
Choroidal neovascularization (CNV) is an important 
pathologic component of neovascular age-related macular 
degeneration (AMD), and CNV lesions may progress to an 
end-stage fibrous plaque or disciform scar, which contributes 
to the loss of central vision [1]. Hypoxia is essential for the 
pathogenesis of AMD [2].

Recently, intravitreal injection of antivascular endothelial 
growth factor (VEGF) drugs has become the main approach 
for the clinical treatment of CNV [3-5]. However, even 
with standardized and repeated anti-VEGF treatment, only 
30–40% of patients with exudative AMD demonstrate vision 
improvement [6]. One reason for unsuccessful outcomes that 
has been identified is the subretinal fibrosis that may develop 
in approximately half of all anti-VEGF-treated eyes within 
2 years [7]. Thus, therapeutic strategies for the inhibition of 
subretinal fibrosis have become a research hotspot.

Fibrosis is considered to represent an excessive wound 
healing response to tissue damage [8]. In neovascular AMD, 

CNV develops in the subretinal and/or subpigment epithe-
lial space, leading to hemorrhage and exudative change and 
culminating in subretinal fibrosis [9]. Generally, after epithe-
lial cell injury, cells undergo epithelial-mesenchymal transi-
tion (EMT), which enables transdifferentiation and results 
in the conversion of epithelial cells to myofibroblasts [10]. In 
the healthy eye, the RPE is a highly polarized monolayer of 
pigmented cells [11] that retain a mature epithelial phenotype 
and are mitotically quiescent with cell–cell contact inhibi-
tion mediated by the homotypic adhesion of cadherins on 
adjacent cells [12]. Once these contacts are disrupted, RPE 
cells lose their epithelial phenotype, with decreasing expres-
sion of epithelial markers, such as E-cadherin and ZO-1, and 
gain mesenchymal properties, with increasing expression of 
mesenchymal markers, such as N-cadherin, vimentin, and 
α-SMA [10]. RPE could be the origin of myofibroblastic cells 
through the development of EMT [13]. Thus, the EMT of RPE 
cells is a critical step in subretinal fibrosis.

Placental growth factor (PGF) is a member of the VEGF 
family and specifically binds to the receptor VEGFR-1 
[14-16]. PGF is known to stimulate the growth, migration, and 
survival of endothelial cells [17,18]. Unlike VEGF expression, 
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Purpose: To investigate the role of placental growth factor (PGF) in the epithelial-mesenchymal transition (EMT) of 
ARPE-19 cells under hypoxia, and whether the NF-κB signaling pathway is involved in this process.
Methods: ARPE-19 cells were treated in five groups: a control group, hypoxia group, PGF group, hypoxia+PGF group, 
and NF-κB-blocked group. A chemical hypoxia model was established in the ARPE-19 cells by adding CoCl2 to the 
culture medium. The morphological changes after treatment were observed. The proliferation rates were measured with 
3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. The migration abilities were measured 
with scratch assay. The EMT biomarkers were measured with quantitative real-time PCR (qRT-PCR), western blotting, 
and immunofluorescence. The relative protein expression of components of the NF-κB signaling pathway was measured 
with western blotting and immunofluorescence.
Results: Cells treated with PGF under hypoxia exhibited morphological changes consistent with the transition from an 
epithelial to a mesenchymal phenotype. In the ARPE-19 cells, exogenous PGF under hypoxia increased the proliferation 
rate compared to the rate under hypoxia alone (p<0.05) and increased the migration rate (p<0.05). Treatment of hypoxia-
exposed cells with PGF caused decreased expression of the epithelial biomarkers E-cadherin and ZO-1 (both p<0.05) 
and increased expression of the mesenchymal marker α-SMA (p<0.05) by enhancing the phosphorylation of NF-κB p65 
of the total protein, promoting the translocation of p65 to the nucleus, and inducing the degradation of IκB-α (a negative 
regulator of the NF-κB pathway) in the ARPE-19 cells. Additionally, the effect of PGF-induced EMT in the ARPE-19 
cells under hypoxia was counteracted with BAY 11-7082 (a selective NF-κB inhibitor).
Conclusions: Exogenous PGF promotes EMT-like changes in ARPE-19 cells under hypoxia by activating the NF-κB sig-
naling pathway. The study results suggest that PGF may play a role in scar formation in neovascular age-related macular 
degeneration (AMD) and that the inhibition of PGF may be a promising target for the prevention and treatment of AMD.
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PGF levels are low or undetectable in healthy tissue but are 
increased in disease settings [19,20]. Potential involvement of 
PGF has been described in wound healing, collateral vessel 
formation in ischemia, and tumor growth [21,22]. Literature 
concerning the role of PGF in retinal pathology is sparser, 
although it has been reported that mice lacking PGF show 
less neovascularization after laser treatment [23]. Another 
group demonstrated similar results after pharmacologic 
blockade of PGF [24]. Extracellular hypoxia produced addi-
tive PGF gene expression [25]. Our previous study found 
that PGF expression is iatrogenically upregulated by anti-
VEGF therapy [26]. Emerging evidence suggests that PGF 
is a key regulatory factor involved in controlling angiogenic 
and inflammatory responses and pathological angiogenesis, 
especially in retinal disorders. In recent years, PGF has been 
demonstrated to play an important role in triggering EMT in 
hyperoxia-induced acute lung injury [27,28], cervical cancer 
[29], and breast cancer [30]. However, whether PGF promotes 
epithelial-mesenchymal transition-like changes in subretinal 
fibrosis of neovascular AMD has not been reported, and the 
possible molecular mechanisms underlying the process have 
not been elucidated.

Thus, in the present study, we investigated the role of 
PGF in the EMT of ARPE-19 cells under hypoxia. Moreover, 
we demonstrated that the NF-κB signaling pathway could 
regulate this process.

METHODS

Cell culture and treatment: The human RPE cell line 
ARPE-19 was obtained from the American Type Culture 
Collection (ATCC, Manassas, VA) and maintained in 
Dulbecco’s modified Eagle’s medium/F-12 HAM (DMEM/F-
12, HyClone, Logan, UT) containing 10% fetal bovine 
serum (FBS, Gibco, South America) and 1% penicillin and 
streptomycin (Life Technologies, Grand Island, NY) under 
a humidified atmosphere containing 5% CO2 at 37 °C. The 
medium was changed every 2–3 days. Cells were routinely 
passaged at 80% to 90% confluence and a split ratio of 1:3 
by digestion in 0.25% trypsin-ethylene diamine tetraacetic 
acid (HyClone). Semiconfluent cultures (70–80% conflu-
ency) were serum starved for 24 h, and after starvation, the 
cells were treated as described below. The 3-(4,5-dimethyl-
2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) 
assay comprised three subassays. In the first assay, cells 
were treated with different doses of CoCl2 (0, 25, 50, 100, 
200, 400, and 800 μM) for 12 h; in the second assay, the 
cells were treated with different doses of PGF (0, 12.5, 25, 
50, 100, 200, and 400 ng/ml) for 48 h; and in the third assay, 
the cells were first treated with 200 μM CoCl2 for 12 h and 

then with different doses of PGF (0, 25, 100, and 400 ng/
ml) for 48 h, with the exception of the control group, which 
received neither CoCl2 treatment nor PGF treatment. In the 
other assays, the cells were treated as follows: The control 
group was cultured with cell culture medium containing 1% 
FBS (control); the hypoxia group was cultured with 200 μM 
CoCl2 (Sigma Aldrich, St. Louis, MO) dissolved in medium 
containing 1% FBS for 12 h (hypoxia); the PGF group was 
cultured with 100 ng/ml PGF (R&D Systems, Minneapolis, 
MN) dissolved in medium containing 1% FBS for 48 h 
(PGF); the hypoxia+PGF group was cultured with 200 μM 
CoCl2 for 12 h and then cultured with 100 ng/ml PGF for 48 
h (hypoxia+PGF); and the NF-κB signaling pathway-blocked 
group was first cultured with 200 μM CoCl2 for 12 h and then 
treated with 2 μM Bay 11-7082 (Sigma) for 30 min before 
culture with 100 ng/ml PGF for 48 h (NF-κB blocking).

Cell authentication: Short tandem repeat (STR) analysis 
was used to validate the ARPE-19 cells used in this study. 
Nineteen short tandem repeat (STR) loci plus the gender 
determining locus, amelogenin, were amplified using the 
commercially available EX20 Kit from AGCU (Wuxi, 
China). The cell line sample was processed using the ABI 
Prism® 3500 Genetic Analyzer. Data were analyzed using 
GeneMapper® ID-X v1.4 software (Applied Biosystems, 
Suzhou, China). Appropriate positive and negative controls 
were run and confirmed for each sample submitted. The STR 
analyses are presented in Appendix 1.

Morphological observation: The morphological characteris-
tics of the cells after treatment were observed. We collected 
images at 100X magnification on an inverted phase contrast 
microscope (Nikon Eclipse TS100, Nikon, Tokyo, Japan) after 
appropriate treatments.

MTT assay: Cultured ARPE-19 cells after 48 h of treatment 
with different doses of PGF with or without hypoxia pretreat-
ment were assayed for viability using the MTT assay. Cells 
were seeded into 96-well plates at 4 × 103 cells/well. After 
incubation with the indicated concentrations of PGF for 48 h 
with or without pretreatment with 200 μM CoCl2 for 12 h, the 
MTT solution (5 mg/ml, Sigma-Aldrich) was added to each 
well and incubated for 4 h at 37 °C. Then the supernatant was 
discarded, and 150 µl dimethyl sulfoxide (DMSO, Sigma) was 
administered for 10–15 min. The absorbance was recorded at 
570 nm with a Microplate Reader (BioTek, PowerWave XS, 
Winooski, VT). The experiment was executed in triplicate 
and represented graphically as a percentage of the prolifera-
tion rate.

Scratch assay: Cell density was adjusted to 1 × 107 cells/
ml, and 2 ml of cell suspension was added to each well of a 
premarked 6-well plate. When the cells reached confluence, 
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two straight parallel lines were scratched into the cell layers 
in each well using a sterile 10 μl pipette tip. Thereafter, 
cellular debris were washed away with PBS (1X; 137 mM 
NaCl,2.7 mM KCl,10 mM Na2HPO4,2 mM KH2PO4, pH 7.4), 
the medium for each group was added, and photographs were 
taken at selected regions at 100X magnification under an 
inverted phase contrast microscope (Nikon Eclipse TS100). 
After incubation for another 12 h, pictures were taken again 
at the same regions. The experiments were repeated three 
times. For further quantitative analyses, the gap size of the 
wound was measured using ImageJ software (National Insti-
tutes of Health, Bethesda, MD), and the percentage coverage 
of the wound was evaluated as the migration rate.

RNA isolation and qRT-PCR: Total RNA was isolated using 
TRIzol (Invitrogen, Carlsbad, CA) according to the manufac-
turer’s instructions. Total RNA was reverse-transcribed using 
the PrimeScriptTM RT Master Mix (Takara, Dalian, China). 
The following conditions were used: 15 min at 37 °C, and 
then 5 s at 85 °C and then holding at 4 °C. Quantitative real-
time PCR (qRT-PCR) was performed using SYBR Premix 
Ex TaqTM II (Takara). Quantitative PCR was performed in 
an ABI StepOne (Applied Biosystems, Grand Island, NY) 
instrument. The amplification program performed by the 
manufacturer’s instructions, as follows: 30 s at 95 °C, and 
then 40 cycles of 5 s at 95 °C and 30 s at 60 °C. Relative gene 
expression levels were normalized to β-actin levels and calcu-
lated using the comparative Ct (2−ΔΔCt) method. The sequences 
of the primers used are as follows: α-SMA, forward: 5′-CCG 
ACC GAA TGC AGA AGG A-3′, reverse: 5′-ACA GAG TAT 
TTG CGC TCC GAA-3′; ZO-1, forward: 5′-AGC CAT TCC 
CGA AGG AGT TGA G-3′, reverse: 5′-ATC ACA GTG TGG 
TAA GCG CAG C-3′; β-actin, forward: 5′-TCC CTG GAG 
AA GAG CTA CGA-3′, reverse: 5′-AGC ACT GTG TTG 
GCG TAC AG-3′.

Immunofluorescence: The ARPE-19 cells were seeded 
on glass coverslips at a density of 5 × 104 cells per well in 
24-well culture plates. After the appropriate culture time, the 
cells were fixed with 4% formaldehyde in PBS for 15 min at 
room temperature, followed by permeabilization with 0.1% 
Triton X-100 in PBS for 15 min. After blocking with normal 
goat serum working solution for 20 min, the cells were incu-
bated with α-SMA primary antibody (1:100 dilution; Abcam, 
Cambridge, UK) and p65 (1:50 dilution; Cell Signaling Tech-
nology, Beverly, MA) overnight. After washing with PBS, 
fluorescein isothiocyanate (FITC)-conjugated goat anti-rabbit 
secondary antibody was added and incubated for 1 h in the 
dark. Cells were washed and then incubated for 10 min with 
4′,6-diamidino-2-phenylindole (DAPI; Vector Laboratories, 
Burlingame, CA) to stain the nuclei. Images were captured 

using a fluorescence microscope (Nikon Eclipse Ti-E) at 
200X magnification. Images were processed in ImageJ.

Western blotting: The protein expression in the ARPE-19 
cells was measured with western blotting. Briefly, after 
washing twice with PBS, the cultured cells were collected 
and lysed in ice-cold radioimmunoprecipitation assay (RIPA) 
buffer containing protease inhibitors (Roche, Indianapolis, 
IN) and the phosphatase inhibitor phosSTOP (Roche). The 
nuclear and cytosolic proteins were extracted using a nuclear 
and cytoplasmic protein extraction kit (CWBiotech, Beijing, 
China) according to the manufacturer’s protocol. The lysates 
were centrifuged at 15,000 ×g for 15 min at 4 °C. Protein 
concentration was measured using a standard bovine serum 
albumin (BSA) curve. Samples containing equal amounts of 
protein (60 μg) were separated by sodium dodecyl sulfate–
polyacrylamide gel electrophoresis (SDS–PAGE) and trans-
ferred to polyvinylidene dif luoride (PVDF) membranes 
(Millipore, Bedford, MA). Nonspecific binding of the 
membranes was blocked with blocking buffer (5% non-fat 
skim milk/1× TBS/0.1% Tween-20) for 1 h at room tempera-
ture. The membranes were hybridized with the appropriate 
dilution of a specific primary antibody (E-cadherin, Abcam, 
1:1,000; α-SMA, Abcam, 1:10,000; β-actin, Proteintech 
(Chicago, IL), 1:5,000; p65, CST (Beverly, MA), 1:1,000; 
phospho-p65 (p-p65), CST, 1:1,000; IκB-α, CST, 1:1,000; 
histone H3, CST, 1:1,000) overnight at 4 °C and then washed 
three times before incubating with horseradish peroxidase 
(HRP)-conjugated secondary antibodies at the appropriate 
dilution for 1 h at room temperature. The bands were visu-
alized with an enhanced chemiluminescence (ECL) HRP 
substrate (Millipore) using a chemiluminescence imaging 
system (Syngene G:BOX Chemi HR16; Syngene, Frederick, 
MD). β-actin served as a total and cytosolic internal refer-
ence, and histone H3 served as a nuclear internal reference.

Statistical analysis: The data are shown as the mean ± stan-
dard deviation (SD), analyzed using SPSS 13.0 (SPSS Inc., 
Chicago, IL) for Windows. Differences among three or more 
groups were analyzed with one-way ANOVA (ANOVA). A p 
value of less than 0.05 was considered statistically significant.

RESULTS

Effects of exogenous PGF on morphological changes of 
ARPE-19 cells under hypoxia: ARPE-19 is a human RPE cell 
line with an epithelial morphology. To observe the effects of 
exogenous PGF on morphological changes of ARPE-19 cells 
under hypoxia, we took photos after the treatments (Figure 
1). The results showed that the control group maintained the 
morphological characteristics of epithelial cells, exhibiting 
a cobblestone-like epithelial morphology with a relatively 
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neat arrangement. The cells treated with PGF under hypoxia 
showed obvious changes in cell morphology, presenting with 
a marked transition from an epithelial to a mesenchymal 
phenotype; the cells adopted a more elongated spindle-like 
morphology and were arranged in a disorderly way. No 
obvious morphological changes were observed in the cells 
subjected to hypoxia alone or treated with PGF alone.

Effects of exogenous PGF on proliferation of ARPE-19 cells 
under hypoxia: The viability of the ARPE-19 cells was 
measured with MTT assays. The cell proliferation rate was 
decreased considerably under hypoxia induced by CoCl2. 
Exogenous PGF alone did not influence the proliferation rate 

of the cells. However, exogenous PGF increased the prolifera-
tion rate of the ARPE-19 cells under hypoxia compared to the 
cells under hypoxia alone (Figure 2).

Effects of exogenous PGF on migration in ARPE-19 cells 
under hypoxia: The scratch assay was used to measure the 
effects of exogenous PGF on the migration of the ARPE-19 
cells under hypoxia. The ARPE-19 cells treated with PGF and 
hypoxia exhibited statistically significantly increased migra-
tion compared with the control, hypoxia alone, and PGF alone 
groups (p<0.05). Treatment with hypoxia alone or PGF alone 
exerted no apparent influence on the migration ability of the 
ARPE-19 cells (Figure 3).

Figure 1. Effects of exogenous PGF on morphological changes of ARPE-19 cells under hypoxia. A: The control group exhibited a cobblestone-
like epithelial morphology. The hypoxia group (B) and the placental growth factor (PGF) group (C) did not show obvious morphological 
differences compared with the control group. D: After treatment, cells in the hypoxia+PGF group exhibited a marked transition to a more 
elongated spindle-like mesenchymal morphology and were arranged in a disorderly fashion compared with the cells in the control group 
(A), the hypoxia group (B), and the PGF group (C). Scale bar: 200 μM.

Figure 2. Effects of hypoxia and PGF on the proliferation of ARPE-19 cells. A: Hypoxia exposure decreased the proliferation rate of ARPE-19 
cells, *p<0.05 versus the control group. B: Exogenous placental growth factor (PGF) did not affect the proliferation rate of the ARPE-19 
cells. C: Exposure to hypoxia (treatment with CoCl2 for 12 h) and the addition of exogenous PGF for 48 h increased the proliferation rate 
of the ARPE-19 cells; *p<0.05 versus the hypoxia group (treatment of CoCl2 for 12 h). Exposure to hypoxia decreased the proliferation rate 
of the ARPE-19 cells; #p<0.05 versus the control group. Data are the mean ± standard deviation (SD) of three independent experiments.
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Effects of exogenous PGF on EMT in ARPE-19 cells under 
hypoxia: EMT of the ARPE-19 cells was measured with 
qRT-PCR, western blotting, and immunof luorescence 
staining of biomarkers of EMT at the mRNA and protein 
levels. The results showed that treatment of the hypoxia-
exposed cells with PGF caused decreased expression of 
E-cadherin and ZO-1 (both p<0.05), which are epithelial 
biomarkers, and increased expression of α-SMA (p<0.05), 
a mesenchymal marker, which suggested the occurrence of 
EMT, but neither exogenous PGF nor hypoxia exposure alone 
promoted EMT (Figure 4A,B and Figure 5).

PGF stimulates the activation of NF-κB signaling in ARPE-19 
cells under hypoxia: To determine whether the NF-κB 
signaling pathway was activated in the ARPE-19 cells treated 
with PGF under hypoxia, we first investigated the protein 
expression of NF-κB-p-p65 and IκB-α with western blotting 
of the total protein. Then, we examined the protein expression 
of IκB-α and p-p65 in cytoplasmic protein and p65 and p-p65 
in nuclear protein to determine whether p65 is translocated 
to the nucleus. As shown in Figure 4, the p-p65 levels in the 
total protein and the cytoplasmic protein were increased in 
the hypoxia+PGF group compared with the control group, the 
hypoxia group, and the PGF group (p<0.05), and the expres-
sion of IκB-α was decreased (p<0.05). In the nuclear protein 
fraction, we found that the expression of p65 and p-p65 in 
the hypoxia+PGF group was increased compared with that 
in the control group, the hypoxia group, and the PGF group 
(p<0.05).

The NF-κB inhibitor counteracts the effect of PGF on EMT in 
ARPE-19 cells under hypoxia: To explore whether the EMT-
promoting effect of PGF in ARPE-19 cells under hypoxia 
was achieved through NF-κB signaling, we treated a group 

of cells with Bay 11-7082, a specific inhibitor of NF-κB 
signaling, and then examined the expression of biomarkers 
related to EMT and NF-κB signaling in total protein and 
nuclear protein (Figure 6). The results showed that the 
NF-κB signaling blocking group did not experience the 
EMT-inducing effect observed in the hypoxia+PGF group. 
The expression of the α-SMA protein in the NF-κB blocking 
group was decreased, and the expression of the E-cadherin 
and ZO-1 proteins was increased, compared to those in the 
hypoxia+PGF group (p<0.05). Additionally, the NF-κB 
blocking group showed a reversal of the activation of NF-κB 
signaling through increased expression of IκB-α in the total 
protein and decreased expression of p65 in the nuclear protein 
compared to those in the hypoxia+PGF group (p<0.05). 
The immunofluorescence results (Figure 5 and Figure 7) 
also showed that the increased expression of α-SMA in 
the hypoxia+PGF group compared with that in the control 
group, the hypoxia group, and the PGF group (p<0.05) was 
decreased in the NF-κB blocking group (p<0.05), and the 
increased p65 in the nucleus of hypoxia+PGF group was also 
decreased in the NF-κB blocking group.

DISCUSSION

In the present study, we found that hypoxia plus exogenous 
PGF treatment changed cell morphological characteristics 
and promoted cell proliferation compared to hypoxia treat-
ment alone, and promoted the EMT process by stimulating 
the NF-κB signaling transduction pathway in ARPE-19 cells. 
However, exogenous PGF alone did not cause these effects in 
ARPE-19 cells under normal conditions.

In addition to RPE cells, there are many other kinds 
of cells, such as human retinal endothelial cells (HRECs) 

Figure 3. Effects of exogenous PGF on migration in ARPE-19 cells under hypoxia. A: Treatment with hypoxia alone or placental growth 
factor (PGF) alone did not affect the migration rate in the ARPE-19 cells compared with the control treatment, but the hypoxia+PGF treat-
ment increased the migration rate in the ARPE-19 cells compared with the other three treatments. B: Quantitative analysis of the migration 
rates of the different groups is shown in the bar graph. Migration rate = [scratched area (0 h) – scratched area (12 h)] / scratched area (0 h). 
Data are the mean ± standard deviation (SD) of three independent experiments. Scale bar: 200 μM. *p<0.05 versus the other three groups.
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Figure 4. Effects of exogenous PGF on EMT in ARPE-19 cells under hypoxia. A: Relative mRNA expression levels of α-SMA and ZO-1 in the 
control group, the hypoxia group, and the hypoxia+placental growth factor (PGF) group. The relative mRNA expression levels of α-SMA and 
ZO-1 were increased and decreased, respectively, in the ARPE-19 cells from the hypoxia+PGF group compared with cells from the other two 
groups (*p<0.05, data are the mean ± standard deviation [SD], n = 3). B: Representative protein blots of α-SMA, E-cadherin, ZO-1, IκB-α, 
and phospho-p65 (p-p65) in the total protein samples and the semiquantitative analyses of the protein expression levels. β-actin was used 
as the internal reference. C: Representative protein blots of IκB-α and p-p65 in the cytoplasmic protein samples and the semiquantitative 
analyses of the protein expression levels. β-actin was used as the internal reference. D: Representative protein blots of p-p65 and p65 in the 
nuclear protein and semiquantitative analyses of the protein expression levels. Histone H3 was used as the nuclear internal reference. Data 
are the mean ± standard deviation (SD), n = 3, *p<0.05 versus the other three groups.
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[31-33], retinal microglia [34], mononuclear phagocytes (MPs) 
[35,36], retinal astrocytes [37], and human glial cells [32], 
that can express the PGF gene in the retinal microenviron-
ment. In this microenvironment containing PGF, RPE cells 
also respond to the changed PGF under abnormal conditions 
[38]. The present results indicating PGF alone failed to affect 
cell proliferation agreed with the results of previous studies 
[38,39]. As exogenous PGF did not alter the proliferation 
of ARPE-19 cells, we then explored the effect of PGF on 
ARPE-19 cells under hypoxia and found that PGF promoted 
cell proliferation in this group compared to the hypoxia group. 
Regarding migration, we also found that the hypoxia+PGF 

group had increased cell migration ability compared with the 
hypoxia alone or PGF alone groups. Previous studies demon-
strated that PGF levels are low or undetectable in healthy 
tissue but increase in disease settings [19,20]. PGF has been 
described as potentially involved in pathological angiogenesis 
and vascular leakage in ischemia, cancer, and wound healing 
[40]. In other words, PGF is often involved in pathological 
processes but not in healthy or normal conditions, which can 
explain the present results regarding the different effects 
of PGF on cells under normal and hypoxia conditions, to a 
certain degree.

Figure 5. Effects of exogenous PGF on α-SMA expression in ARPE-19 cells under hypoxia. A: Representative images of immunofluorescence 
staining of ARPE-19 cells. Increased expression of α-SMA was observed in ARPE-19 cells from the hypoxia+placental growth factor (PGF) 
group compared to the control group, the hypoxia group, and the PGF group. Treatment with an NF-κB signaling inhibitor restored this 
change. Scale bar: 200 μm. B: Quantitative analysis of the fluorescence intensity of α-SMA is shown in the bar graph. Data are the mean ± 
standard deviation (SD), n = 3, *p<0.05 versus the other four groups.
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Figure 6. The NF-κB inhibitor counteracts the effect of PGF on the EMT in ARPE-19 cells under hypoxia. A: Representative protein blots 
of α-SMA, E-cadherin, ZO-1, p- p65, and IκB-α in the total protein and semiquantitative analyses of the protein expression levels. β-actin 
was used as the internal reference. B: Representative protein blots of p65 in the nuclear protein and semiquantitative analyses of the protein 
expression levels. Histone H3 was used as the nuclear internal reference. Data are the mean ± standard deviation (SD), n = 3, *p<0.05 versus 
the other four groups.
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EMT is a biologic process in which epithelial cells lose 
their epithelial character and gain features of mesenchymal 
cells [41]. The results of pathology studies have highlighted 
the role of EMT in the pathogenesis of many fibrotic diseases, 
such as kidney fibrosis [42,43], hepatic fibrosis [44,45], and 
intestinal fibrosis [46]. Recent studies have suggested that 
PGF not only can promote pathological angiogenesis but 
also can activate the EMT process [26-29]. EMT is also a 
critical process in subretinal fibrosis in neovascular AMD. 
Hypoxia plays an important role in the pathogenesis of AMD. 
However, whether PGF can promote EMT-like changes in 
ARPE-19 cells under hypoxia has not been reported. The 

present study explored this question from two perspectives, 
that of morphological changes and that of the changes to the 
biomarkers of EMT. Regarding cell morphology, we found 
that PGF induced a change from the normal morphology to 
myofibroblast-like morphology and characteristics under 
hypoxia, but this change did not occur in the ARPE-19 
cells treated with hypoxia alone or PGF alone. In terms 
of EMT biomarkers, the results of the qRT-PCR, western 
blotting, and immunofluorescence experiments showed 
that the mesenchymal marker α-SMA was increased in the 
hypoxia+PGF group at the mRNA and protein levels, and 
the epithelial markers E-cadherin and ZO-1 were decreased, 

Figure 7. Effects of exogenous PGF on NF-κB p65 expression in ARPE-19 cells under hypoxia. A: Increased expression of p65 in the nuclear 
fraction of ARPE-19 cells was observed in the hypoxia+placental growth factor (PGF) group (as shown with white arrows). Treatment with 
the NF-κB signaling inhibitor restored this change. Scale bar: 200 μm. B: Quantitative analysis of the nuclear translocation rate is shown in 
the bar graph. Nuclear translocation rate = the number of cells with nuclear immunofluorescence staining / the number of cells with nuclear 
or cytoplasmic immunofluorescence staining. Data are the mean ± standard deviation (SD), n = 3, *p<0.05 versus the other four groups.
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but the hypoxia alone or PGF alone treatments did not 
induce EMT changes. We hypothesized that the ARPE-19 
cells under hypoxia were frailer and thus, damaged and 
influenced more easily by PGF than normal ARPE-19 cells 
are. Some slight substructure changes may have occurred in 
the frailer ARPE-19 cells at first, and then the influence of 
PGF became obvious enough to promote the EMT changes. 
That is, hypoxia made the ARPE-19 cells more susceptible 
to damage than normal cells, and with this background, 
together with the stimulation of PGF, the damaged ARPE-19 
cells were more susceptible to the changes involved in EMT. 
Together with these findings, these data indicated that PGF 
promoted EMT-like changes in ARPE-19 cells under hypoxia.

In recent years, the NF-κB signaling pathway, which is 
considered a canonical inflammation signaling pathway, has 
been found to play a critical role in liver [47], renal [48], and 
pulmonary fibrosis [49]. Additionally, it has been demon-
strated that the NF-κB signaling pathway is involved in liver 
and renal fibrosis through activated NF-κB signaling [50,51]. 
To explore the signaling pathway involved in PGF-induced 
EMT in ARPE-19 cells under hypoxia, and to further confirm 
that the PGF-induced EMT-like changes under hypoxia 
in ARPE-19 cells were associated with activated NF-κB 
signaling, the relative expression of proteins involved in 
NF-κB signaling was examined, and BAY 11-7082 (a specific 
NF-κB inhibitor) was used to suppress NF-κB activity. 
We found that PGF treatment under hypoxia enhanced 
the phosphorylation of the p65 total protein, promoted the 
translocation of p65 to the nucleus, and induced the degrada-
tion of IκB-α (a negative regulator of the NF-κB pathway) 
in ARPE-19 cells. The exogenous PGF-induced reduction 
of E-cadherin and ZO-1 and the increase in α-SMA under 
hypoxia were counteracted by BAY 11-7082 as the relevant 
actors in the activated NF-κB signaling pathway were 
inhibited. These results suggest that the activation of the 
NF-κB signaling pathway played an important role in PGF-
induced EMT in ARPE-19 cells under hypoxia. As we know, 
EMT is a complex process that many signaling pathways 
participate in. In this preliminary study, we chose the NF-κB 
signaling pathway as the first step because the activation of 
this signaling pathway is common in the EMT process, and 
other signaling pathways changed by PGF plus hypoxia in 
ARPE-19 cells and the interaction between signaling path-
ways should be investigated in the future.

Although the PCR and western blotting results confirmed 
the expression of ZO-1 in ARPE-19 cells in this study, the 
expression may not as sufficient and mature as in cells of 
post-confluence for several weeks to months, as ARPE-19 
cells usually require several weeks to months after reaching 

confluence to approach an epithelial state. In addition, the 
experimental analyses of EMT indicators demonstrated the 
occurrence of EMT in ARPE-19 cells; the possible situation 
is that PGF stimulation may not be the initiating step of EMT 
in ARPE-19 cells but just promote the EMT. This situation 
is similar to that of transforming growth factor β (TGF-β), a 
well-established EMT inducer of ARPE-19 cells. It has been 
demonstrated that TGF-β is unable to initiate EMT in cells 
that maintain well-established cell–cell contact, and disrup-
tion of cell–cell contact is a crucial step in initiating EMT 
[52]. Additional in-depth studies are needed to investigate 
this issue.

In conclusion, we demonstrated that exogenous PGF 
promotes EMT-like alterations in ARPE-19 cells under 
hypoxia by activating the NF-κB signaling pathway. PGF 
may play a role in scar formation in neovascular AMD, 
and the inhibition of PGF may be a promising target for the 
prevention and treatment of AMD.

APPENDIX 1. STR ANALYSIS.

To access the data, click or select the words “Appendix 1”
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