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The central nervous system (CNS) is believed to utilize specific predefined modules, called muscle synergies (MS), to accomplish a
motor task. Yet questions persist about how the CNS combines these primitives in different ways to suit the task conditions. TheMS
hypothesis has been a subject of debate as to whether they originate from neural origins or nonneural constraints. In this review
article, we present three aspects related to the MS hypothesis: (1) the experimental and computational evidence in support of the
existence of MS, (2) algorithmic approaches for extracting them from surface electromyography (EMG) signals, and (3) the
possible role of MS as a neurorehabilitation tool. We note that recent advances in computational neuroscience have utilized the
MS hypothesis in motor control and learning. Prospective advances in clinical, medical, and engineering sciences and in fields
such as robotics and rehabilitation stand to benefit from a more thorough understanding of MS.

1. Introduction

The nervous system has two parts: (1) the CNS and (2)
the peripheral nervous system. Neural signals from the
CNS have repeatedly been observed to activate specific
muscle groups during the performance of motor tasks,
referred to as motor primitive (MP). How the CNS
makes this selection from a seemingly vast pool of such
primitives to attain a behavioral goal is a complicated
question in the field of motor control. The task is com-
putationally challenging, and for over 50 years,
researchers since Bernstein have investigated how the
CNS reduces the degrees of freedom by focusing on a
smaller set of variables [1]. The evidence in support of
the CNS use of motor primitives seems conclusive. Sher-
rington, Sharrard, and Ferrier and Yeo concluded that
after stimulating the spinal cord (SC), the intricate

network of nerves resulted in highly coordinated func-
tional synergies in the musculature of dogs, frogs, cats,
rabbits, and monkeys [2–4]. The root stimulation of var-
ious SC segments in humans resulted in different coordi-
nated muscular reflexes in the lower limb [3]. In this
review paper, we will analyze evidence supporting the
existence of MS among different species resulting in the
modular organization of the CNS. Microstimulation is
predominantly used to examine natural motor behavior
[5]. The combination of MS/encoded modules produces
different natural motor behaviors that are task-
dependent (i.e., task-specific MS) or task-independent
(shared MS) [6–8].

There is an ongoing debate about the origin of MS
whether they have a neural origin or a nonneural origin,
that is, whether they are encoded in the CNS or acti-
vated because of task constraints. With advances in
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EMG and functional magnetic resonance imaging (fMRI)
data analysis, the current view leans towards the organi-
zation of MS as spatiotemporal components in the brain
and SC, thus supporting their neural origin. We examine
the various techniques and algorithms used for the
extraction of MS and present a mathematical model of
MS. We also review how the central pattern generators
(CPGs) in the absence of peripheral feedback trigger
the MS. Further, MS as a physiological marker in stroke
patients and its future prospects in neuro-rehabilitation,
robotics, and sports science are discussed.

2. The Existence of MS

The presence of MS in motor tasks has been supported in
experimental studies for several decades. Figure 1 shows
how encoded MS/MP in the CNS activates muscles resulting
in force production and limb displacement.

2.1. Force Fields/Motor Primitives. MS have been associated
with the stable force produced by the limbs during natural
motor behavior. Maton and Bouisset observed that synergis-
tic groups of muscles produced different external forces
during supination or pronation and the external force pro-
duced was the sum of the forces of various muscles [9]. Fur-
ther, the EMG signal was equal to the coefficient times the
forces produced by the muscles [9]. It is believed that these
forces are present in the CNS and are known as motor prim-
itives (MPs). Giszter et al. during SC microstimulation in
frogs concluded the existence of MP [10]. These MPs or con-
vergent force fields (CFFs) present in the SC among verte-
brates and invertebrates are the building blocks for complex
motor behavior, and by their vector combination, a wide rep-
ertoire of behaviors can be generated [10–15]. It has been
proposed that the CNS uses these convergent force fields to
solve the inverse dynamics problem to reduce the kinematic
degrees of freedom [16].

Motor primitives usually develop from a neonatal stage to
toddler stage [17]. Some of them are encoded into the spinal
cord during skill acquisition. In humans, an internal model
of the force field in the CNS is constructed with a given motor
task during a robot-guided movement. These newly encoded
computational modules represent internal coordinates or
muscle/joint coordinates [18, 19]. Huesler further demon-
strated synchronization and nonsynchronization of motor
units on inter- and intramuscular pairs during the production
of force [20]. Themotor unit synchronization during precision
grip varied along different force and muscle activation levels
thus validating the presence of predefined modules. Neurome-
chanical models provide better understanding of superfluity of
muscles and their neural control during a behavioral task [21].
The muscle fibers and motor neurons (MN) together consti-
tute a motor unit (MU); the activation of MU results in muscle
activation and contraction [22]. The motor neurons carry this
encoded information/motor drives for the coordinated activa-
tion of specific groups of muscles for specific tasks; thus, MPs/
motor drives are also referred to as MS. McKay and Ting gave
more insight into MS as the fundamental blocks for move-
ments using a 3D model of the cat’s hind limb [23]. The

premotor drives serve as units for muscle coordination. The
drives represent MP in the circuitry of the SC, and the unit
bursts are the activation command from the central net-
work [24]. Hart and Giszter observed the complex behavior
in the brainstem of spinalized frogs, whereby the extracted
drives associated with the unit burst from EMG data were
focused on a set of muscles [25].

MPs are classified into kinematic (stable correlation
between joint angles), dynamic (stable correlation
between joint torques), and neuronal, based on previous
studies [26, 27]. There is little evidence of kinematic syner-
gies represented in the M1 region (of the motor cortex), but
kinematic synergies seem to originate from the MS [28, 29].
The CNS, instead of employing synergies at the kinematic
and/or dynamic level, controls them as MS, which are
the covariation of correlated, less stable EMG activities
[26, 28, 29]. From the current understanding of natural
motor behavior, MPcanbe classified into acquired andadap-
tive. The acquired MPs are embedded in the genetic design of
our nervous system, whereas the adaptive MPs are
learned and then get encoded into the spinal circuitry
[14, 18, 19, 30, 31]. The changes in the CFFs or MPs
cause changes in muscle coordination eliciting different
natural motor behaviors [31, 32]. Various techniques like
microstimulation, cutaneous stimulation, and N-methyl-
D-aspartate (NMDA) iontophoresis were used to under-
stand the relation between MP and motor behavior
[11, 32–35]. The presence of MP is supported by recent
developments in the field of computational neuroscience.

2.2. Combination of Motor Modules. We have already dis-
cussed the presence of CFFs or MPs in the spinal circuitry,
which gave us an idea that endpoint forces are dependent
on coactivation of muscles. The discussion will now focus
on how these primitives are organized in the spinal cir-
cuitry and how they are combined to produce various
movements. Georgopoulos et al. observed that during
reaching movements, the cellular discharge was higher in
the rhesus macaque motor cortex when the movement
was in the desired direction [36]. It was concluded that
the preferred location of the limb in a 3D space is
achieved by the vector sum of motor cortex’s cellular dis-
charge (population coding). Mussa-Ivaldi et al. investigated
simultaneous stimulation of two sites in the spinal cord
resulting in the endpoint forces being equivalent to vector
summation of each site after costimulating them individu-
ally in spinalized frogs [37]. The outcome was the same in
cats during intracortical microstimulation (ICMS) of the
primary motor cortex [38]. Tresch et al. and Kargo and
Giszter also found the summation of primitives in verte-
brates using ICMS and cutaneous stimulation [35, 39].
Lemay et al. used EMG to compute the forces at the mus-
cular level and mechanically at the ankle in hind limbs of
spinalized frogs [40]. During intraspinal electrical stimula-
tion in the spinalized frog, the endpoint forces were the
vector summation of each stimulated site. Capaday and
van Vreeswijk demonstrated a mechanism in which the
motor output is a linear summation without being affected
by the presence of nonlinearity (intracortical and
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intraspinal nonlinearity) in the neural circuits [41]. It was
concluded that such nonlinear neural circuit elements do
not affect the linear summation of the motor output.

It is interesting that in vertebrates, summation of the
motor unit action potentials (MUAPs) is observed using
glutamate iontophoresis or electrical stimulation of neurons
[38, 42], which is very much similar to MP summation dur-
ing stimulations of the SC. Electromyographic signals being
an algebraic summation of MUAPs are extensively utilized
for the extraction of movement primitives or MS by employ-
ing decomposition algorithms [40–42]. This understanding
leads us to the neural basis of MS.

2.3. Neuromechanical Origin of MS. The modular organiza-
tion of MS in the SC is linked to their neural origin
[7, 12, 13, 17, 25, 43, 44]. The feasible force fields with
synergies leading to a volumetric reduction of the forces
offer dimensional control criteria [45, 46]. Thus, a low-
dimensional spatiotemporal structure can explain the
muscle activation pattern and the neural origin [6, 23,
43, 45, 47–50]. The low-dimensional space was also con-
sistent between stroke patients and normal patients and
within the stroke patient’s affected and unaffected sites
leading to the speculation of the neural emergence of
MS [51–53]. Focal intraspinal N-methyl-D-aspartate
(NMDA) also supports the existence of encoded MS in
the CNS [32].

d’Avella et al. extractedMSduringdifferent natural behav-
iors in frogs [6]. Their results suggest that a small number of
components were sufficient to explain the high-dimensional
space vector of the time-varying muscle pattern. The low-
dimensional space observed was independent of the task per-
formed as synergies for kicking in frogs were similar between
different motor behaviors and hence called shared MS. The
lack of similarities in the synergies during different behaviors
is due to task-dependent synergies. Such low dimensionality
is dependent on task constraints. d’Avella and Bizzi extracted
synchronous and time-varying synergies in frogs and found
that most synergies were shared, but synergies associated
with biomechanical constraints also existed [7].

The synergies extracted during postural tasks in humans
had a low-dimensional space [48]. That study also suggested
that MS from the CNS were changed during postural adjust-
ment and the number of extracted synergies remained
consistent suggesting the neural origin of MS in cats, frogs,
humans, and primates [45, 48, 54–58]. The intrasubject
consistency of MS was observed during different tasks, thus
concluding modulation of MS recruitment instead of its
structure [59]. However, dorsal root transection on frogs
altered the temporal pattern and amplitude of activation
coefficients (structure) of shared synergies. The fine-tuning
of the synergies was not consistent within the frogs because
of different musculatures [60]. A low-dimensional space is
related to neural control and reduction in degrees of freedom
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Figure 1: The spatial and temporal pattern of MS encoded in the CNS coactivates the group of muscles. The motor pools from the CNS bring
the information as neural command to activate the specific muscles for a particular movement, which results in flexion and extension,
generating force and producing movement in space.
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[6, 23, 43, 61–63]. Valero-Cuevas et al. provided evidence
against the lack of dimensionality, thus arguing against the
concept of MS by employing a simple task using intramuscu-
lar EMG in the index finger [50]. The argument against the
synergy hypothesis is that they only exist during open-loop
tasks. However, the claim that MS are hard to reveal in the
closed-loop tasks because such tasks are not rich in behavior,
is not well supported since MS are well suited with open-loop
and closed-loop tasks and can be implemented as an optimal
feedback controller. A slight variation in the task should dis-
play their variability [7, 45, 50].

Kutch and Valero-Cuevas, using cadaveric and computa-
tional models, showed that the biomechanics of the limbs
required change in muscle-tendon length to a low dimen-
sionality in different movements. Each muscle group varied
the length change individually leading to the emergence of
nonneural coupling between muscles and the presence of
dimensionality reduction constraints during isometric force
production in different directions [64]. The muscles were
individually coordinated instead of being grouped together
in this experiment. A low-dimensional space originated
directly from motor commands (feed-forward MS), biome-
chanical constraints, and the individual response of each
muscle (feed-backward MS) in the experiment. The endpoint
forces for feed-forward MS were static as the dimensional
space emerged directly from motor commands, contradic-
ting the fact that variation end-point forces with different
tasks is commonly observed on a cellular and physical level
(cortical discharge) [15, 36, 65–68]. This concludes that the
CNS does not need to control a group of muscles to observe
EMG signal of low dimensionality. De Groote et al. using a
musculoskeletal model and minimized muscle effort found
that MS existence is dependent on the task constraints rather
than on neural control [69].

Criticism of the synergy hypothesis because of lack of
dimensionality could be due to the data processing approach
and noise. These factors make it harder to reveal the reduced
dimensionality in EMG signals [50, 69]. Bizzi and Cheung
also advocated for the neural origin of MS by discussing the
dimensional reduction of the subspace with task constraints
[17]. For isometric force production in lower limbs, seven
synergies were required but the dimensionality reduced
further to 4-5 synergies during locomotion [17, 64, 70]. The
dimensional space was lower than expected from the task
constraint, as it is the neural signals that limit motor output
required for the task [21]. Countering Kutch’s experimental
model, they added that the organization of muscles around
a joint results in muscle coupling as it produces regularities
in EMG [17, 64]. The question raised by Bizzi and Cheung
on the lower limb producing isometric force with similar
dimensionality can be understood from Hagio and Kouzaki
[17, 43]. The latter studies provide strong evidence for the
neural basis of MS in the lower limb during isometric force
production in a 3D space. There are many factors that affect
the dimensional subspace: the data processing approach and
noise factor [69], smoothing or regularities in the EMG signal
[71], and the change in muscle-tendon length synchronously
[17]. During tasks involving 52 postures and recorded EMG
from intrinsic and extrinsic hand muscles, Weiss and

Flanders concluded that the MUs from the CNS were linked
to coactivation of multiple muscles [72].

With these evidences, it would be correct to infer that MS
have neural basis. The feedback from the peripheral nervous
system assists to acquire MP into the spinal circuitry for a
certain task. The stored MP will assist the CNS to adjust bio-
mechanics of the limbs to accomplish the task [73]. In short,
the neural control in most cases overcomes the passive
dynamics but in some instances utilizes the passive dynamics
to achieve the task [21]. In the absence of sensory feedback, a
CPG reduces the dimensionality of locomotion [74]. The
CPG generates the MS with variation of the task by the pro-
cess of neuromechanical tuning in rhythmic movements, and
thus it is more appropriate to say that MS have a neurome-
chanical origin [12, 21, 61, 73–80]. This process is clearly
defined in Figure 2.

3. Brain and MS

Recent research has often employed brain fMRI to study MS.
When performing a task, the primary motor cortex (M1)
region exhibits changes on a cellular level by a high neuronal
discharge rate in a preferred direction [15, 36, 66]. In M1, the
axons of Betz cells and cortical neurons descend from the
brain to the SC forming corticospinal pathways. Cash and
Yuste demonstrated linear summation of excitatory inputs
by pyramidal neurons (Betz cells) in the hippocampus (i.e.,
sliced biopsy) of rats [81]. Like MPs, linear arithmetic of neu-
rons provides independent processing of multiple channels
without disruption of information [41, 81]. The M1 is subdi-
vided into the rostral and caudal regions in higher primates
including humans. The former mediates motoneuronal
activity in the SC, and the latter is known for higher skill
acquisition by skipping the spinal circuitry [82]. Cherian
implanted electrode arrays in the M1 region of rhesus
macaques. The outcome was that under a force field, the neu-
ronal discharge was synchronous with muscle dynamics and
M1 did not account for motor learning directly. Law et al.’s
research with implanted microelectrode arrays in rhesus
macaques while performing a task showed that the extra
group of neurons was comodulated from M1, and such flex-
ibility of M1 resulted in enhanced motor skills [83]. The MS
encoded into the spinal circuitry are updated by the cortical
regions through corticospinal pathways pertaining to specific
tasks. The flexibility of these task-specific MS is restrained by
the unequal combination of muscle fields [84]. In rhesus
macaques, electrical microstimulation of the motor cortex
generates synergistic muscular activity for multiple degrees
of movements [33, 34]. Decomposition algorithms were used
on muscle and motor cortex data acquired after microstimu-
lation of the cortical region while performing different tasks.
The neuronal firing pattern decomposed and corresponded
to the same dimensionality as that from the muscle record-
ings, which concluded the presence of spatiotemporal syner-
gies in the brain [34].

Using transcranial magnetic stimulation (TMS), it was
found that the human cortical region is associated with the
activation of different synergistic groups of muscles in the
lower portion and this was validated with EMG and fMRI
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recordings [85]. The cortical regions are the center for muscle
coactivation or MS pertinent to functional tasks [86, 87].
Optimal coordinated movement is caused by the conver-
gence and divergence of the corticospinal system with central
neuromotor noise. The organization of MS in the primate
motor cortical region has been studied, and synergies in this
area are designated as discrete spatiotemporal synergies [34].
In phylogenetically advanced species, while grasping, instead
of synergetic control of muscles, a more fractionated control
is superimposed [88]. The fractionated control is due to the
new cortico-motor neuronal pathways which bypass the
spinal circuitry. The new M1 cells in higher primates are
associated with these fractionated control pathways which
are also important for skill acquisition [82, 88]. This novel
approach of the CNS is the foundation for the development
of prosthetic arms.

The feedback mechanism is important for movement, as
in graspingMS are modulated with respect to the variation in
the shape of object among monkeys [56, 89]. In the primary
motor cortex, M1 dictates reaching and grasping objects as
a single movement separated more in time than in space
[15, 54, 90]. However, mammals with transected SC pro-
duced rhythmic movements revealing the presence of CPGs
in the CNS. Brown conducted an experiment with afferented
and deafferented cats and found similar MS in both groups of
animals [80]. The CPG activates the muscle groups that gen-
erate rhythmic patterns in vertebrates without sensory feed-
back [75, 76, 80, 91]. In the absence of a sensory feedback
or during rhythmic movements like running, modulation in
CPG by neuromodulators results in the modulation of the
timing, duration, and magnitude of MS [54, 70, 74, 91, 92].

Neural signals are transmitted from the basal ganglia and
thalamus to the midbrain locomotor region (MBLR) and to
the SC for CPG generation [54, 76] (Figure 2). Prochazka
and colleagues [78, 79] and Drew et al. [86] concluded that
the motor commands pertaining to movement pace originate
from the cortex region, channeled towards the SC via the
MBLR. It drives the CPG timer in the SC to produce cadences
with the flexor and extensor phase duration. During the

change in velocity of the rhythmic movements, the CPG
pattern formation network driven by the motor commands
modulates the activation of the muscles as per square law
relationship [78]. Hence, CPG phase durations and the muscle
forces match without the presence of a sensory feedback with
biomechanically changing events. Overduin et al. using ICMS
provided a better insight into the location of MS [5]. The spa-
tiotemporal patterns rather than being encoded into the cortex
region were present in the deeper part of the brain (brainstem
or SC) [5]. The alpha-motor neurons in the brainstem and
spinal cord were activated during kinetic and kinematic gait
events that map spatiotemporal patterns [93]. We could
infer that the M1 region dictates the movement through
alpha-motor neurons, Betz cells, and other cortical neurons
by triggering the MS in the SC or brainstem.

4. Algorithms for Extracting MS

Muscle synergies as a linear combination are usually extracted
using matrix factorization algorithms like the independent
component analysis (ICA), nonnegative matrix factorization
(NNMF), and factor analysis (FA) [94]. The application of
dimensional reduction algorithms on EMG data is important
to observe voluntary or nonvoluntary movements because
the planning of movements happens in a low-dimensional
space. The mathematical model of MS is classified into time-
varying synergies (spatiotemporal synergies) and time-
invariant synergies (spatiallyfixedor synchronousand tempo-
ral pattern) [95, 96]. The spatial and temporal synergies are
elicited individually by the CNS [49]. The nonnegative matrix
factorization multiplicative method is commonly used to
extract the MS. Being an optimization algorithm, the linear
decomposition minimizes the reconstruction error [6]. It is
also important to determine which type of MS needs to be
extracted from the EMG. The point process statistics method
was used by Hart and Giszter to distinguish between time-
variant and time-invariant MS prior to extracting them from
the EMG pulse timing or onset timing [97].
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Equation (1) gives a mathematical model of MS: here,
E is the EMG signal with n sensors (or muscles) and a
total of m samples, W is the synergy matrix with reduced
dimensionality, s is the number of components or dimen-
sions to be extracted from the EMG, C includes coeffi-
cients of neural command vectors and e is the residual
error.

En×m =Wn×s × Cs×m + e 1

(a) Time-variant synergies:

E t = 〠
N

i=1
WiCi t − ti , 2

where N is the number of synergies and E t is the activation
of muscles at time t. The individual synergy vectors are
shifted in amplitude and scaled in time by the activation coef-
ficients [95].

(b) Time-invariant synergies:

E t = 〠
N

i=1
WiCi t 3

The spatial patternsW are the task-dependent control inputs
whereas the activation coefficients C are the task -indepen-
dent predefined modules [95].

Artificial neural networks (ANN) have been similarly
employed to extract MS [98]. The spatial and temporal
patterns from EMG were estimated by the algorithms with
no unique solution [99]. The performance of PCA is not
laudable when compared with that of other algorithms
[45, 50, 94, 100]. Tresch et al. compared the performance of
different algorithms [94] using a simulated and recorded
(EMG) data set with nonnegative values. The performance
of each algorithm is listed in Table 1.

Principal component analysis sometimes gives negative
values in the synergy subspace, which represents the inhibitory
response of the spinal circuitry [94]. Krishnamoorthy et al.
used an uncontrolled manifold approach (UCM) hypothesis
to extract postural MS [48]. An autoencoder performed
better as a synergy extractor than other algorithms while
reconstructing the EMG data; it extends its performance by
providing an agonistic and antagonistic relationship between
muscles [98]. Principal component analysis also provides such
relations but does not offer good reconstruction efficiency
[98]. Algorithms like NNMF and probabilistic independent
component analysis (pICA) that utilize the hypothesis of
muscle synergies performed with higher classification accu-
racy to distinguish between the single and multiple degrees
of freedoms of upper and lower extremities [101, 102]. Elec-
tromyographic signals being corrupted by signal-dependent
noise could be the reason that these algorithms conveyed
better classification accuracy since NNMF and pICA exe-
cute well with signal-dependent noise [25, 101–104].

The dimensionality of control commands (neural com-
mands from the CNS) is not exactly the same as the elements
of the state space (musculoskeletal structure); therefore, the

exact number of synergies needs to be determined prior to
extracting them using different computational algorithms
[48]. TheMS analysis is dependent onmany variables includ-
ing muscles included, algorithms, EMG normalization
method, constant or varying synergy vector (SV), output
vector normalization method, and synergy comparison
method [105].

Bartlett’s test, Akaike information criteria, Bayesian
information criteria, Laplacian information criteria, and
Likelihood ratio test can all be used to identify the correct
number of synergies for Gaussian noise-corrupted data but
fail to do so for signal-dependent noise. For signal-
dependent noise, an ad hoc procedure based on log-
likelihood curves may identify the correct number of syner-
gies [94]. For estimating the count of MS in comparison to
the ad hoc procedure, R-squared curve or VAF (variance
accounted for) curve gives a more accurate estimate. By def-
inition, VAF and R-squared are similar (1− sum of squared
errors/total sum of errors), but in standard Pearson correla-
tion, the total sum of squared errors for VAF is with respect
to zero not the same with that for R-squared which is related
to the mean.

4.1. Procedure (NNMF Multiplicative Update Method). For
determining the applicable MS from raw unshuffled EMG
data, N synergies (1–10) were extracted from EMG data set
with n muscle and m samples (Figure 3). The algorithm esti-
matesW and C, the EMG data is shuffled and fed to the algo-
rithm again with earlier extracted synergies as fixed synergies,
and the activation coefficient (C) is kept unfixed and allowed
to be estimated. The EMGdata is reconstructed again bymul-
tiplying the newly estimated activation coefficient vector and
fixed synergy vector E =W ×C. For each synergy point, the
data is reconstructed; then, R-squared or VAF curve is plotted
against theN number of synergies (1–10) using the expression
(1 − sum of squared errors/sum of total squared errors).

SSE =〠〠 Enm − Ênm
2,

SST =〠〠 Enm − Enm
2

4

Here, n is the number of muscles and m is the number of
samples. There are four main ways to calculate the number
of MS based on the VAF curve, which are as follows:

(1) Best linear fit (BLF) method: Cheung presented that
moving along with a greater number of synergies or compo-
nents on the x-axis of the graph reduces the mean square
error and the curve becomes a straight line. The point at
which it attains the plateau is chosen for the correct number
of synergies [60].

(2) Knee point (KP) method: Cheung et al. presented
another method in which the point or the number is chosen
where the curve has an increase of smaller than 75% [51].

(3) Elbow method: Tresch et al. suggested the point at
which the change in the slope of curves is maximum [94].

(4) Threshold method: Torres-Oviedo et al. used a
threshold basis of 0.9 (90%) on the VAF curve to find the
number of synergies for extraction [58].
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Table 1: The spectrum of performance of different algorithms for synergy estimation from the EMG signal affected with Gaussian noise and
signal-dependent noise performance of algorithm in the identification of the subspace and activation coefficients [94].

Performance
Gaussian variance noise (synergy

estimation)
Signal-dependent noise (synergy

estimation)
Identifying
subspace

Activation
coefficient

PCA Low Low High Intermediate

ICA High Intermediate Low Low

FA High Intermediate High High

NNMF Intermediate Intermediate Intermediate Intermediate

ICAPCA High High High High

pICA High High High High

EMG data (E)

Activation
coefficient (C)
C1, C2, C3, ... ,

 
Cn 

Newly estimated
activation
coefficient (Cnew)
C1, C2, C3, ... , Cn 

New shuffled
EMG data (E)

W input to
the algorithm

Synergy (W)
W1, W2, W3, ... , Wn

Estimates

Estimates
Estim

ate
s

NNMF multiplicative
method Min ‖E − W . C‖2

NNMF updated
with C allowed
to be estimated

Reconstructed
EMG (E = W × Cnew)

Cross-
validation/VAF

Figure 3: Procedure to extract MS from the NNMF multiplicative method. Synergies (W) were extracted from raw EMG data. EMG data is
then shuffled and fed again to the algorithm withW as fixed synergy, and activation coefficient (C) is allowed to be estimated. The EMG signal
was reconstructed withW and newly estimated activation coefficient (Cnew). Cross-validation is performed between the original (E) and the
reconstructed EMG data.
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4.2. Automated Task Decoding Method. This method uses
different decoding algorithms (linear discriminant analysis
(LDA), quadratic discriminant analysis (QDA), naive Bayes-
ian (NB) algorithm, and K-NN clustering) and statistical
testing. The number of synergies is chosen at a point where
there is no statistical significance after adding more synergies
to the decoding parameters of the algorithm. The statistical
significance is computed between the decoding parameters
ofN,N-1, andNth synergy which are pseudo-randomly shuf-
fled 100 times [103].

There is no perfect algorithm for MS estimation because
withbiomechanical constraints, theaccuracyof thealgorithms
gets reduced [100]. In the classical VAF method, the variance
causes difficulty in choosing the exact number of synergies.
Delis et al. presented a more accurate method to extract a
smaller set of synergies from the data [103]. In this method,
the performance of synergy computation is dependent on the
algorithm type as LDA performed faster and more precise
using the dataset in their study.

5. MS as a Physiological
Marker for Neurorehabilitation

5.1. Stroke. Muscle synergy structures based on motor
control outputs are beneficial for recognizing alterations in
the brain for various motor tasks. Thus, MS prove to be
important in the field of human locomotion and neuroreh-
abilitation as motor impairments can be understood by
means of the patterns or structures of MS [53, 106–108].
Cheung in their study in ischemic stroke patients with
affected and unaffected arm found MS similarities in both
arms with respect to different lesion sizes and locations in
frontal cortical areas. This led to the conclusion that the cor-
tical signals activate the muscles at both sites in a similar way
[60]. However, due to cortical lesions, altered activations of
muscles occur resulting in deficit motor performance. This
altered coordination can be emphasized for stroke recovery.
Alteration in the MS is dependent on the severity of impair-
ment [107, 109]. Recent studies provided additional factors
which affect the structure of MS or possibly the similarities
in MS. In most cases, alteration in MS is observed, but the
results by Cheung showed that preserved synergies could be
due to hand movement with the intact sensorimotor cortex
[60]. Merged synergies are associated with the abnormal cou-
pling of joints in chronic stroke patients during different
movements [52, 110]. These abnormal synergies, instead of
being eliminated, can be augmented through robot-assisted
therapy [53, 108, 111, 112].

We have emphasized the impact of MS with respect to
the level of impairment or cortical lesion, but the alteration
in MS can also result with time among stroke patients. There
are three main stages of stroke categorized on the basis of
duration by computed tomography (CT).

5.1.1. Subacute Stroke. The time period for the stroke is from
48 hours to several weeks. The upper-limb MS in such stroke
is very similar to that in healthy patients, as the previous
study also revealed, but the neural drives or activation coeffi-
cients displayed alteration because of the presence of a

cortical lesion or damage in the cerebral hemisphere [108].
Hashiguchi et al.’s study on subacute stroke patients revealed
both merging and fractionation of MS in the lower limb dur-
ing gait; however, unlike addition of more synergies for good
motor performance [52], the merging of synergies resulted in
poor muscle coordination. It is possible that because of the
short time span, new synergies were not added to the sub-
space for flexible control of the limb by stroke patients.

5.1.2. Acute Stroke. The time period is very short which is less
than 24–48 hours. Any voluntary movement is less likely.

5.1.3. Chronic Stroke. The time period ranges frommonths to
years. In chronic stroke, fractionated and merged MS were
observed [109]. In such condition, MS are not usually con-
served as it appeared in earlier studies. The alteration in
proximal MS is more distinct in severe cases than in mild
and moderate cases, although some synergies in mild, mod-
erate, and severe stroke were conserved in elbow flexors
and extensors but varied in shoulder muscles. The conserved,
merged, and fractioned synergies exist together in stroke
patients [52, 109]. The difference in the similarity of the MS
could be due to the neuro-anatomical sites or intact sensori-
motor cortex [106, 113]. With the intact sensorimotor cortex,
MS similarity is poor with the newly generated MS. In con-
trast to this without the intact sensorimotor cortex, MS sim-
ilarity is higher in chronic stroke [106]. Mcmorland et al.
further added that the degree of similarity and preservation
of synergies among individuals with intact sensorimotor cor-
tex was positively associated with hand function [113]. God-
love found that MS after stroke are related to perilesional
high gamma observded in the electrocorticography (ECoG)
signals [114].

5.2. Fugl-Meyer Assessment. The studies discussed so far
show consistency to the Brunnstrom approach that includes
stages of motor recovery. The MS count remained static in
pain with altered spatiotemporal patterns in the upper limb
[115]. In stage 3, the pain is high because of muscle stiffness
and it can be inferred that with decreasing spasticity stages,
emergence of new MS or augmentation of affected MS for
rehabilitation is likely to be achieved successfully. The follow-
ing stages were implicated: (1) flaccid paralysis: there are no
reflexes; (2) appearance of spasticity: basic MS start appear-
ing and abnormal movement of limbs will be present; (3)
increased spasticity: there is increased stiffness of the muscles
and voluntary movements can be attained, but motor control
is absent; training of muscles or MS in this stage can lead to
preliminary recovery; (4) decreased spasticity: motor control
starts appearing and training should be continued; (5) com-
plex movement combination: here, the MS patterns get more
coordinated and complex movement can be attained by the
limbs; (6) disappearance of spasticity: with the disappearance
of spasticity, increasing motor control is achieved; difficulty
during rapid complex movements remains and MS are more
coordinated; and (7) normal functioning: normal function-
ing of the limbs as optimal control is attained.

Based on the above approach, Brunnstrom and Fugl-
Meyer et al. developed the scoring system for the
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quantitative clinical assessment of five domains for reha-
bilitation [116, 117]. The five domains of the assessment
are the motor function, sensory function, joint pain, joint
motion, and balance [116, 117].

5.3. Rehabilitation. In patients with a neurological disorder,
the imbalance of muscle coordination is compensated by
other muscle groups. For example, in chronic stroke, trunk
synergies are compensatory to overcome aberrant coupling
in the arm for better control [112, 118]. Similar compensa-
tory synergies have been observed in lower limbs during gait
[119]. These compensatory synergies inhibit the recovery
process of specific MS as it becomes hard to train the specific
muscle groups to recover. Thus, specific muscle synergies
should be trained and any compensatory muscle synergies
should be inhibited during the training period depeding on
the level of impairment among patients [112]. In contrast,
studies also suggest that this compensatory behavior should
not be ignored but rather be utilized for better poststroke
recovery [119, 120].

Fractionated MS are observed in poststroke individuals
after several years. It can become the flexible control strategy
for movement as synergies are added. The formation of new
synergies, which were evident in chronic stroke, can be useful
for neurorehabilitation as these synergies were adapted for
improved controllability of limbs [51, 121]. A minimum of
six-week repetitive training can induce changes in the
white matter to build new or augment existing synergies
[53, 106, 121]. In the lower limb, while standing, stroke-
affected patients and healthy individuals exhibited com-
mon synergies, since the stroke patients shifted the center
of mass to maintain balance and their MS were similar to
those of a healthy person [48, 122, 123]. In most studies,
NNMF (multiplicative method) is used to study the syner-
gies among stroke patients [51, 52, 107, 109]. Different
methodological techniques for synergy extraction can
provide better information on a trial-by-trial basis or on
an individual basis for better recovery from stroke.

6. MS Application in Sports

Muscle synergies have been analyzed thus far during normal
physical activities, but during peak physical activities, the role
of MS with respect to the task is also of great interest. The dis-
tribution of relative weight of the muscles in the synergy
space helps in understanding the movements. Modulating
compensatory synergies that minimizes the chances of injury
by specific training is a better solution in sports rehabilitation
and performance. Matsunaga et al. analyzed the MS before
and after 10 minutes of running [124]. Similar to previous
studies, the number of MS was consistent. The first three
modules or MS were similar, but the fourth MS showed the
activation of muscles around the pelvis region moving from
the trunk region. This could be the reason that during foot
strike, we are more prone to injury as the postural control
has been shifted from the trunk to the lower limb.

Some sports like gymnastics require high postural stabil-
ity. Trunk muscles play a vital role in human postural control
[112, 118, 124]. Among gymnasts, while performing a giant

swing, three synergies were identified [55]. The first two syn-
ergies were consistent between subjects, but the third synergy
displayed variability. Frère and Hug concluded that the vari-
ability in the third synergy could be related to the lower-level
neural control rather than to the biomechanical constraints.
Here, the synergies associated with the trunk, arms, and
shoulder muscles cooperate to limit further the extension of
the shoulder joint [55], thus reducing the chances of injury.
A recent research showed that after five weeks of strength
training (bench press), there was an intrasubject variability
of MS [125], whereas those who had not trained themselves
and continued with their daily routine showed no such vari-
ability [125].

Shaharudin et al. analyzed a group of untrained individ-
uals performing rowing movements on slide and fixed
ergometers [126]. The results were consistent with those of
previous studies. Muscle synergies were modulated, but their
structure remained the same [59, 126]. The CNS had distrib-
uted the weights of the muscles differently for rowing on a
slide ergometer (leg muscles) and a fixed ergometer (back
muscles) to minimize injuries. We can say that the nervous
system continuously makes adjustments to optimize the
selection of MS that are best suited for the specific move-
ment. It is reasonable to assume that this optimization of
the MS selection process is based on identifying and utilizing
the most economical MS profile for the movement and one
that reduces the chances of injury. Barroso’s research on
MS stated that functional motor impairment (spinal cord
injury) quantitative assessment was performed well while
cycling. Muscle synergy modulation plays a vital role in
sports performance and, in the future, can become a vital tool
in recovery from injury [55, 124, 126].

7. MS Application in Robotics

In this section, we will discuss the application of MS in
robotics. A low-dimensional controller controls the
dynamics of the limbs without losing the performance. A
number of studies have utilized the hypothesis of MS to build
artificial limbs [101, 102, 127]. Berniker et al. built a simple
controller with MS and a low-dimensional model whose per-
formance is close to a full-dimensional controller [61]. Ales-
sandro et al. in his review presented the principal
foundation of using the hypothesis of MS in robotics [95].
The synergies extracted from the task are combined to form
the motor signal for a newtask and were tested further based
on the observed task [95]. Including the dynamics of themus-
culoskeletal model can help better approximate muscular
activities. Rasool et al. examined the state space modeling,
used the MS matrix extracted from EMG data as an observa-
tion matrix, and included the dynamical model of the upper
extremity [102, 128]. The neural drive was further estimated
using an updated state-constrained Kalman filter that has a
synergy matrix and the upper-extremity dynamic matrix,
which can be used to control upper-extremity myoelectric
prostheses [102, 128]. Afzal et al. did similar work on the
lower limb during overground movements [101]. Direct and
pure kinematic modeling of the synergy patterns could result
in inconsistency in grasping [129]. Pisa/Italian Institute of
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Technology modeled a robotic hand with the concept of
translating soft synergies into adaptive synergies to solve this
issue. To implement such model, underactuated hands with
designed ligaments and innovative joints were used. The
underactuated hand’s parameters were selected to mimic
the given synergies for consistent grasping [127, 129]. There
are currently many improvements under way, and dynamical
systems have been developed for movements that are more
complex. This will lead to the addition of more flexible move-
ments in robots with higher controllability.

8. Conclusions

We have presented recent research results related to MS in
motor control, neurorehabilitation, robotics, and sports
science. This review paper concludes that the modular
organization of MS in the CNS and their combination lead
to a variety of natural motor behaviors. These predefined
encoded primitives reduce the dimensionality of the behavior
for better task control [23, 45, 53, 54, 57, 58, 61, 130]. The
concept of MS is still under study with critical and unbiased
views towards it [13, 17, 59, 64, 104, 131].We have postulated
that the MS are represented as spatiotemporal synergies in
the CNS and are triggered individually as spatial and
temporal patterns by the CNS [43, 47, 49, 88]. The linear
decomposition algorithms (PCA, NNMF, and ICA) are
predominantly used to extract spatiotemporal, temporal,
and spatial synergies from EMG. In the fields of neurosci-
ence and robotics, the MS hypothesis has proven to be
efficient for motor control of the limbs by reducing the
degrees of freedom [101, 102, 127, 132].

Temporal synergies are crucial in understanding the
neural basis of MS [43]. The case for the neural origin of
MS is still a question of debate, but the evidence shows a
strong inclination towards its neural-physiological origin as
well as spatiotemporal pattern representation in the brain
and the SC. We have also concluded that the alteration in
MS is dependent on the site of lesions, the severity of impair-
ment, the stage of stroke, and, to a certain extent, the com-
plexity of the task performed by the patients. As MS can be
preserved, fractionated, and merged among stroke patients,
this makes it a physiological marker for neurorehabilitation.
The emergence of new MS and augmentation with robot-
assisted therapy and sports and exercise therapy provide a
relation to changes in the white matter and neuroplasticity
[133]. The MS can also be used to assess the distribution of
the muscle weights during movements that are more vigor-
ous. The abnormal shifting of the activation of the muscles
can be observed from MS patterns and hence can help us
in reducing the chances of injury [124].

Besides stroke, other neurological disorders like cerebral
palsy, dystonia, and spinal injury have been investigated by
the hypothesis of MS, which allow flexibility in neurorehabil-
itation or diagnosis in these and other disorders [8, 134–138].
The association of MS and CPG provides a new approach
for myoelectric prostheses among arm and leg amputees
by reducing the degrees of freedom [101, 102]. Instead
of considering MS as implemented in software, there are
some applications in robotics where a hardware model

has been built around an MS concept [127, 129]. Most
of the MS studies utilize different algorithms, and to this
date, no single approach to optimally process the EMG
signal and extract MS has been identified. Studies have
revealed that different algorithms responded differently to
noise in the EMG source and were likely to affect the
accuracy or precision of the results. There is still considerable
room for further research related to MS in the field of neuro-
science, robotics, and sports.
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