotide, yielding a type 1 cap.133 The cap structure is a critical effector of 

mRNA metabolism that is important for several processes, whereas 2′-O-methylation serves 

to differentiate mRNA from foreign molecules.134

Flaviviruses possess all of the required enzymes needed to cap newly synthesized genomes 

in the cytoplasm. The NS5 protein harbors RNA-polymerase activity as well as putative 

guanylyltransferase and MTase activities.135–138 NS3 is a second critical virus enzyme that, 

in addition to protease and helicase activities, contributes RNA triphosphatase activity 

required for capping.139,140 The pathway of cap formation is similar between cellular and 

viral RNAs. The 5′ γ-phosphate is dephosphorylated by NS3, and NS5 appends a Gp cap. 

NS5 subsequently executes two methylations to initially yield an m7GpppA type 0 cap 

followed by a mature m7GpppAm type 1 cap.136 The flavivirus MTase is unique compared 

to cellular MTase because it preferentially methylates the cap of only viral RNA.141 Elegant 

biochemical assays have determined that m7GpppA-RNA is preferred as a 2′-O-methylation 

substrate by NS5 compared to GpppA-RNA. This preference dictates the sequence of 

methylation reactions performed by NS5.142

Mutational analysis of NS5 has revealed amino acid residues that are important for N7-

guanine methylation, 2′-O-methylation, or general methyltransferase activity. The 2′-O-
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methylation activity can be disrupted without affecting viral viability. In contrast, N7-

guanine methylation is absolutely required for virus infection.137,143 There are several 

possible explanations for why m7G-cap methylation is required by flaviviruses. First, it is 

likely that the cap stimulates viral translation initiation, although, as will be discussed below 

when describing translation of flaviviruses (section 2.3.1), initiation is likely to be mediated 

by noncanonical mechanisms. Second, the cap structure protects RNA from 5′ to 3′ 
exonucleases like Xrn1144 and likely reduces the extent of viral RNA decay. Protection from 

exonuclease activity, however, is not absolute as a significant fraction of viral genomes is 

degraded to form sfRNA (see sections 2.1.3 and 5). Finally, N7-guanine methylation could 

prevent detection of flaviviral genomes by hypothetical cellular factors that recognize 

unmethylated caps as foreign RNA.

Why is 2′-O-methylation important for flavivirus infections? Diamond, Shi, and colleagues 

found that a WNV 2′-O-methylation-deficient mutant virus (E218A) is attenuated in 

primary cells and immunocompetent mice while type I interferon (IFN) receptor-deficient 

mice and cells are completely susceptible to infection by the mutant virus.145 These authors 

further demonstrated that murine IFIT1 and IFIT2 proteins more effectively restrict mutant 

WNV without 2′-O-methylation in comparison to WT virus. Several reports have 

characterized human IFIT1 as a factor that recognizes the type 0 cap structure and inhibits 

translation, likely through blocking access of initiation factors.146,147 The resulting 

slowdown of viral protein synthesis has been linked to a heightened innate immune response 

that ultimately prevents productive infection.148,149 Taken together, these reports indicate 

that cap 2′-O-methylation allows cells to detect and restrict nonself RNAs using IFIT 

proteins.

2.1.4.2. Internal Adenosine Methylation in Flavivirus Infection: A widespread 

modification to cellular mRNA is methylation of the N6 position of adenosine, referred to as 

(m6A).150–152 This modification is found at internal mRNA nucleotides as well as the 

penultimate nucleotide of RNA pol II RNAs that begin with A, resulting in m6Am due to 2′-

hydroxyl methylation.131 Methylase and demethylase enzymes capable of adding or 

removing m6A have been identified and are known as “writers” and “erasers”, respectively. 

Moreover, several “reader” effector proteins that bind m6A in RNA have been characterized.
152,153 A recent technical innovation which has enabled identification of m6A sites involves 

use of m6A-specific antibodies to immunoprecipitate modified RNA molecules. This 

facilitates identification of m6A locations across the transcriptome.154–156

To date there have been two studies addressing m6A in flaviviruses,157,158 including YFV, 

DENV, WNV, and ZIKV. Locations of m6A in the genomes of WNV, YFV, DENV, and two 

ZIKV strains were mapped by Gokhale et al. This analysis revealed multiple regions within 

flaviviral genomes that are methylated, including significant m6A within the coding region 

of NS5.157 Lichinchi and colleagues also localized m6A in ZIKV RNA and probed 

functional roles for erasers, writers, and readers in infection.158 RNAi-mediated knockdown 

of METTL3 and METTL14 methyltransferases elevated ZIKV infection of 293T cells, while 

ALKBH5 demethylase knockdown inhibited infection. In addition, overexpression of 

YTDHF1/2 reduced levels of ZIKV RNA secreted from infected cells, suggesting that these 

proteins act as restriction factors, possibly by inducing decay of viral RNA. Lichinchi et al. 
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also observed that ZIKV infection changes patterns of m6A in host mRNA, implying that 

ZIKV may alter cellular gene expression through regulating m6A.158 These initial studies 

have just scratched the surface, and many open questions remain concerning roles for m6A 

in flavivirus infection.

In addition to providing interesting new insight into virus biology, studies detailing the 

molecular mechanisms of viral RNA methylation may facilitate approaches to treat and/or 

prevent infections in humans. Therapeutics designed to target flavivirus MTase enzymes 

may be potent drugs used to treat symptomatic infections. In addition, recombinant 

flaviviruses without 2′-O-MTase enzymatic activity are attenuated and protect against 

infection with virulent viruses, making them potentially attractive candidate vaccine strains.
159,160

2.2. Viral Attachment and Entry into the Cell

In this section, we briefly cover steps in the viral life cycle from attachment to release of the 

viral genome to the cytoplasm of the infected cell. We refer the reader to other reviews of 

these steps.161,162

2.2.1. Attachment—The viral envelope recognizes one or more cell surface factors to 

initiate viral entry. The complement of insect or mammalian host factors that engage the 

viral envelope during entry as well as the conformational changes induced in the viral E 

protein during entry are of great interest as potential antiviral targets for vaccine and drug 

development. Heparin sulfates were proposed as a viral attachment factor for DENV,163 and 

DC-SIGN was the first identified receptor for DENV entry in mammalian cells,164 while 

heat shock family proteins were identified as part of the receptor complex in mosquito cells.
165,166 Subsequent research has shown that the four DENV serotypes can enter the cell using 

many different receptors in mammalian and mosquito systems (reviewed in ref 167). Similar 

conclusions have been reached for the attachment of other mosquito-borne flaviviruses to 

mammalian and insect cells.168–175

The Amara lab selected a 293T cell line that was poorly permissive for DENV and designed 

a cDNA screen that identified genes which enhanced DENV infection when overexpressed.
79 The screen identified a suspected viral receptor, L-SIGN, and identified novel flaviviral 

receptors in the TIM and TAM family of phosphatidylserine receptors.79 Overexpression of 

TIM1 or TIM4 enhances DENV2 absorption, infection, and virus production by more than 

100-fold relative to the parental cell line.79 Overexpression of TIM1 carrying mutations in 

residues important for binding phosphatidylserine, however, does not enhance infection.79 

Since in mature DENV2 virions E protein obscures phosphatidylserine on the envelope and 

is therefore predicted to block binding to TIM1,63 one could postulate that conformational 

changes in E protein induced by endosome acidification could make phosphatidylserine 

available for TIM and/or TAM binding.

ZIKV has presented a challenging case study for understanding viral entry in the many cell 

types infected by this virus and represents an area of intense investigation. ZIKV may infect 

a subset of monocytes in most individuals;176,177 however, it also infects cells in placental 

tissues,34,38,178 eventually leading to severe neural infection in the developing fetus.
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36,40,41,179 Using mammalian in vitro models, AXL protein was proposed to be an important 

ZIKV receptor;178,180,181 however, in other systems ZIKV readily infects AXL−/ − neural 

progenitor cells in vitro182 and causes pathogenesis in a mouse model lacking AXL,183 

demonstrating that AXL cannot be the sole ZIKV receptor. The heterogeneity of receptor 

usage by ZIKV is consistent with the observations regarding DENV receptors.

2.2.2. Antibody-Dependent Enhancement—Severe dengue disease has been 

associated with the presence of non-neutralizing anti-DENV antibodies produced after 

infection with a heterologous DENV serotype. This phenomenon, termed antibody-

dependent enhancement (ADE),184 provides an alternative DENV entry mechanism using 

antibody–Fc receptor interactions (reviewed by ref 185). This phenomenon may not be 

restricted to DENV serotypes, and enhancement may be mediated by antibodies to 

heterologous flaviviruses (see refs 186–190 and references therein).

On the basis of these observations, an interesting hypothesis emerged that may explain how 

ZIKV crosses the placental barrier leading to severe fetal infection. In Brazil, pregnant 

women with pre-existing immunity to DENV were likely infected with ZIKV. The 

heterologous anti-DENV antibodies could enhance ZIKV infection in a subset of the 

mother’s Fc receptor expressing cells, which then embed into the placenta and expose the 

fetus to ZIKV. It was relatively straightforward to provide in vitro evidence to support the 

hypothesis,191–198 and a mouse model is supportive;199 however, in vivo evidence in 

primates and humans does not corroborate these findings, leaving the issue unresolved.
200–202 Recent work from the Ooi and Harris groups may provide an explanation for the 

difficulty in confirming ADE in human cases since it appears that the phenomenon may be 

only operative in a very narrow range of antibody titers.189,190

2.2.3. Entry—Flavivirus adsorption to the cell surface occurs via interaction with 

attachment factors. Subsequently, receptor-mediated endocytosis is the primary route by 

which flaviviruses are internalized.203–206 WNV and DENV2 virions have been observed by 

electron microscopy to be attached to electron-dense invaginations on the cell surface 

consistent with clathrin-coated pits in both mammalian203 and mosquito cell lines.205 

Clathrin-dependent entry by WNV and DENV2 was blocked by overexpression of dominant 

negative EPS15, a factor required for receptor-mediated endocytosis,207 in mammalian 

cells203 and mosquito cells.205 Knockdown of endogenous EPS15 also inhibited infection.
208 Finally, live-cell virus imaging using fluorescently labeled DENV2 and yellow 

fluorescent protein-labeled clathrin showed that the virions associated with and entered by 

clathrin-coated endocytosis.204

Flaviviruses within endosomes depend on the cellular vacuolar ATPase (vATPase) in order 

to deposit their genomes into the cytoplasm and productively infect a cell. The eukaryotic 

vATPases are multisubunit protein complexes that pump protons into the endosome, 

resulting in reduced endosomal pH.209 Using in vitro models of flavivirus infection, it was 

observed that bafilomycin, a vATPase chemical inhibitor, blocked infection of Japanese 

encephalitis virus (JEV) and WNV in mammalian and insect cell lines.203,210 The vATPase 

cannot assemble unless all subunits are present,209 and the observation that RNAi-mediated 

depletion of several individual subunits of the vATPase reduced WNV, DENV, and YFV 
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infections support the requirement for the vATPase complex during flavivirus infection.
208,211–213 These compelling in vitro data were corroborated by in vivo experiments 

showing that DENV2 propagation was inhibited when vATPase activity was inhibited in 

mosquitos214 and in mammalian in vivo models.215,216 The shared requirement for the 

vATPase for diverse flaviviruses has sparked great interest in this enzyme as a target for 

broadly acting antiflavivirals. Unfortunately, chloroquine, an inhibitor of endosome 

acidification that is approved for clinical use, was ineffective as an anti-DENV treatment in 

clinical trials.217

Endosome acidification causes the pH-dependent fusion of the viral membrane with the 

endosomal membrane. The model for fusion of the viral and cellular membranes is based 

upon elegant studies that illuminated the structure of the DENV2 E protein in the mature 

virion63,65,218 and the postfusion E protein219 and has been reviewed in ref 220. In response 

to acidification of the endosome, structural rearrangements in the E protein bring the viral 

and endosomal membranes into sufficiently close apposition such that spontaneous fusion 

with the cellular endosomal membrane occurs with the subsequent release of the viral RNP 

into the cytoplasm.220

2.2.4. Uncoating of the Viral RNP into the Cytoplasm—Although the disassembly 

of the viral RNP is far from understood, we proposed a model where elongating ribosomes 

drive the release C from the genomic RNA.89 Mechanisms of uncoating requiring 

degradation of C are not consistent with the fact that initial viral DENV translation does not 

require C degradation.221 In this context, it is important to note that most flaviviruses have a 

very low specific infectivity (infectious unit to genome unit ratio), and thus, we presume that 

many genomes that enter a cell will not result in productive infection. A substantial fraction 

of incoming genomes have been shown to be degraded, and this depends on ubiquitination, 

which is required for uncoating.221 The very early interactions between the viral genome 

and the host RNA binding proteins, which are critical to determine the course of viral 

infection, are incompletely understood.

2.3. Translation of the Viral Genome

As described above, the flaviviral ORF encodes for a polyprotein that is processed by viral 

and host proteases into three structural (C, prM, and E) and seven nonstructural proteins 

(NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) (Figure 2). There are, however, cases 

described in which different proteins are produced by ribosome frameshifting. In WNV, an 

alternative reading frame in NS4B produces a protein named N-NS4B/WARF4,222,223 and in 

Japanese encephalitis virus (JEV), a frameshift results in a C-terminally extended form of 

NS1 termed NS1′.224 Finally, in insect-specific flaviviruses, a protein named fifo is 

synthesized from an alternative reading frame spanning parts of NS2A and NS2B.225

2.3.1. Flavivirus Translation Initiation—As mentioned above, the viral genome is 

capped on the 5′ end with a type 1 cap (m7GpppAm),226 and this protects viral mRNAs 

from degradation by Xrn1.227 In addition, 2′O-methylation of the viral RNA masks the 

genome from identification by IFIT proteins as foreign RNA.145 Although the cap is 

required for efficient viral translation initiation,228 eIF4E, which supports cap-dependent 
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translation of most cellular mRNAs229 and strongly discriminates m7Gppp and Gppp, is not 

required for efficient DENV2 translation.230 It was proposed by Edgil et al. that the primary 

mode of DENV translation initiation utilizes eIF4E but that this can switch to an alternative 

translation mode when this protein is limiting.230 This model was based on the assumption 

that cap recognition is always mediated by eIF4E, but this assumption has been disproven by 

important studies that demonstrate that eIF3D, a subunit of the eIF3 protein complex, can 

recognize the cap and mediate cap-dependent translation initiation in some mRNAs with 

structured 5′UTRs.231 We propose that DENV2 employs noncanonical mechanisms to 

mediate cap-dependent translation initiation, possibly via direct recruitment of the eIF3 

complex.

Initiation of translation is likely enhanced by structures in the 3′UTR232 that recruit a poorly 

understood repertoire of host proteins.233 For instance, the viral 3′UTR recruits poly(A) 

binding protein (PABP) in a poly(A)-independent manner, presumably to support 

circularization of the viral mRNA for efficient translation.234

2.3.2. Flavivirus Translation Elongation and Termination—Once the 40S ribosomal 

subunit and associated factors are recruited to the viral RNA, it scans the 5′UTR until 

reaching the AUG start codon. Selection of the AUG is aided by a secondary structure 

element, the aforementioned cHP, located 14 nucleotides downstream of the start codon and 

stalls the 40S ribosomal subunit to ensure correct start codon selection.99

After the large (60S) ribosomal subunit joins, the 80S ribosome is poised for elongation, a 

process that has been viewed as somewhat unidimensional, but that is likely to be similar to 

translation initiation–versatile, regulated, and different for distinct classes of mRNAs.235 

Indeed, studies with flaviviruses may shed light into noncanonical modes of translation 

elongation.213,236,237 For example, the acidic phosphoproteins RPLP1 and RPLP2 of the 

ribosomal stalk, which are thought to recruit elongation factors to the ribosome, are 

exquisitely required for translation of DENV2 RNA but are not required for global cell 

protein synthesis.236 Indeed, our work has identified a region in the prM-E coding sequences 

where elongation is exquisitely sensitive to RPLP1 and RPLP2 depletion.236 As discussed 

above, flaviviral ORFs also have “slippery sequences” that cause the ribosome to change its 

reading frame, creating noncanonical proteins. Detailed studies of these noncanonical 

elongation mechanisms could reveal similar ones operative among specific classes of 

cellular mRNAs, which may share properties with the flavivirus genome.

Once the ribosome encounters the stop codon, translation termination occurs with the help 

of release factors eRF1 and eRF3, which catalyze the release of the polypeptide chain, 

leading to ribosome disassembly and recycling.235,238 Very little is known about flavivirus 

translation termination, and future studies should determine whether the conventional model 

for cellular translation termination is able to explain this step of flavivirus translation.

2.3.3. Translation at the Endoplasmic Reticulum—While it is possible that 

translation initiation starts in the cytosol, the elongating ribosome is likely to stall when the 

transmembrane domain in the C-terminus of the immature capsid protein (Figure 2) emerges 

from the ribosome exit tunnel and is bound by the signal recognition particle (SRP), which 
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delivers the entire complex to the translocon in the endoplasmic reticulum (ER) membrane. 

An alternative view is that the flaviviral genome is recruited to the ER and initiates 

translation using ER-associated ribosomes; this has been proposed for some cellular mRNAs 

(for two perspectives on this issue see refs 239–241). Several components of the SRP-

translocon pathway were found to be important for flavivirus propagation by RNAi and 

CRISPR loss of function genome-scale screens (SRP54, SRP9, SRP14, SSR1, SSR2, SSR3, 

SEC61, SEC63);211,213,242,243 however, this model still needs empirical testing because 

translocation to the ER can also occur in an SRP pathway-independent manner.244

Regardless of whether or not flavivirus translation initiates on ER-associated ribosomes, 

flavivirus polyprotein synthesis takes place in association with ER membranes. Fractionation 

of Kunjin infected cells followed by actinomycin treatment revealed that incorporation of 

radiolabeled leucine occurred mainly in the rough ER, consistent with translation in that 

organelle.245 Immunofluorescence labeling of Kunjin E protein identified protein 

accumulation on intracellular membranous networks that were consistent with ER.246 

Radiolabeled E protein was isolated most efficiently in the detergent-soluble fraction, 

demonstrating that viral proteins cannot be easily separated from membrane fractions.246 In 

addition, DENV247 and YFV248 prM and E were shown to be translated as products 

protected from protease digestion, consistent with translation into the lumen of the ER. 

These observations were recently extended in ribosome-profiling studies249 performed by 

our group in collaboration with the Nicchitta and Vasudevan laboratories.250 In these 

experiments, DENV-infected cells were separated into ER and cytosolic fractions to 

characterize viral and cellular translation in these distinct compartments. This revealed 

DENV RNA was highly enriched in ER fractions and, late in infection, became the 

dominantly translated RNA on the ER.250

2.4. Polyprotein Processing

The viral genome has a single open reading frame that is translated into a long polyprotein; 

however, efficient processing by host and viral proteases ensures that the mature viral 

proteins are produced (Figure 2). Processing is sufficiently rapid that no one has reported 

observing the full-length polyprotein as a single product during infection. A concise 

characterization of YFV polyprotein synthesis and maturation was presented by Rice and 

colleagues in YFV-17D-infected human SW-13 cell lines.251 Immunoprecipitation using 

YFV protein-specific rabbit antisera targeting either C, prM, or E proteins after at least 40 

min of continuous radiolabeling detected specific bands that corresponded to C, prM, or E 

proteins but no significant precursors.251 Using cell-free models of mRNA translation, the 

flavivirus TBEV E protein was efficiently cleaved in reactions containing an isolated ER 

fraction.252 These data suggest that processing of structural proteins requires ER factors and 

that when these factors are present processing is very efficient or unprocessed fusion 

proteins are readily degraded.

On the other hand, unprocessed intermediates of NS proteins can be observed in certain 

conditions. For instance, in a pulse-chase experiment, a form of NS1 with higher molecular 

mass accumulated first and subsequently disappeared, coincident with the accumulation of 

mature NS1.251 This suggested that NS1-NS2A is originally produced as a metastable 
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precursor that is subsequently processed into NS1 and NS2A. Similar analyses suggested 

efficient processing between NS2A and NS2B and between NS2B and NS3. Finally, a large 

precursor protein corresponding to NS3-NS4A-NS4B-NS5 as well as a number of processed 

intermediates and the mature viral proteins are observed,251 suggesting multiple paths to 

their production.

Cellular and viral proteases coordinate flavivirus polyprotein processing (Figure 2). The 

viral protease catalytically active holoenzyme is the trypsin-like NS3 protease in complex 

with its cofactor NS2B.253,254 Sites sensitive to YFV protease have in common two basic 

residues (Arg being the most common) flanked by amino acids with short side chains (often 

Gly).90 The dual cleavage between C and prM requires a coordinated two-step cleavage in 

which the viral protease, NS3, and cellular signalase cleave the C protein from the cytosolic 

and ER lumen side, respectively; releasing mature C into the cytosol and leaving a small part 

of the immature C protein in the ER membrane.255–257 Processing between prM-E and E-

NS1 is mediated by the endogenous signalase and does not require the viral protease.
247,248,252,258 A distinct cleavage between NS1–NS2A requires an unknown cellular 

protease.258 The remaining cleavage sites, NS2A–NS2B and NS2B–NS3, are mediated by 

NS3 in cis,259 while processing between NS3–NS4A and NS4B–NS5 is mediated by NS2B 

and NS3 in trans.260–263 The mature NS4A and NS4B proteins are generated by cleavage at 

two sites by NS2B/NS3 and the cellular signalase,260 leaving a 2 kDa protein named 2K 

peptide, which is inserted in the ER membrane (Figure 2).

Diamond and colleagues performed a screen for WNV host factors, which identified several 

subunits of the signalase (or signal peptidase complex (SPC)), of which the authors followed 

up on the role of signal peptidase complex subunit 1 (SPCS1).243 In SPCS1 KO cells WNV 

E protein and a high molecular weight protein reactive to anti-E antibodies is observed, 

suggesting that polyprotein processing is affected.243 Using overexpression constructs, the 

role of the signalase at the signal sequence for prM is observed to be uniquely sensitive to 

SPCS1 knockout, and lack of SPCS1 causes all tested viral subunits to be reduced.243 Also, 

signalase activity between NS4A and NS4B requires SPCS1, but NS1–NS2A processing is 

not clearly affected.243 Surprisingly, the cleavage between E and NS1 is much more 

dependent on SPCS1 when prM is present in the construct. Therefore, placement of NS1 in a 

more internal position on the construct renders it more dependent on SPCS1 for cleavage. 

The signalase activity may be context dependent or the composition of the signalase may 

vary.

Part of the maturation of viral proteins is the addition of post-translational modifications 

(e.g., ubiquitination). While we do not cover this area here, we refer the readers to a recent 

review264 and to section 3.4.

In summary, the processing of the viral polyprotein and the accumulation of mature viral 

proteins involves many processes that are beautifully coordinated during infection and 

represent intriguing targets for development of novel therapeutics.
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2.5. Viral Replication

Newly translated viral proteins co-opt the invading viral genome(s) and change its primary 

function from translation to replication (Figure 3).89 We posit that the high local 

concentration of viral NS proteins in the vicinity of the translating viral RNA and perhaps 

the effect of these proteins on cellular membranes drives the first critical switch for the 

genome from translation to replication. It is possible that this switch occurs more than once 

during early infection (see legend for Figure 3). The positive strand viral genome is copied 

into a negative strand viral antigenome, which in turn serves as a template for new genomes 

but to date has not been shown to have any protein coding capacity. It must be noted that an 

infectious unit (one plaque forming unit) could require multiple genomes to enter a cell, and 

thus, the specialization of genomes could be more complex than portrayed in this 

parsimonious model.

Viral replication requires an assemblage of viral RNA structures, viral proteins, and cellular 

factors. Major advances in understanding the viral and cellular factors that contribute to viral 

replication were derived by studies using a variety of flavivirus replicons. Khromykh and 

Westaway designed the first flavivirus replicon, a self-replicating, noninfectious viral-like 

RNA, based on the Kunjin flavivirus genome. The Kunjin-based replicon contained the 

5′UTR and the 3′UTR.265 In addition, the coding sequence for the C-terminal 

transmembrane domain from the E protein was retained as it was known to function as the 

signal sequence for the NS proteins,258 and the replicon contained the coding sequences for 

all NS proteins.265 The authors determined that the viral RNA coding for the first 20aa of C 

protein is necessary to sustain replication.265 Next, the authors demonstrated that the 

replicon could be modified by addition of exogenous coding sequences for selectable or 

screening markers.265 In a subsequent publication, the coding region for the viral NS5 

protein was deleted, and RNA replication was observed only when NS5 was expressed in 

trans,266 demonstrating that a synthetic viral-like RNA could be manipulated to aid study of 

viral replication.

Flavivirus replication depends on conserved RNA elements within the genome. As discussed 

in section 2.1.3, sequences at both the 5′ and the 3′ terminal regions and their long-term 

interactions are essential for RNA synthesis (Figure 1).96–98,267,268

2.5.1. Replication Complex—Viral RNA synthesis occurs in association with 

membranous rearrangements termed replication complexes (RC). The models we present 

here have been inspired by pioneering work of the Ahlquist and Bartenshlager groups on the 

structure of replication complexes for model (+) stranded RNA viruses.269–272 Dramatic 

intracellular membrane rearrangements were observed in flavivirus-infected tissues and 

cells,273 and these rearranged membranes were associated with accumulation of the viral 

replication intermediate, dsRNA, and viral nonstructural proteins necessary for replication,
274,275 suggesting that the viral membrane rearrangements have an important role in viral 

replication. Viral RNA synthesis and viral protein biogenesis, while both occurring in 

association with ER membranes, may involve membrane compartments with distinct 

characteristics.275 Recently, the ultrastructure of DENV and ZIKV replication complexes in 

human and mosquito cell lines was visualized using electron tomography.272,276,277 DENV-
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induced formation of invaginations into the ER lumen creating 80 nM–120 nm spherules 

that were often connected to the cytosol by a single, small pore.272,276 Modification of the 

lipid composition of the ER membrane is required to alter membrane curvature and form 

vesicle packets, and this is likely mediated by viral NS proteins (see discussion in section 

2.5.2).278 The RC contains a small pore that is open to the cytosol such that the interior of 

the RC is contiguous with the cytoplasm (Figure 3).272,276 Electron-dense structures 

consistent with ribosomes were observed on nearby membranes, suggesting an ER origin,272 

although the replication complex may arise by redistributing components of the ERGIC, 

Golgi, and trans-Golgi network compartments.279–283 Ribosomes were not observed within 

the invaginations, suggesting that viral translation does not occur within these structures. In 

addition, virions were observed within the ER lumen but never within nor budding from the 

replication structures, suggesting the invaginations were not precursors to virions. The 

consensus is that these structures are sites of significant viral genome replication. 

Interestingly, ZIKV RC resembled those of DENV but were found to be uniquely 

surrounded by microtubules and intermediate filaments.277 In Figure 3 we summarize these 

data and highlight how three critical functions of viral genomes, translation, replication, and 

viral assembly, occur in distinct compartments of the ER.

2.5.2. Viral Components of the Replication Complex—The composition of the RC 

is an area of important investigation and has been reviewed recently.284 Here we focus on 

the viral components of the RC and point out that the cellular components are much less 

well understood.

2.5.2.1. NS1: Viral replication requires NS1 through a poorly defined mechanism. 

Immunofluorescent labeling determined that DENV NS1 is similarly distributed compared 

with viral dsRNA and electron microscopy studies localized immunogold labeled DENV 

NS1 and dsRNA to rearranged intracellular membranes.274 In addition, Kunjin NS1 

similarly colocalized with dsRNA and immunoprecipitation (IP) of viral dsRNA also 

coimmunoprecipitated (co-IP) NS1.275 NS1 is known to be in the lumen of the ER (Figure 

2) and must connect with components in the RCs via transmembrane interactions (Figure 3). 

The Rice laboratory defined a role for NS1 during viral replication. A temperature-sensitive 

YFV NS1 mutant was isolated, which results in continuous accumulation of viral negative 

strand RNA at the permissive temperature but decreased negative strand RNA accumulation 

after shifting to the nonpermissive temperature.285 YFV NS1, expressed in trans, during an 

infection by a packaged, NS1-deficient YFV genome complements RNA accumulation;286 

however, structural proteins were present in these experiments, and given the duration of the 

experiments an impact of NS1 at viral attachment and entry could not be ruled out. Diamond 

and colleagues somewhat clarified this issue using an analogous WNV model of NS1 trans-

complementation by showing that viral attachment and entry are not significantly changed, 

although newly synthesized viral E protein is slightly reduced.287 NS1 localizes to sites of 

RNA synthesis, can be purified with other replication components, and is required for viral 

replication; however, unraveling the mechanism by which NS1 supports viral RNA synthesis 

requires further investigation.
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2.5.2.2. NS2A: NS2A is a poorly understood component of the replication complex. NS2A 

is a hydrophobic membrane protein lacking any known enzymatic activity.288 Similar to 

NS1, electron micrographs of Kunjin-infected cells reveal that immunogold-labeled dsRNA 

and Kunjin NS2A colocalize during infection to the same rearranged intracellular 

membranes.289 In addition, multiple nonstructural proteins and the viral 3′UTR were shown 

to bind GST-tagged NS2A,289 suggesting a role during viral replication. Finally, Shi and 

colleagues demonstrated that DENV NS2A is critical for RNA synthesis but not for 

translation of a DENV2 replicon.288,290 Given these data and specifically the many 

interactions between replication components and NS2A, it follows that the latter may 

function as a scaffold protein that organizes the replication complex.

2.5.2.3. NS4A and NS4B: NS4A and NS4B are polytopic membrane proteins278,291 

generated by coordinated post-translational cleavages from host and viral proteases.251,292 

Both viral proteins are components of the RC,272,289 and NS4A plays an important role 

during replication. Deletion of Kunjin NS4A293 or mutations introduced into the DENV 

replicon at the first transmembrane α helix of NS4A294 abolish viral replication. The 

mechanism(s) by which NS4A function are poorly understood.

Overexpression of WNV NS4A induced intracellular membrane rearrangements consistent 

with membrane rearrangements observed during viral infection.295 Subsequently, the 

Bartenschlager lab showed that expression of GFP-tagged DENV NS4A is sufficient to 

induce similar membrane rearrangements.278 A genetic study identified that NS4A connects 

luminal and cytosolic components of the replication complex, and further studies found that 

overexpressed NS4A oligomerizes, and NS4A interacts with NS4B.294,296 These data 

suggest that NS4A is an important scaffold supporting the replication complex. Furthermore, 

DENV1 NS4A was evaluated using a substitution assay in which short amino acid 

sequences from JEV NS4A were swapped into the corresponding positions of a DENV1 

clone.297 Efficient replication of a chimeric DENV1/JEV clone occurred only in the 

presence of mutations in the DENV1 NS4B ORF, suggesting that these two viral proteins 

interact.297 The NS4A–NS4B interaction was better characterized by Shi and colleagues, 

who showed that NS4A and NS4B co-IP each other in the absence of other viral 

components.298 They went on to show that a 36aa region of NS4A and a 62aa region of 

NS4B, each containing a transmembrane domain, are necessary for the interaction and using 

NMR identified the amino acids that mediate the interaction.298 Lindenbach and Rice 

discovered that DENV NS1 complements NS1-deficient YFV but only when YFV NS4A is 

mutated, suggesting that NS4A connects luminal NS1 to the cytosolic NS3 and NS5 

replication machinery.299 On the basis of the experiments described above, it is believed that 

NS4A may be a driver of the ER invaginations where RCs are assembled and may help 

organize the luminal, transmembrane, and cytoplasmic components of the RCs.

NS4B is a glycosylated300 membrane-associated291 viral protein that is essential for viral 

replication.293 The intracellular distribution pattern of GFP-tagged WNV NS4B suggested 

that NS4B can by itself cause membrane rearrangements.301 Furthermore, NS4B has been 

reported to interact with NS3,302–304 suggesting potential interactions with the RC. Recent 

high-throughput chemical screening campaigns identified NS4B as an important target for 

antiviral drug discovery. Using a DENV replicon-based chemical screen, Shi and colleagues 
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reported that an NS4B inhibitor (NITD-618) blocks DENV replication but does not inhibit 

other flaviviruses.305,306

The work summarized above suggests that NS4B and NS4A support viral replication by 

multiple mechanisms including maintaining the replication complex structure, organizing 

the replicase, and modifying the activity of enzymatic components of the replicase (Figure 

3).

2.5.2.4. NS3 and NS5: NS3 is modular protein with at least three enzymatic activities: a 

protease activity, which was described above (section 2.4), participates in the maturation of 

viral proteins, an ATPase-driven helicase domain within NS3 is assumed to unwind dsRNA 

during viral RNA synthesis, and a 5′ RNA triphosphatase activity, the first step required for 

RNA capping by NS5 (section 2.1.4). Select mutations engineered into the conserved amino 

acid motifs within the DENV2 NS3 helicase domain block ATPase activity and helicase 

activity and virus production.307

During viral infection NS3 and NS5, which is the protein with RdRp activity, form a 

complex that is important for efficient replication. IP of NS3 consistently co-IPs NS5 and 

vice versa.251 In addition, the 3′ terminal stem loop of the JEV genome forms a complex 

with NS3 and NS5.308 Finally, the ATPase activity of DENV1 NS3 is enhanced by addition 

of NS5, although NS5 does not have ATPase activity.309

As described above, viral RNA synthesis occurs in RCs. The RdRp and the mRNA capping 

methyltransferase activities are provided by the viral NS5 protein. Purified recombinant NS5 

has RdRp activity when provided a positive strand RNA as template.310 The 

methyltransferase activity was first demonstrated using recombinant NS5136 and subsequent 

genetic studies have validated this observation (reviewed in ref 128). A WNV-based replicon 

that lacks NS5 was complemented by expression of WT NS5 in trans but not by an NS5 

carrying mutation of either the conserved GDD motif in the polymerase active site or the 

conserved S-adenosyl methionine binding domain.311

2.5.3. Model for Genome Amplification—The substrate for negative strand synthesis is 

likely in the panhandle conformation where the 5′ and 3′ ends of the genome are in close 

proximity.102 In this conformation, NS5 bound to the SLA structure in the 5′ end is in the 

vicinity of the 3′ end of the genomic RNA, which is the initiation site for RNA synthesis 

(reviewed in ref 89). The proper positioning of the polymerase is likely influenced by 3′SL 

structure at the 3′ end of the genome, which has been shown to also interact with NS5.312 

Elegant structural and reverse genetic studies indicate the possibility of NS5 dimerization313 

and position the C-terminal 18 residues close to the thumb subdomain, which could be 

important for initiation of RNA synthesis.314

We propose that once negative strand synthesis commences formation of the genome 

panhandle structure is disfavored, preventing reinitiation of negative strand RNA synthesis. 

This leads to the suggestion that a single copy of the negative strand will be synthesized 

from the incoming genome in one RC (Figure 3; see discussion in Garcia-Blanco et al. 

(2016)89). This is consistent with data that indicate that replication complexes increase in 
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number but do not increase in size during infection.272,315 On the other hand, each 

antigenome is likely to serve as the template for the synthesis of multiple nascent genomes 

within one RC (Figure 3). Each nascent genome displaces the preceding one, and each 

promoter region is likely to be associated with NS5 while in the RC; however, once a 

genome diffuses beyond the pore of the RC and moves through the cytoplasm there is 

competition between different fates as depicted in Figure 3. Changing the relative local 

concentration of NS5 and genomes and a relatively stable concentration of translation 

initiation factors can lead to oscillations between replication and translation for a specific 

genome RNA. Eventually as the concentration of C rises the process of assembly will 

become more competitive (#3 in Figure 3). A bipartitie nuclear localization signal (NLS) has 

been shown to translocate C to the nucleolus,316,317 and it is possible that the removal of 

capsid from the cytoplasm early in replication may favor translation and replication over 

assembly at these early times (see discussion in ref 318).

2.6. Flavivirus Assembly and Egress

The late stages of the flaviviral life cycle include the assembly of viral components into 

virion particles, maturation of these into infectious particles, and release from the cell by 

secretion. Flavivirus assembly occurs at the ER where viral genomes assemble with C, prM, 

and E proteins and bud into the ER lumen, taking ER membranes with the developing virion. 

Using electron tomography virions were observed budding into the lumen of the ER in both 

mammalian and mosquito cell lines.272,276 Coexpression of prM and E can initiate viral 

budding in the absence of other viral proteins or genomes to form virus-like particles 

(VLPs).319

The coordinated processing of the two cleavages at the junction of the flavivirus structural 

proteins C–prM by host and viral proteases is important in regulation of the assembly of the 

YFV.257 Similarly, studies on Murray Valley encephalitis virus evinced that the coordination 

of cytosolic and luminal cleavages at the C–prM junction is key to efficient incorporation of 

nucleocapsid (the viral RNP) during assembly.494

Nonstructural proteins have important but poorly understood roles in packaging of the viral 

RNP. Using a systematic genetic approach, Bartenschlager and colleagues identified 

mutations in DENV NS1 that reduce viral production without strongly inhibiting viral RNA 

replication.320 Of 46 amino acids selected for alanine-scanning mutagenesis, approximately 

one-half inhibit replication of the genome,320 which is consistent with the established role of 

NS1 during replication (see section 2.5.2). Of the remaining half, five of the alanine 

substitutions cause limited impact on replication but strong reduction in viral production, 

and the authors noted that these mutations increase levels of intracellular virus relative to 

extracellular virus.320 Although recombinant VLPs formed in the absence of NS1,319 

Bartenschlager and colleagues provided evidence that NS1 modulates export of fully 

assembled and infectious virus.320

The nonstructural protein NS2A plays an important role in viral assembly. A mutant YFV 

NS2A does not affect expression of viral proteins or RNA synthesis but strongly inhibits 

production of infectious virus.321 Analysis of the secreted viruses showed that this NS2A 

mutant leads to the production of VLPs that lack capsid and viral RNA.321 The role of 
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NS2A in viral assembly was also observed in DENV290 and Kunjin virus,322 suggesting that 

this is a conserved role for NS2A.

NS3 is required for Kunjin virus RNA packaging into viral particles.323 Similar dependence 

on NS3 was observed in viral assembly using a YFV replicon-based trans-packaging system.
324 Mutation of a conserved tryptophan at position 349 in the helicase domain of NS3 to 

alanine (W349A) has no effect on the expression of viral proteins or amplification of RNA 

in transfected cells; however, it blocks the production of infectious virus particles.324 

Interestingly, the role of NS3 in virus assembly does not strictly require helicase or protease 

activity, although mutant forms of NS3 are less efficient in rescuing production of infectious 

virus particles. This reduction in efficiency is consistent with optimal assembly requiring 

cleavage at the C–prM junction by the NS2B-3 protease.325,326

Studies of Kunjin virus have revealed that the polymerase activity of NS5 is a prerequisite 

for assembly. Cells transfected with DNA-based Kunjin replicons produce RNA genomes 

via nuclear transcription, and these genomes can be translated whether or not NS5 RdRp is 

active.327 Packaging into virions, however, depends on NS5 RdRp activity as no infectious 

virions were produced in cells transfected with a (ΔGDD) Kunjin genomic RNA, which has 

a deletion of the NS5 gene RNA-polymerase motif GDD.327 This defect could be 

complemented in trans and is not observed when replicon had WT NS5.327 These intriguing 

data suggest coupling between RNA synthesis and packaging, thus suggesting heretofore 

unknown connections between these processes (Figure 3).

Flaviviruses are initially assembled as immature particles that mature during exit from the 

cell. The structure of the immature DENV and YFV particles was resolved using cryo-EM 

and showed that, in both viruses, spikes formed by the prM protein protrude from the surface 

and increase the diameter of the virion to about 60 nm, which is larger than mature virions 

(50 nm).328 In the immature particles E protein is arranged as trimers around the prM spike.
328 Mature Murray Valley encephalitis virus induces syncytia formation in C6/36 cells at 

low pH; however, immature virus does not,329 which suggests that the immature prM spike 

prevents premature viral fusion with endosomal membranes during egress. The maturation 

of flaviviruses begins upon exposure to the acidic environment of the Golgi and trans-Golgi 

network. This pH triggers conformational rearrangement of the prM and E that makes prM 

accessible to cleavage by the cellular protease furin, producing the M protein and the pr 

peptide, which remains bound to the viral envelope at acidic pH and continues to prevent 

premature viral fusion.330 A pH shift from acidic to neutral upon exit of the virus to the 

extracellular space causes release of the pr peptide from viral surface, resulting in infectious 

mature virus (reviewed in ref 331).

3. PRO-VIRAL HOST FACTORS

Successful viral infection requires commandeering of many cellular factors to work for the 

virus (e.g., ribosomal components) and the neutralization of many other cellular factors that 

normally protect from infection (e.g., interferon stimulated gene products). In this review, 

we refer to the former as pro-viral factors and the latter as antiviral factors. The limited size 

of the flaviviral genomes restricts the number of available proteins they can express, so these 
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viruses are dependent on a large number of pro-viral host factors for all stages of the viral 

life cycle. Indeed, this dependency is shared by all viruses, even relative giants like 

Pandoraviruses, which have genomes larger than 2 megabases.332 The study of host factors, 

which is the study of how viruses and cells interact, has led to critically important insights 

on the biology of both viruses and cells (e.g., the discovery of introns in pre-mRNAs15,16). 

The hope is that the understanding of virus–cell interactions will continue to shed light on 

new biology (e.g., noncanonical mechanisms of translation initiation) and will also open up 

novel strategies to decrease viral pathogenesis by interfering with essential virus–cell 

interactions (e.g., blocking CCR5 to treat HIV infection).333 In this review, we broadly cover 

the current knowledge of host factors, pro- and antiviral, that impact flavivirus replication 

with an emphasis on RNA binding proteins. We also refer the reader to other reviews.
11,334,335

Functional genomic approaches such as genome-scale RNA interference-mediated 

knockdowns and CRISPR-mediated gene knockouts have contributed to a remarkable 

expansion in the identification of host factors.336,337 Additionally, methods that map 

physical interactions between viral and host components (both RNA and proteins) have also 

greatly expanded our understanding of host factors.338,339

3.1. Pro-Viral Host Factors: From Attachment to Expression of the Viral Proteins

The dependency on host factors for attachment, entry, and uncoating was described in detail 

in section 2.2, where we discussed these early steps in the viral life cycle. The only point we 

make here is that flaviviruses, like all viruses, are the ultimate Darwinian tinkerers and will 

use any host factor (protein, RNA, and even lipids) to their advantage. An extreme example 

is how DENV uses antibodies and Fc receptors to efficiently enter cells and mediate severe 

infection during ADE (see references cited in section 2.2.2).

The primary aim of any virus is to replicate itself, and without exception this requires 

translation of viral proteins. Indeed, we classify viruses in part by the number and properties 

of the steps required to convert the genome into mRNA(s).340 Inherent to this requirement is 

the critical role of the cellular translational machinery, and at the center of this machinery 

sits the ribosome. Unfortunately, the flavivirus field has largely ignored the ribosome as a 

unique host factor. As described above, we identified the ribosomal stalk proteins RPLP1 

and RPLP2 as critically important for flavivirus translation,213,236 and these studies are 

leading to the identification of cellular mRNAs that share this requirement and eventually to 

understand the role of these poorly understood proteins. As our view of the ribosome shifts 

from a monotonic machine to a more modular one, it is likely we will identify new 

ribosomal components that are exquisitely required by flaviviruses. Indeed, the same is true 

about requirements for the initiation, elongation, and termination factors that work with 

ribosomes to mediate translation (see discussion in section 2.3).

3.2. ER-Associated Pro-Viral Factors

The co- and post-translational processing of the complex flavivirus polyprotein requires 

coordination of ribosomes, the Sec61 translocon, ER proteases, ER-associated chaperones, 

and enzymes that mediate post-translational modifications. Translation is directed to the ER 
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by recognition of a signal sequence by the signal recognition particle and transferred to the 

translocon through the SRP receptor.341,342 The ER translocon is an ER-localized complex 

composed of three subunits: SEC61alpha, SEC61beta, and SEC61gamma. The ribosome, 

translocon, TRAP, and OST complexes guide the nascent polypeptides, ensuring that the 

polypeptide is synthesized with the correct topology on ER membranes (structure reviewed 

in ref 343). Biochemical and genetic evidence support roles for the ER translational 

machinery during flavivirus infection. RNAi-based knockdown of SRP54 or any of the three 

translocon subunits has been shown to inhibit WNV, DENV2, and YFV infection.211–213 In 

addition, DENV infection was inhibited by loss of the signal sequence receptor,242 while 

deletion of SEC61beta blocks WNV, DENV2, JEV, and ZIKV,243 and chemical inhibition of 

the translocon inhibits DENV infection (see ref 344).

The co- and post-translational processing of the flavivirus polyprotein requires cellular 

membranes,252 consistent with a role for the ER signalase. Indeed, a role for the signalase 

during YFV polyprotein processing was predicted when the sequence of YFV-17D was 

determined,90 and a pan-flavivirus role for signalase was proposed based on sequence 

conservation at processing sites.345 Early efforts to understand polyprotein processing 

considered the sequence, composition, and topology of the polyprotein and noted which 

processing sites were reasonable targets for signalase.248,257 As discussed above, functional 

genomics validated the requirement for individual subunits of the signalase for polyprotein 

processing.243

The complex topology of the viral proteins requires cellular chaperones and chaperone-like 

activities, which help proteins to achieve a final folded form. The HSP70 and HSP90 

families of cellular chaperones are necessary for DENV entry.346,347 In addition, the HSP70 

family of chaperones and cochaperones is necessary for DENV NS5 stability348 and for 

YFV polyprotein processing.349 A screen using a cDNA-based overexpression strategy 

identified DNAJC14 as an important cochaperone that impacts polyprotein processing.
350,351

The IRE1alpha ER stress sensor is repressed by binding the HSP70 family member GRP78/

BIP.352 Accumulation of unfolded proteins sequesters GRP78/BIP leading to activation of 

the unfolded protein response (UPR), including activation of IRE1alpha, leading to 

increased expression of chaperones.352 Knockout of ER stress sensor IRE1α reduced viral 

infection in mouse embryonic fibroblasts,353 suggesting that the UPR plays an important 

role during viral infection (reviewed in ref 354). It is likely that the role of chaperones 

extends throughout viral infection and may be a particularly important arm of the UPR 

supporting viral infection.

ER membrane complex (EMC) subunits scored as potent pro-viral factors in an RNAi-screen 

for YFV-17D host factors but were not characterized further.213 EMC2 and EMC3 were 

identified in a gene-editing-based screen for WNV-induced cell death.355 EMC2 knockout 

cell lines were developed, and they are fully permissive to WNV infection; however, 

expression of WNV proteins C, E, and NS3 is somewhat reduced after a 36 h infection. The 

role of the EMC for the virus was not further characterized, and the role of the EMC for the 

cell was unexplored in these cells.
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Functional genomic screening uncovered that knockdown or knockout of ER–membrane 

complex (EMC) subunits reduces DENV2, JEV, WNV, and ZIKV infection.181,242,243 

Carette and colleagues identified EMC1–7 subunits as hits in a functional genomics screen 

for DENV pro-viral factors using gene-editing technologies.242 Brass and colleagues 

showed that DENV2, YFV-17D, and ZIKV infection is inhibited by knockdown or knockout 

of several EMC subunits.181 They showed that DENV and ZIKV attachment is not blocked 

by EMC knockdown; however, the pattern of internalized DENV E protein in DENV-

infected cells is altered shortly after infection in EMC knockdown cells,181 which suggests a 

defect up to and including viral RNA synthesis. For ZIKV, attachment is not altered by EMC 

knockdown; however, entry appears to be blocked, leaving virus on the surface of the cell.
181 Nonetheless, the mechanism(s) for flavivirus dependence on EMC is(are) not fully 

known and requires further study. The cellular function(s) of the EMC is also incompletely 

understood, but its requirement for proper expression of membrane resident and secreted 

proteins356 and its location on the ER suggest an ER-associated chaperone-like activity. 

Recently, the EMC has been shown to have transmembrane domain insertase activity.357 It is 

also possible that an undefined role of the EMC in lipid synthesis358 may alter membrane 

protein maturation and expression. These proposed cellular functions are consistent with 

observed blocks of flavivirus entry and viral protein biogenesis. Studies on the flaviviral 

requirement for EMC should lead to a better understanding of this obscure protein complex. 

Furthermore, since the EMC is critically required by many flaviviruses, we envision that 

anti-EMC compounds could become pan-flavivirus antivirals.

3.3. Cellular Lipids and Autophagy

As previously discussed, the viral membrane phosphatidylserine composition may be a 

determinant of viral entry,79 cellular membrane fractions are required for polyprotein 

processing in cell free assays,252 and the virus replicates on ER-derived intracellular 

membranes.272 Thus, it is not surprising that cellular lipids are major host factors impacting 

the virus life cycle.

Autophagy is a process by which cytoplasmic material, intracellular membranes, or 

organelles is engulfed by double-membrane vesicles originating from the ER and subsequent 

shuttling of this engulfed material to the lysosome for recycling.359 Autophagic vesicle 

assembly requires synthesis of phosphatidylinositol-3-phosphate by the type III 

phosphatidy-linositol-3-kinase (PI3K) and recruitment of LC3-II, Beclin, and other 

AuTophaGy-related (ATG) proteins to ER membranes.359 DENV infection induces 

accumulation of the autophagy marker LC3-II, the autophagic PI3K inhibitor 3-

methyladenine reduces DENV virus production, the autophagy activator rapamycin 

enhances DENV virus production, and DENV virus production is reduced in ATG5−/− 

mouse embryonic fibroblasts.360 Furthermore, treatment of an innate immunedeficient 

mouse line with the autophagy activating drugs rapamycin or nicardipine results in enhanced 

specific infectivity with a mouse-adapted DENV virus and significantly decreases mouse 

survival361

Studies with a viral-like DENV replicon demonstrated that inhibition of autophagy by 3-

methyladenine treatment or Beclin knockdown impacts a step in the viral life cycle 
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subsequent to translation of incoming viral RNA and independent of virion assembly and 

secretion.362 Obviously, these experiments do not exclude that steps not interrogated by the 

replicon can also be impacted. Interestingly, the autophagy dependency is suppressed by 

addition of exogenous lipid-BSA, suggesting that DENV requires autophagy because 

autophagy generates free fatty acids, a potential source of energy for viral replication.362 

Kirkegaard and colleagues reported an interesting role for autophagy during viral 

production.361 The authors noted the suppression of 3-methyladenine treatment by lipid–

BSA mixture; however, when autophagy was inhibited with spautin-1, a lipid-BSA mixture 

no longer rescued replication,361 suggesting a more complex involvement of autophagy in 

DENV infection. Indeed, spautin-1-treated and DENV-infected cells show normal viral 

replication, viral assembly, viral budding, and virion processing by furin-like proteases, but 

the maturation of the virus immediately prior to release is blocked resulting in virions with 

decreased infectivity.361

Not surprisingly, cellular proteins that modulate membrane lipid composition are important 

for flavivirus infection. The DENV envelope contains an estimated 8000 lipid molecules of 

the sphingolipid, sterol, and phospholipid families.363 In addition, phosphatidylserine and 

cholesterol enhance DENV infection,79,364 suggesting that the envelope lipid composition is 

optimal for infectivity.365 A targeted functional genomics approach identified proteins 

involved in fatty acid synthesis as pro-DENV factors, and chemical inhibitors of fatty acid 

synthesis reduced DENV production.366 In addition, the cellular protein fatty acid synthase 

was redistributed to NS3-positive membranes, and radiolabeling of newly synthesized lipids 

was increased during DENV infection.366 A whole-cell lipidomic profiling showed that 

lysophospholipids and ceramides are specifically increased in infected C6/36 Aedes 
albopictus mosquito cells.367 A postnuclear, membrane-enriched, viral RNA-containing cell 

fraction that was presumed to be enriched for DENV RCs was also analyzed, and in this 

fraction sphingolipids are enriched at least 4-fold and phosphatidylethanolamine 10-fold.367 

The inhibition of enzymes that participate in cholesterol368–370 and sphingolipid371 

biogenesis reduce flavivirus infection in human cells. Furthermore, lovastatin delays DENV 

infection and increases survival in an animal model.372 Nonetheless, a randomized, double-

blind, placebo-controlled clinical trial failed to demonstrate efficacy of lovastatin 

(cholesterol biosynthesis inhibitor) against DENV infection in 300 Vietnamese adults 

positive for DENV.373 It is still unclear which lipid classes are absolutely required for 

infection or if there are lipid classes, and associated host proteins that may be commonly 

required by multiple pathogenic flaviviruses.

3.4. Ubiquitin System

Ubiquitin is a widespread post-translational modification (PTM) that regulates protein 

function and degradation.374 Modification of proteins with the small, 76 amino acid 

ubiquitin molecule requires a set of three enzymes known as E1, E2, and E3. The first of 

these, E1, activates ubiquitin in an ATP-dependent manner and then transfers the molecule to 

an E2 conjugating enzyme. E2 ubiquitin interacts with an E3 ubiquitin ligase, which dictates 

the protein substrate specificity, and ubiquitin is transferred to the substrate via a covalent 

isopeptide bond involving the ε-amino group of a substrate lysine residue or, less frequently, 

other amino acids. Proteins can be polyubiquitinated since ubiquitin itself can serve as a 
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substrate; polyubiquitination is frequently recognized as a signal for protein degradation 

mediated by the proteasome complex.374 As ubiquitination has been broadly implicated in 

multiple cellular processes, including regulation of innate immunity,375 it is not surprising 

that viruses have evolved mechanisms to interface with the ubiquitin system.

There are a number of reports that detail interactions between the ubiquitin system and 

flaviviruses. In Aedes aeypti, depletion of multiple proteasomal subunits reduced production 

of infectious DENV without affecting viral RNA levels, suggesting a role for the proteasome 

at a late stage of the life cycle.376 Similar results were obtained in human THP-1 cells 

infected by an antibody-dependent route,377 and the proteasome inhibitors, bortezomib and 

MG132, were shown to reduce infection by DENV, ZIKV, and WNV.378,379 Notably, other 

groups have reported that the ubiquitin system is important for early events in flavivirus 

infections. Wang et al. showed that several proteasome inhibitors caused internalized JEV 

particles to be mislocalized to lysosomes, resulting in loss of infection.380 Similarly, Byk et 

al. reported that inhibition of E1 enzyme activity blocked DENV uncoating, possibly due to 

retention of internalized virions in endosomes.221 This observation supports an earlier study 

that observed reduced DENV infection due to inhibition of the E1-activating enzyme, 

UBE1.381 Another study reported that the E3 ubiquitin ligase, Nedd4, stimulated JEV 

replication without affecting virus entry,382 suggesting that the ubiquitin system is important 

at multiple phases of the flavivirus life cycle. Viral proteins have also been reported to be 

modified by ubiquitin with contrasting outcomes for infection. Liu et al. discovered that 

DENV NS3 is modified with polyubiquitin.383 This PTM promoted association of NS3 with 

its cofactor, NS2B, resulting in elevated enzymatic activity against the antiviral PRR protein, 

STING. In another study, the E protein of DENV was reported to be modified by a specific 

ubiquitin molecule (Ub3881) in mosquitos, resulting in accelerated E turnover and reduced 

production of infectious virus.384 Finally, there are well-documented reports of DENV and 

ZIKV inducing degradation of STAT2 protein in a proteasome-dependent manner to 

interfere with signal transduction by type I IFN.385,386 Taken together, it is clear that the 

ubiquitin system is critical for flavivirus infection and components of this pathway represent 

potential therapeutic targets for blocking virus transmission.387 This consideration and that 

for any drug targeting host factors must carefully weigh potential toxicity to the patient.

3.5. RNA Binding Proteins as Pro-Viral Host Factors

Given the central role of RNA in the life cycle of flaviviruses it is not surprising that host 

RNA binding proteins (RBPs) play important roles as pro-viral host factors. In order to 

understand the molecular mechanisms of flaviviral pathogenesis, both in vitro and in vivo 

approaches have been employed to identify flaviviral RNA interacting proteins. These 

include host RBPs interacting with DENV,233,234,283,388–401 ZIKV,158,402,403 JEV,404–410 

WNV,411–414 and YFV.283,388,411 Here we review some salient recent findings and discuss 

their potential roles in viral pathogenesis; additionally. we refer the reader to recent reviews.
103,334,415

Host RBPs act on various stages of the DENV life cycle with either pro-viral or antiviral 

properties. Several proteins were reported to impact on the translation and/or the replication 

of DENVs. PABP associates with the nonpolyadenylated 3′ end of DENV2 RNA and 
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promotes DENV2 translation.234 In addition, NFKB2 was reported to enhance viral 

translation via the interaction with the DENV2 3′UTR.394 NFKB2 is pro-viral because the 

knockdown of NFKB2 reduced DENV2 RNA level in infected cells. Silencing of the 

polypyrimidine tract binding protein PTBP1 using siRNA did not impair the translation of a 

DENV2 luciferase reporter mRNA; instead, pro-viral PTBP1 was involved in viral RNA 

synthesis and replication.388 This pro-viral role for DENV2 is in contrast with a 

demonstrated anti-JEV role for PTBP1.404 Recently, a growing list of DENV RNA binding 

proteins has been reported. The majority of these RBPs were involved in promoting viral 

replication. This was mainly demonstrated by measuring virus titer or viral RNA levels in 

infected cells of which RBP levels were depleted using genetic tools. For example, silencing 

of helicase DDX6 led to a decrease of DENV2 viral RNA accumulation and reduced viral 

particle production.233 Although DDX6 might contribute to viral replication given that it is 

localized close to the DENV replication site,233 a recent report suggests that DDX6 

represses activation of interferon-stimulated genes (ISGs).416 This finding may very well 

explain why DENV2 replication is less efficient in DDX6 knocked down cells since reduced 

DDX6 primes cells to establish an antiviral state and thus could restrict DENV2 replication. 

The same result was observed with DENV2 and WNV infection when LSM1, another 

component of P bodies that also interacts with the DENV 3′UTR, was silenced.391,417 

Additionally, the DEDD RNA exonuclease ERI3 binds to the 3′UTRs of DENV and YFV 

and is required for viral RNA synthesis.283 In summary, although the functional significance 

for many of these RBPs has been established, understanding the detailed molecular 

mechanisms by which these RBPs contribute to viral propagation requires further 

investigation.

Little is known about RBPs interacting with ZIKV RNA. Lichinchi et al. demonstrated that 

binding of ZIKV genomes by the m6A readers, YTHDF1, YTHDF2, and YTHDF3, was 

driven by high levels of m6A through the full-length ZIKV RNA (see section 2.1.4). 

Knockdown of YTHDF1 and 2 increased ZIKV infection. Inversely, overexpression 

inhibited the infection, suggesting that these proteins may destabilize ZIKV RNA acting as 

antiviral factors.158 Unlike YTHDF proteins, the translational regulator Musashi-1 (MSI1) 

has a pro-viral function evidenced by reduction of infection induced by MSI1 knockdown in 

several neural cells;402 however, the exact mechanism used by MSI1 to improve postentry 

events in ZIKV infection is unclear. The interaction between MSI1 and the ZIKV 3′UTR is 

in part mediated by the presence of three MSI1 putative binding sites (nucleotides 10478, 

10668, and 10773). A triple-mutant ZIKV 3′UTR lacking the three putative binding sites 

has decreased binding to MSI1.402 G3BP1 and Caprin-1 are pro-viral factors for ZIKV 

infection,403 which is opposite to what was observed for DENV2 (see ref 389 and discussion 

of antiviral factors). Hou et al. showed that pull down of G3BP1 from ZIKV-infected cell 

lysates leads to enrichment of viral genomes by RT-qPCR.403 Nonetheless, since G3BP1 

binds to ZIKV capsid,403 the possibility that the interaction of G3BP1 and viral genome is 

mediated by capsid cannot be ruled out. In summary, the study of RBPs interacting with the 

ZIKV genome and/or sfRNA is at an early stage and is likely to reveal important details of 

the host–virus interface that may be relevant to unique aspects of ZIKV pathogenesis.

Several RBPs have been reported as necessary for efficient JEV infection. La protein, a 

multifunctional RBP, binds to both the JEV 5′UTR and the 3′SL in the 3′UTR. Reduction 
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of viral progeny in human cells depleted of La protein indicated that La protein is required 

for JEV infection; however, the molecular mechanism by which La protein promotes JEV 

replication is unclear.409,410 The heterogeneous nuclear ribonucleoprotein A2 (hnRNPA2) 

participates in post-transcriptional regulation in the nucleus and cytoplasm. This protein 

interacts with JEV C protein and NS5 and also binds to the 5′ end of the negative strand of 

JEV. During the course of JEV infection, knockdown of hnRNPA2 inhibited production of 

negative and positive strand JEV RNAs, suggesting a positive role in replication of JEV 

RNA.406 Finally, murine Mov34, a member of a protein family involved in RNA 

transcription and translation, interacts with the JEV 3′UTR, although it remains unclear 

whether this protein participates, negatively or positively, in JEV propagation.408

In the case of WNV, eEF1A and the stress granule protein TIAR were reported as pro-viral 

factors. eEF1A interacts with the WNV 3′ terminal SL and facilitates the synthesis of 

negative strand RNA. Moreover, eEF1A interacts with the same region in DENV and YFV 

RNA.411 TIAR, a member of the RNA recognition motif (RRM) family of RBPs, binds to 

the WNV 3′ (−) SL RNA and facilitates the amplification of viral genome from the minus-

strand template.412,413

4. ANTIVIRAL FACTORS

4.1. Host Factors Involved in Intrinsic and Innate Immunity

Intrinsic immunity confers resistance to viruses using restriction factors that are usually 

constitutively expressed and that target a narrow spectrum of different viruses.418,419 A 

broader definition could include the absence of a pro-viral factor such as a deletion in the 

CCR5 gene in some human populations leading to HIV resistance.333 Innate immunity 

usually refers to immune mechanisms that more broadly target multiple pathogens (viruses) 

and, in many cases, are induced upon infection. We will discuss host factors that act in both 

of these types of immunity and will emphasize the role of RBPs. We also discuss how 

viruses counteract these factors and, again in an RNA-centric way, focus on flaviviral 

countermeasures mediated by the sfRNA. We refer the reader to many recent and extensive 

reviews of innate immunity and flaviviruses.420–426

When viruses invade cells, they bring with them and produce pathogen-associated molecular 

patterns (PAMPs) that are not normally present in a cell and which are recognized as 

foreign. Flaviviral PAMPs include the viral genome and the viral replicative intermediate, 

dsRNA, which may be detected by pattern recognition receptors (PRRs) including TLR3, 

RIG-I, and MDA5. Detection of intracellular infection activates interferon expression, which 

enables the host to control infection. Overexpression of TLR3 in HEK-293 cells enhances 

the IL-8 and IFN-α/β production and restricted DENV replication and cytopathic effect.427 

RIG-I and MDA5 were including ISG54 and ISG56. Knockout of either RIG-I or MDA5 in 

mouse embryonic fibroblasts was not sufficient to entirely blunt ISG54 and ISG56 

expression after DENV infection; however, knockdown of MDA5 in a RIG-I null 

background abolished DENV-induced ISG54 and ISG56 expression.428 In addition, IPS-1/

MAVS/Cardif knockout mouse embryonic fibroblasts showed complete block of ISG54 

expression after DENV challenge,428 and DENV2 challenge in IPS-1/MAVS/Cardif 

knockout mice results in increased viremia and reduced IFNα and IFNβ expression,429 
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demonstrating that IPS-1/MAVS/Cardif are involved in innate immune signaling for the 

primary DENV infection. Downstream DENV-induced innate immune signaling requires the 

transcriptional activators IRF3 and IRF7 as well. DENV2 infection was cleared efficiently in 

IRF3 or IRF7 single-knockout mice; however, DENV2 challenge of IRF3 and IRF7 double-

knockout mice resulted in higher viremia as well as delayed expression of a variety of ISGs.
430 Nonetheless, mice that lack IRF3, IRF5, and IRF7 survive DENV infection431 unlike 

those that lack the type I IFN receptor, which succumb to DENV (see below). The survival 

of these triple-KO mice is likely mediated by IRF1-dependent activation of both type I and 

type II interferon pathways.431

A fascinating recent development uncovered the fact that DENV infection can lead to 

mitochondrial damage and release of mitochondrial DNA into the cytoplasm, which is 

sensed as a PAMP by the DNA sensor cGAS.432 As will be discussed below, flaviviruses 

deploy countermeasures to many immune mechanisms, and in this case DENV inactivates 

both cGAS and its downstream effector STING countering their activation of interferon-

signaling pathways.432,433

Detection of viral infection by the cellular innate immune response is essential to protect the 

host and leads to cytokine expression including interferons. Flavivirus infection is controlled 

by type I interferon (IFN) signaling, with type II IFN signaling contributing too. More 

recently, the importance of type III (λ) IFN in immunity to flaviviruses has become 

appreciated.434–438 Mice are not natural hosts to DENV or YFV infection, and viral 

challenge in healthy, adult mice results in an acute and rapidly cleared viremia with little or 

no outward signs of infection. In an effort to identify mouse models of flaviviral infection 

for the purpose of understanding the host–virus interaction, several of the major IFN-

signaling pathways responsible for host clearance of flavivirus infection were determined. 

Harris and colleagues first identified that DENV2 challenge, using a mouse-adapted DENV 

isolate, could cause significant pathology in mice that mirrored severe dengue in humans 

using the type I and type II IFN receptor double-knockout (AG129) mice.439 Although 

infection by either wild-type DENV2 or mouse adapted DENV2 both resulted in similar 

viremia, the mouse-adapted DENV2 caused increased vascular permeability and reduced 

survival,439 suggesting that the AG129 mouse and adapted DENV viral infection model may 

be an effective tool to study dengue-induced vascular permeability associated with severe 

dengue in humans. Ryman and colleagues demonstrated the relative contribution of type I 

and type II IFN signaling while developing a mouse model of YFV infection.440 Type II IFN 

signaling deficient (IFN gamma receptor knockout) mice did not display significant signs of 

YFV infection using either WT or attenuated YFV strains.440 Pathogenic YFV challenge in 

type I IFN signaling deficient (IFN type I receptor knockout) mice caused weight loss 

requiring euthanasia for all reported mice, although attenuated YFV-17D did not cause 

significant disease.440 Therefore, type I IFN signaling is important for YFV control in these 

mouse models. The contribution of type II IFN signaling was observed only in AG129 mice 

where attenuated YFV-17D induced significant weight loss requiring euthanasia,440 

suggesting that clearance of YFV required both type I and type II IFN signaling. STAT-

family proteins mediate downstream IFN signaling. Although DENV challenge in STAT1 or 

STAT2 individual knockout mice does not cause lethal phenotype, DENV challenge in 
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STAT1, STAT2 double-knockout mice results in a lethal phenotype similar to that observed 

in AG129 mice.441

The cellular innate immune response to flaviviruses requires detecting viral infection by the 

pattern recognition receptors, TLR3, RIG-I, and MDA5, and cytokine signaling through 

IFN-signaling pathways to clear infection. The relevance of findings derived from studies in 

mouse models to mechanisms of resistance and pathogenesis in humans remains to be 

determined. Future studies using human cells and human genetics should be used to test this 

relevance.

IFN signaling leads to the expression of interferon stimulated genes (ISGs) whose products 

are the effectors of the antiviral state (reviewed by Schoggins and Rice442). MacDonald, 

Rice, and colleagues pursued identification of cellular genes that had antiflaviviral activity.
350 The screening and validation resulted in the identification of one antiviral human gene: 

DNAJC14,350 which when overexpressed reduces replication of YFV-17D, YFV-Asibi, 

Langant, and WNV and also the related member of the Flaviviridae family-HCV.350 In a 

subsequent publication, DNAJC14 overexpression was shown to inhibit polyprotein 

processing between NS3 and NS4A consistent with the role of DNAJC14 as a cochaperone 

of HSP70 chaperone proteins.349 In parallel studies, Rice and colleagues examined the 

activity of ISGs on a broad set of viruses and discovered many that have antiflaviviral 

activity.443,444

4.2. RNA Binding Proteins As Antiviral Factors

Anti-DENV host RBPs can exert their activity via direct or indirect pathways. MCPIP1, a 

RNA binding nuclease, degrades DENV2 RNA through binding to the 3′UTR and restricts 

viral replication. The same MCPIP1-mediated antiviral effect was also observed for JEV.445 

Alternatively, host RBPs can indirectly antagonize DENV through host immune responses. 

G3BP1, G3BP2, and CAPRIN1, which are stress granules associated proteins, are important 

for ISG mRNA translation, and they are required for host cells to establish an antiviral state.
389 In addition, TRIM25, a ubiquitin ligase, regulates RIG-I pathways against viral infection.
395 YBX1 negatively regulates DENV2 translation and is an antiviral host factor against 

DENV2.397 The action of YBX1 represents a type of intrinsic immunity by an RBP 

reminiscent of the effect of UPF1 on Semliki Forest virus446 and probably represents a 

widespread antiviral strategy.

Besides PTB and MCPIP1 mentioned above, IFIT1 and far upstream element binding 

protein 1 (FBP1) have been reported to bind to JEV RNA and inhibit translation. As 

discussed in section 2.1.4, IFIT1 recognizes 5′ caps that have not been methylated in the 2′ 
position of the penultimate nucleotide and inhibits translation of a JEV defective in 2′-O 

MTase activity.407 FBP1 interacts predominantly with the JEV 3′UTR and weakly with the 

JEV 5′UTR. Overexpression and knockdown experiments suggested that FBP1 negatively 

regulates JEV infection. Mechanistically, the increased activity of a JEV replicon reporter in 

FBP1 knocked down cells suggested that FBP1 inhibits viral translation.405 Due to 

preferential binding to the JEV 3′UTR, it would be interesting to study the specific 

interaction between FBP1 and JEV sfRNA and to test if this interaction could sequester 

FBP1 as a mechanism to promote viral translation (see section 3.5).
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4.2.1. Antiviral Modulators in Mosquitos—Mosquitos mount an innate immune 

response structured around three major pathways: Toll, IMD, and Jak/STAT.447 In vivo 

RNAi depletion experiments support antiflavivirus properties for each of the pathways.
448–453 Activation of each pathway triggers a specific cascade that results in the 

translocation from the cytoplasm to the nucleus of a distinct transcription factor: the NFκB 

transcription factors Rel1a and Rel2 for Toll and IMD, respectively, and the dimerized STAT 

for Jak/STAT. Transcription regulation for each pathway significantly overlap with genes 

regulated upon DENV infection,452,454–456 further supporting the antiviral function of each 

pathway. These pathways show significant similarities to NFκB and Jak/STAT-regulated 

pathways critical in mammalian innate immunity.

Regulated immune effectors include antimicrobial peptides (AMPs), factors involved in 

phagocytosis and the complement system, although the impact of each class remains to be 

addressed for different viruses. Interestingly, many subsets of genes are identically regulated 

in amplitude and direction by different pathways, suggesting a potential synergistic 

response.457 A biochemical cascade that bridges the RNAi, IMD, and Jak/STAT pathways 

has been discovered in Culex mosquitos. Dicer-2 sensing of the viral dsRNA activates the 

TNF-associated factor (TRAF) that cleaves off the inhibitor fragment of Rel2, resulting in its 

binding to the promoter of Vago and transcription activation.458 Vago then elicits the Jak/ 

STAT pathway that antagonizes another flavivirus, WNV.450

RNA interference (RNAi) functions in diverse organisms including mammals459,460 and 

mosquitos.461 RNAi is a conserved and well-studied pathway for post-transcriptional gene 

regulation462 and has potent antiviral activity in invertebrates.463 The antiviral effect of 

RNAi in mosquitos against DENV infection has been demonstrated using infection of Aedes 
aegypti mosquitos with DENV2.464 Knockdown of endogenous Dicer2 enhanced DENV2 

viral production by 10-fold and reduced the time necessary for the virus to be produced from 

10 to 7 days.464 Additionally, mosquitos genetically engineered to express an inverted viral 

mRNA, which would produce antiviral siRNAs, showed a drastic reduction in virus 

production.465 Nevertheless, infected mosquitos harbor low levels of virus-derived siRNAs,
466,467 which may limit the impact of RNAi on antiviral immunity.

The function of RNAi as an antiviral mechanism in mammals is controversial. Cullen and 

colleagues created genetic Dicer knockout (No-Dice) 293T cell lines, which were unable to 

generate mature miRNAs, and these cells were infected with many viruses to the same 

degree as the parental Dicer-positive cell line, suggesting that a large number of viruses, 

among these several flaviviruses, are not strongly inhibited by nor robustly dependent upon 

miRNAs for viral propagation.468 A caveat to be considered is that this result could 

represent a proclivity of 293T cells and the particular miRNAs expressed in these cells. 

Indeed, some studies have shown that specific miRNAs can mediate antiviral effects 

(reviewed in ref 469); for example, one such study shows that human miR532-5p represses 

WNV infection by downregulating proviral human host factors.470 Nodamura virus infection 

of mammalian cells requires a protein known to inhibit RNAi, suggesting that RNAi may 

play antiviral roles against this virus.471 Recent work with human enterovirus-71 suggests 

that very effective anti-RNAi mechanisms prevented the antiviral effect of RNAi from being 

detected; the same could be true for flaviviruses.472 It should be noted that some studies 
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suggest that specific miRNAs can be proviral for flaviviruses in mammalian cells,473 which 

had been also noted for the related hepatitis C virus.469 It is possible, therefore, that RNAi 

plays antiviral and proviral roles for flaviviruses in mammalian cells. In summary, the jury is 

still out on whether or not RNAi plays a major antiviral role, akin to the interferon system, in 

mammalian cells.

5. VIRAL COUNTERMEASURES TO ANTIVIRAL HOST FACTORS

In the natural mammalian hosts flaviviruses acquired strategies to blunt the antiviral innate 

immune response, which contributes to efficient viral replication. As discussed above, all 

viral proteins and the viral genome have a role in viral replication and assembly of viral 

progeny. In addition, it is likely that the virus invests similarly in restraining host immune 

pathways, such that many, if not all, viral proteins and the viral genome play an active role 

as inhibitors of the innate immune response.

Flaviviruses are no exception, and several immune pathways are repressed by flavivirus 

infection. Only some examples will be provided here, and for a more in-depth examination 

of this subject we refer the reader to several reviews.420,425,474 DENV2 viral infection 

reduces IFN-β or IFN-γ induced STAT1 phosphorylation.475 DENV2 NS2A, NS4A, or 

NS4B, when overexpressed, are capable of blocking IFN-β-induced innate immune 

activation and render normally nonpermissive cells permissive to Newcastle disease virus.475 

Overexpression of DENV2 NS2A, NS4A, or NS4B act synergistically, resulting in maximal 

inhibition of IFN-β activity when all three viral proteins are expressed simultaneously.475 

Exogenous expression of NS4B was able to block STAT1 phosphorylation induced by either 

IFN-β or IFN-γ; however, it was unable to block TNF-α activation of an alternative NFκB 

pathway.475

Type I and type II IFN signaling, including concomitant IFN-induced STAT1 and STAT2 

phosphorylation and translocation to the nucleus, are inhibited by Kunjin virus or WNV 

infection and expression of Kunjin or WNV replicons.476 Expression of Kunjin virus NS2A, 

NS2B3, NS4A, and NS4B are each able to block IFN-α activity.476 WNV NS1 expression 

inhibits TLR3-dependent NFκB activity and downstream cytokine production and relieved 

the antiviral action of TLR3 on vesicular stomatitis virus.477 dsRNA-induced cytokine 

(TNF-α, IL6, and IFN-β) production is reduced by exogenous treatment with recombinant 

WNV E protein, and the effect is observed in TLR3 or TRIF knockout cell lines,478 

suggesting that E protein impacts steps after activation of TLR3. Interestingly, the E protein 

activity is linked to E protein glycosylation, such that the greatest anti-innate immune 

activity is observed by E protein produced by insect cells.478

The mechanisms that mediate the observed blocks of innate immune pathways are not 

completely understood, but in a few cases viral proteins are known to target specific antiviral 

proteins. For instance, DENV and ZIKV infection reduces total STAT2 protein, and this is 

likely mediated by NS5 binding STAT2 promoting proteasome-dependent STAT2 

degradation.385,386 In a mouse model of DENV infection, DENV-induced innate immune 

signaling requires the transcriptional activators IRF3 and IRF7430 and DENV protease 

blocks IRF3 activation.479 Although the viral sensor RIG-I and the adaptor protein MAVS 
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were unchanged, the mediator of IRF3 activation (MITA/STING) was degraded in the 

presence of DENV protease.479 In another study DENV NS4A was shown to interact with 

MAVS, preventing its interaction with RIG-I and downstream IRF3 activation and IFN 

production.480 Viral protein antagonism of the host antiviral response provides part of the 

picture.

In mosquitos, only one study directly tested the impact of flaviviral nonstructural proteins on 

RNAi, and the authors concluded that none of these proteins inhibit RNAi.481 There is 

evidence for flaviviral inhibition of the mosquito immune response. Infection with JEV in 

Aedes albopictus C6/36 cells inhibits STAT phosphorylation.482 DENV infection of 

mosquitos and mosquito Aag2 cells inhibited some immune signaling molecules and 

production of antimicrobial peptides.483,484 As in mammals, evasion of the innate immune 

system likely requires the combined activity of individual viral factors each dedicated to 

block specific branches of the innate immune system.

5.1. Subgenomic Flaviviral RNA: A Versatile Countermeasure

A portion of the newly synthesized positive strand viral genomes are degraded, usually by 

the 5′ to 3′ exoribonuclease, Xrn1, until nuclease resistant structures in the 3′UTR stall 

Xrn1, leaving a stable noncoding sfRNA.227 See Figure 1 and discussion of xrRNA 

structures in section 2.1.3. Although the exact length of the sfRNA differs between 

flaviviruses, all viruses within the genus are presumed to make an sfRNA.227 This has not 

been actually demonstrated for all flaviviruses, especially for those with no known vector or 

those that infect insects only.

Interestingly, the xrRNA2 structure is absent from DENV4 and YFV, which raises the 

possibility that these viruses may be employing alternative strategies to mitigate fitness costs 

associated with replication in alternate hosts.485,486 The Gamarnik laboratory demonstrated 

that the evolutionary pressure on xrRNA2 sequences from DENV2 is different in 

mammalian and mosquito cells.487 In mosquitos mutations that disrupt Xrn1 resistance 

appear, resulting in shorter sfRNA species, sfRNA2, sfRNA3, and sfRNA4 (see Figure 1), 

while in human cells sfRNA1 is the predominant product.113 Mosquito-adapted DENV2 that 

produced shorter sfRNAs had a fitness disadvantage and triggered an increased immune 

response (IFNβ and ISG15 gene expression) in human cells, but the same virus did not have 

an altered replication rate when grown in mosquito cells. Thus, duplication of xrRNA 

structures, as suggested by higher phylogenetic similarity between xrRNA1 from different 

viruses than between xrRNA1 and 2 from the same virus,487 may enable a quick switch in 

production of different sfRNA species with host-specific functions. It should be noted that 

ZIKV adapted to either human or mosquito cells produced the same sfRNA species.113

The sfRNA has a role in innate immune evasion. Infection of WT mouse embryonic 

fibroblasts by a mutant WNV that cannot make sfRNAs is less efficient than comparable 

infection by WT WNV; however, viral replication is independent of sfRNA synthesis in 

innate immune compromised (IRF3/IRF7 double knockout) mouse embryonic fibroblasts.488 

Using a lethal mouse model of WNV infection, the mutant WNV was significantly less 

pathogenic than the WT WNV in normal mice.488 The pathogenic impact of the mutant 

virus could be recovered in type I IFN signaling deficient (IFNAR knockout or IRF3/IRF7 
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double knockout) mice.488 Finally, transfected in vitro transcribed sfRNA could dampen the 

antiviral impact of IFN treatment on an IFN-sensitive viral infection.488 These data indicate 

that the sfRNA inhibits innate immunity in different ways (Figure 4).

Subsequent studies established specific mechanisms by which the sfRNA can inhibit innate 

immunity. The WNV or DENV sfRNA blocked RNA interference in mammalian and 

mosquito cell lines, suggesting that the sfRNA could be a RNA silencing suppressor.481,489 

Our group showed that DENV2 sfRNA binds the cellular RBPs G3BP1, G3BP2, and 

CAPRIN1 and inhibits their function as enhancers of the translation of interferon-stimulated 

mRNAs, leading to a blunted antiviral state.389 Transfection of in vitro transcribed DENV2 

3′UTR RNA blocked protein accumulation of IFN-β-induced IFITM2 but did not block 

expression of the IFITM2 mRNA, while mutations in the DENV 3′UTR that interrupted 

sfRNA synthesis increased the IFN sensitivity of a DENV replicon.389 Interestingly, 

DENV3, YFV, and WNV sfRNAs do not bind G3BP1, G3BP2, and CAPRIN1389 but still 

have anti-immune activity.488 This finding led us to propose that the sfRNA is a versatile 

noncoding RNA that can rapidly evolve different sequences and structures, which can bind 

and sequester different host RBPs.103 Indeed, the first domain of the sfRNA, which appears 

to be most important for its anti-immune function,389 is the so-called flavivirus variable 

region (VR). The VR and the two xrRNA1 and xrRNA2 structures within it are not required 

for the mechanics of viral replication and thus are not as constrained as sequences such as 

the 3′SL. Given the disproportionate importance of RBPs in innate immunity the ability of 

sfRNAs to bind and sequester different RBPs as it evolves is likely an effective mechanism 

to sample alternative ways to disable the immune system.490 Thus, we propose that the 

sfRNA provides a potent strategy that can use many different tactics.

The influence of the sfRNA on evolution of viral disease within the population has recently 

been described. DENV2 strain PR-2B replaced DENV2 strain PR1 as the most common 

DENV2 strain circulating in Puerto Rico after an epidemic in 1994.395 In vitro analysis of 

these two viruses revealed that the ratio of DENV2 sfRNA to genomic RNA ratio was 

increased for the PR-2B strain.395 The PR-2B sfRNA was able to attenuate the antiviral 

activity of IFN treatment on DENV replication to a greater degree than the PR1 sfRNA, and 

sfRNA binding to cellular factors disrupted innate immune activation which may have 

contributed DENV2 PR-2B aggressive spread in the population.395

In mosquitos, sfRNA is produced through the same interaction with Xrn1, although sfRNA 

quantity and size may differ between human and mosquito cell.106,110,113,485,491 It was 

recently demonstrated that sfRNA could increase mosquito transmission.492,493 WNV 

mutants that were depleted of the longer species of sfRNAs produced a lower infection rate 

of mosquito saliva, a proxy for transmission.492 DENV2 isolates that produced lower sfRNA 

quantity in salivary glands had also a lower saliva infection rate.493 Using infectious clones, 

it was further demonstrated that the DENV2 3′UTR sequence determined the sfRNA 

quantity in salivary glands. Mosquito transmission is determined by the immune response 

(reviewed in ref 447). The multiple domains in the sfRNA may act as a decoy for Dicer2 and 

limit RNAi efficiency. Mosquitos infected with a sfRNA-deficient WNV mutant had a 

higher dsRNA-mediated RNAi efficiency than when infected with the wild type;489 

however, lower RNAi efficiency of the wild type was only 3-fold less and highly variable. In 
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mosquitos, sfRNA was shown to be processed into siRNA; however, the presence of sfRNA 

did not alter populations of siRNAs mapping to the rest of the viral genome, arguing against 

an impact of sfRNA on RNAi.492 Other studies tested the impact of sfRNA on RNAi in 

mosquitos, but many questions remain on its importance (reviewed in Yeh and Pompon, in 

press). Alternatively, DENV2 infectious clones that produced higher sfRNA quantity in 

salivary glands due to two 3′UTR substitutions inhibited some components of the Toll 

pathway exclusively in this tissue.493

The viral sfRNA may interfere with mammalian post-transcriptional gene regulation and 

innate immune activation. The viral sfRNA may block the mosquito RNAi machine as well. 

Although the role of the sfRNA remains an active area of interest for the flavivirus field, the 

evidence thus far suggests that viral genome-derived sfRNA is a valuable viral tool that 

contributes to reducing antiviral defenses.

6. CONCLUDING REMARKS

In this review, we attempted to comprehensively cover the biochemistry and molecular 

biology of flaviviruses, and in some sections we emphasized the RNA biology of these 

viruses. We hope this review provides a good window for those who want to explore the 

literature about these fascinating and important human pathogens.
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Figure 1. 
Secondary and tertiary structures within the DENV2 (New Guinea C) genome. (Top) 

Structures within the 5′UTR and proximal capsid-coding region are shown. 5′cap structure 

(m7G) and AUG start codon are indicated in black. Sequences that participate in long-range 

tertiary interactions with sequences in the 3′UTR are highlighted with colored lines. 

(Bottom) Known 3′UTR structures are shown. Arrows indicate 5′ ends of identified 

subgenomic flavivirus (sf)RNAs.
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Figure 2. 
Flaviviral genome and polyprotein. (A) Flaviviral genome. Flaviviruses have a single-

stranded (+) RNA genome of approximately 11 kb. Genome is capped but not 

polyadenylated. It encodes three structural (blue) and seven nonstructural (red) proteins 

which are translated from a single ORF. In between NS4A and NS4B, the genome also 

encodes a small peptide of 2 kDa (2K peptide). 5′ and 3′ UTRs are known to have complex 

structure, with several hairpins, which are important for translation, RNA synthesis, and 

sfRNA formation. (B) Flaviviral polyprotein topology and predicted transmembrane 

domains. Flavivirus polyprotein is integrated into the ER membrane. Viral proteins prM, E, 

and NS1 are mainly on the luminal side and C, NS3, and NS5 on the cytoplasmic side. 

Proteins NS2A, NS2B, NS4A, and NS4B have several transmembrane domains spanning 

across the ER, and thus, large parts of these proteins are on each side and on the ER 

membrane. 2K peptide is entirely inserted in the ER membrane. Polyprotein is cleaved co- 

and post-translationally at multiple sites. Cleavages on the cytoplasmic side are done by the 

viral protease NS3 and its cofactor NS2B, and cleavages on the ER lumen side are done by 

the signal peptidase complex. Polyprotein also has an additional furin protease cleavage in 

prM that gives rise to the mature M protein in the Golgi and one additional site between NS1 

and NS2A that is cleaved by an unknown enzyme.
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Figure 3. 
Multiple roles of the flavivirus genome. Viral genomes are translated, used as templates for 

negative strand synthesis, packaged into virions, and partially degraded to form subgenomic 

flaviviral RNAs (sfRNA). First three of these roles take place in association with the ER.
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Figure 4. 
sfRNA can impact many components of the immune system in mosquitos and humans. 

sfRNA sequesters Xrn1, leading to changes in the cellular transcriptome, binds to TRIM25, 

dampening IFN production, soaks up RBPs that are required for efficient ISG mRNA 

translation, and inhibits RNAi (see text for references).
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