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Abstract

When devising a course of treatment for a patient, doctors often have little quantitative evidence 

on which to base their decisions, beyond their medical education and published clinical trials. 

Stanford Health Care alone has millions of electronic medical records that are only just recently 

being leveraged to inform better treatment recommendations. These data present a unique 

challenge because they are high dimensional and observational. Our goal is to make personalized 

treatment recommendations based on the outcomes for past patients similar to a new patient. We 

propose and analyze 3 methods for estimating heterogeneous treatment effects using observational 

data. Our methods perform well in simulations using a wide variety of treatment effect functions, 

and we present results of applying the 2 most promising methods to data from The SPRINT Data 

Analysis Challenge, from a large randomized trial of a treatment for high blood pressure.
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1 INTRODUCTION

In February 2017, at the Grand Rounds of Stanford Medicine, one of us (N.S.) unveiled a 

new initiative—the “Informatics Consult.” Through this service, clinicians can submit a 

consultation request online and receive a report based on insights drawn from hundreds of 

millions of electronic medical records (EMRs) from Stanford Health Care. While the system 

is in its early stages, a future version will include treatment recommendations: helping a 

doctor to choose between treatment options for a patient, in cases where there is no 

randomized controlled trial that compares the options. This announcement was met with 

excitement from the doctors in attendance, considering that they generally need to make 

decisions without any support from quantitative evidence (about 95% of the time).1 Building 
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such a system is a priority in many medical centers in the United States and around the 

world.

In the problem setting here, a doctor is presented with a patient who has some medical 

ailment, and the doctor is considering one or more treatment options. A relevant question 

from the patient’s perspective is, “what is the effect of these treatments on patients like me?” 

Devising a meaningful definition for “patients like me” is especially difficult given the high-

dimensional nature of the problem: We may observe thousands of features describing each 

patients, any of which could be used to describe patient similarity. The other significant 

complication is that our goal is to infer causal effects from observational data. The task of 

mining EMRs to support physician decision making is what motivates this paper. We 

propose and study methods for estimation and inference of heterogeneous treatment effects, 

for both randomized experiments and observational studies. We focus on the case of a choice 

between 2 treatments, which for the purposes of this manuscript we label as treatment and 

control.

In detail, we have an n × p matrix of features X, a treatment indicator vector T ∈ {0, 1}n, 

and a vector of quantitative responses Y ∈ ℝn. Let Xi denote the ith row of X, likewise Ti 

and Yi. We assume the n observations (Xi, Ti, and Yi) are sampled independent and 

identically distributed from some unknown distribution. The number of treated patients is N1 

= |{i ∶ Ti = 1}|, and the number of control patients is N0 = |{i ∶ Ti = 0}|. We adopt the 

Neyman-Rubin potential outcomes model2,3: Each patient i has potential outcome Y i
1  and 

Y i
0 , only one of which is observed. Y i

1  is the response that the patient would have under 

treatment, and Y i
0  is the response the patient would have under control. Hence, the outcome 

that we actually observe is Y i = Y i
Ti . We consider both randomized controlled trials, where 

Ti is independent of all pretreatment characteristics,

Xi, Y i
0 , Y i

1 ╨ T i, (1)

and observational studies, where the distribution of Ti is dependent on the covariates. This 

latter scenario is discussed in further detail in Section 2.1.

We describe 4 important functions for modeling data of this type. The first is the propensity 

function, which gives the probability of treatment assignment, conditional on covariates

π x ≡ ℙ T = 1 X = x . (2)

The next 2 functions are the conditional mean functions, the expected response given 

treatment and the expected response given control:

μ1 x ≡ 𝔼 Y X = x, T = 1 and μ0 x ≡ 𝔼 Y X = x, T = 0 , respectively .
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The fourth function, and the one of greatest interest, is the treatment effect function, which is 

the difference between the 2 conditional means:

τ x ≡ μ1 x − μ0 x .

We seek regions in predictor space where the treatment effect is relatively large or relatively 

small. This is particularly important for the area of personalized medicine, where a treatment 

might have a negligible effect when averaged over all patients but could be beneficial for 

certain patient subgroups.

An outline of this paper is as follows. Section 2 reviews related work. In Section 3, we 

describe the 2 high-level approaches to the estimation of heterogeneous treatment effects: 

transformed outcome regression and conditional mean regression. Sections 4, 5, and 6 

introduce pollinated transformed outcome (PTO) forests, causal boosting, and causal 
multivariate adaptive regression splines (MARS), respectively. In Section 7, we report the 

results of a simulation study comparing all of these methods, and 2 real-data applications are 

illustrated in Section 8. We end with a discussion.

2 RELATED WORK

Early work on heterogeneous treatment effect estimation4 was based on comparing 

predefined subpopulations of patients in randomized experiments. To characterize 

interactions between a treatment and continuous covariates, Bonetti and Gelber5 formalized 

the subpopulation treatment effect patter plot. Sauerbrei et al6 proposed an efficient 

algorithm for flexible model building with multivariable fractional polynomial interaction 

and compared the empirical performance of multivariable fractional polynomial interaction 

with the subpopulation treatment effect patter plot.

Identifying subgroups within the patient population is becoming especially challenging in 

high-dimensional data, as in EMRs. In recent years, a great amount of work has been done 

to apply methods from machine learning to enable the data to inform what are the important 

subgroups in terms of treatment effect. Su et al7 proposed interaction trees for adaptively 

defining subgroups based on treatment effect. Athey and Imbens8 proposed causal trees, 

which are similar, and constructed valid confidence intervals.

A causal tree is the building block of our causal boosting algorithm in Section 5, so we will 

briefly describe it here. A causal tree is like a decision tree except that instead of estimating 

a mean outcome in each leaf, we are interested in estimating an average treatment effect. So 

the estimate in each leaf is not the sample mean y but rather y1 − y0, the sample mean in the 

treatment group minus the sample mean in the control group. Regression trees model a mean 

function μ by finding the splits that maximize the heterogeneity of μ, so the causal tree, 

which models τ, chooses the splits that result in the greatest heterogeneity in τ. Athey and 

Imbens8 propose a few different criteria, and we will use the T-statistic criterion:
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τ𝓁 − τr
Var τ𝓁 + Var τr

.

When a parent node is split into 2 child nodes ℓ and r, τ𝓁 and τr are the estimated treatment 

effects in each child node, with estimated variances Var τ𝓁  and Var τr , respectively. For the 

purposes of this manuscript, we treat the causal tree as estimating not just a treatment effect 

function f x  but 2 separate conditional mean functions g x, 1  and g x, 0 , corresponding to 

treatment and control groups, respectively, so that f x = g x, 1 − g x, 0 .

Wager and Athey9 improved on this line of work by growing random forests10 from causal 

trees. These tree-based methods all use shared-basis conditional mean regression in the 

framework of Section 3.1. An example of a transformed outcome estimator is the FindIt 

method of Imai and Ratkovic,11 which trains an adapted support vector machine on a 

transformed binary outcome. Tian et al12 introduced a simple linear model based on 

transformed covariates and showed that it is equivalent to transformed outcome regression in 

the Gaussian case. In a novel approach, Zhao et al13 used outcome-weighted learning to 

directly determine individualized treatment rules, skipping the step of estimating 

individualized treatment effects. The problem of estimating heterogeneous treatment effects 

has also received significant attention in Bayesian literature. Hill14 and Green and Kern15 

approached the problem using Bayesian additive regression trees,16 and Taddy et al17 

proposed a method based on Bayesian forests. Chen et al.18 developed a Bayesian method 

for finding qualitative interactions between treatment and covariates, and there are other 

Bayesian methods for flexible nonlinear modeling of interactive/nonadditive relationships 

between covariates and response.19,20

What all of the above work (except Hill14) have in common is that they assume randomized 

treatment assignment. Athey and Imbens8 discussed the possibility of adapting their method 

to observational data but go no further. Wager and Athey9 proposed the propensity forest 

when treatment is not randomized, but this method does not target heterogeneity in the 

treatment effect. Similarly, Xie et al21 model treatment effect as a function of propensity 

score, missing out on how it depends on the covariates except through treatment propensity. 

Crump et al22 devised a nonparametric test for the null hypothesis that the treatment effect is 

constant across patients, but that is not suited to high-dimensional data. One promising 

approach that flexibly handles high-dimensional and observational data is the generalization 

of the causal forest by Athey et al23 Their gradient forest addresses more generally the 

problem of parameter estimation using random forests, and in particular, they developed a 

very fast implementation of the causal forest against which we compare the performance of 

our methods in Section 7.

2.1 Propensity score methods

Much of causal inference is based on the propensity score,24 which is the estimated 

probability that a patient would receive treatment, conditioned on the patient’s covariates. If 

the estimate of the propensity function (2) is π ⋅ , then the propensity score for a patient 
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with covariate vector x is π x . Throughout the present work, we estimate the propensity 

function using the probability forests of Malley et al.25 We are able to do so quickly using 

the fast implementation in the R package ranger.26

For the estimation of a population average treatment effect (ATE), propensity score methods 

for reducing bias in observational studies have been established.27 Propensity score 
matching emulates a randomized control trial by choosing pairs of patients with similar 

propensity scores, one each in the treatment and control arms, and discarding the unmatched 

patients. Stratification on the propensity score groups patients into bins of similar propensity 

scores to compute the ATE within each bin. The overall ATE is the average of these 

treatment effects, weighted by the overall frequency of each bin. Inverse probability 
weighting assigns a weight to each patient equal to the inverse of the propensity score if the 

patient is treated, or else the inverse of 1 minus the propensity score if the patient is not 

treated. Hence, patients who tend to be underrepresented in their arm are given more weight. 

Propensity score stratification and inverse probability weighting are discussed in more detail 

in the Appendix, along with an additional method: transformed outcome averaging.

The assumption that enables these methods to generate causal conclusions from 

observational data is known alternatingly across the literature as unconfoundedness, 

exogeneity, or strong ignorability:

Yi
1 , Yi

0 ╨ Ti Xi .

This is the assumption made in the present work. It means that the relationship between each 

of the potential outcomes and treatment must be fully explained by X. There can be no 

additional unmeasured confounding variable that effects a dependence between potential 

outcomes and treatment. Note, however, that the outcome itself is not independent of 

treatment because the treatment determines which potential outcome is observed.

3 TO REGRESSION AND CONDITIONAL MEAN REGRESSION

Methods for estimating heterogeneous treatment effects generally fall into one of 2 

categories: transformed outcome regression and conditional mean regression. In this section, 

we describe the 2 approaches and explain why we prefer conditional mean regression. The 

propensity transformed outcome method (Section 4) uses a combination of the 2 approaches, 

while causal forests (Section 2), causal boosting (Section 5), and causal MARS (Section 6) 

are all conditional mean regression methods.

Transformed outcome regression is based on the same idea as transformed outcome 

averaging, which is laid out in detail in the appendix. Given the data described in Section 1, 

we define the transformed outcome (TO) as

Z ≡ T Y
π X + 1 − T −Y

1 − π X .
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This quantity is interesting because, as shown in the Appendix, for any covariate vector x, 

𝔼 Z Z = x = τ x . So the TO gives us for each patient an unbiased estimate of the 

personalized treatment effect for that patient. Using this, we can simply use the tools of 

supervised learning to estimate a regression function for the mean of Z given X. The 

weakness of this approach is that while Z is unbiased for the treatment effect, its variance 

can be large owing to the presence of the propensity score, which can be close to 0 or 1, in 

the denominator.

An alternative approach—conditional mean regression—is based on the idea that because 

τ(x) is defined as the difference between μ1(x) and μ0(x), if we can get good estimates of 

these conditional mean functions, then we have a good estimate of the treatment effect 

function. Estimating the functions μ1(x) and μ0(x) are supervised learning problems. If they 

are both estimated perfectly, then there is no need to estimate propensity scores. The 

problem is that in practice we never estimate either function perfectly, and differences 

between the covariate distributions in the 2 treatment groups can lead to bias in treatment 

effect estimation if propensity scores are ignored.

We compare these 2 approaches with a simple example: Consider the task of estimating an 

ATE using data from a randomized trial. This may seem far removed from heterogeneous 

treatment effect estimation, but we will describe how 2 of our methods are based on 

estimating local ATEs for subpopulations in our data. In this case, the TO is

Z = T Y
1/2 + 1 − T −Y

1/2 = 2TY − 2 1 − T Y ,

and the corresponding estimate of the ATE is

τTO = 1
n ∑

i = 1

n
Zi =

2N1Y1 − 2N0Y0
N1 + N0

=
N1
n/2Y1 −

N0
n/2Y0,

where Y1 is the average response of patients who received treatment and Y0 is the average 

response of control patients. Meanwhile, the conditional mean estimator of the ATE would 

be

τCM = Y1 − Y0

Here, we are implicitly assuming that neither N1 nor N0 is 0. It is worth noting that

τTO = τCM +
N1 − N0

n Y1 + Y0 ,

so if N1 = N0 or Y1 + Y0 = 0, then τTO = τCM. However N1, N0, Y1, and Y0 are all random. 

Given a fixed sample size n, N1 follows a Binomial(n, 1∕2) distribution (truncated to exclude 
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0 and n), and N0 is the difference between n and N1. Suppose Y1 and Y0 have normal 

distributions with variances inversely proportional to sample size:

Y1 ∼ Normal μ1, σ2/N1 and Y0 ∼ Normal μ0, σ2/N0 .

Note that both τCM and τTO are unbiased for τ ≡ μ1 − μ0, but the 2 estimators have different 

variances. Conditioning on N1, the variance of τCM is

𝔼 τCM − τ 2 N1 = 𝕍 Y1 − Y0 N1 = σ2/N1 + σ2/N0,

while the variance of τTO given N1 is

𝔼 τTO − τ 2 N1 = 𝕍 τTO N1 + 𝔼 τTO − τ N1
2 = 4

nσ2 +
N1 − N0

n

2
μ1 + μ0

2 .

So the key is the ratio of the main effect (μ1 + μ0)/2 to the noise level σ. if

μ1 + μ0
2σ <

N1
−1 + N0

−1 − 4n−1

N1 − N0
2 ,

then τTO has less variance. If the inequality is reversed, then τCM has less variance. 

Marginalizing over the truncated binomial distribution of N1 is difficult to do analytically, 

but we can numerically estimate the marginal variance of each estimator for any n > 1. 

Figure 1 illustrates the results for a few different choices of n.

We observe that for small n, τTO can have slightly smaller variance than τCM if the absolute 

value of the main effect is close to 0. But this advantage tends to 0 as n increases, and τTO
has much greater variance if the main effect is large. In conclusion, we prefer the conditional 

mean estimator because of the potentially high variance of the TO estimator. This is 

reflected in the following sections as all of our methods use some version of conditional 

mean regression.

3.1 Shared-basis conditional mean regression

In high-dimensional data, it is often necessary to choose a subset of variables to include in a 

model. Beyond that, nonparametric methods adaptively choose transformations of variables. 

Collectively, we refer to the variables and transformations selected as the basis of the 

regression. In conditional mean regression, it is to be expected that the selected basis be 

different between the 2 regression functions. This can cause differences between the 

conditional means attributable not to a heterogeneous treatment effect but rather to 

randomness in the basis selection.
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The 3 methods that we propose are based on 2 principles. First, we prefer to use conditional 

mean regression rather than TO regression, with a shared basis for the treatment and control 

arms. Second, when adaptively constructing this basis, we want to do so in a way that 

reflects the heterogeneity in the treatment effect, not the response itself. For example, we 

want to include variables on which the treatment effect depends. How exactly this shared 

basis is determined is different for each method.

4 PTO FORESTS

Our first method for estimating heterogeneous treatment effects is based on the TO 

described in Section 3. The algorithm can be implemented using preexisting software 

packages for building random forests. We first present the idea of a PTO forest in detail and 

then explain its components.

Algorithm 1

PTO forest.

Require: Data (Xi, Ti, Yi). estimated propensity function π ·

  Zi Ti
Yi

π Xi
+ 1 − Ti

−Yi
1 − π Xi

  1. (TO forest) Build a depth-controlled random forest F on X to predict Z.

  2. (Pollination) For each tree in the forest F, replace the node estimates Z with Y1 − Y0. This entails sending each 

observation down each tree to get the mean response in treatment and control groups for each leaf, replacing the mean 
TO. This yields treatment effect estimates τi.

  3. (Optional) Build an additional random forest G on X to predict τ . This adds a layer of regularization and 
interpretability (through variable importance) of the results.

We start with the TO, an unbiased point estimate of the treatment effect for each individual; 

in step 1, we fit a random forest using this effect as the outcome. In principle, this should 

estimate our personalized treatment effect. Per Section 3, we do not trust these estimates too 

much, because the outcome can be highly variable. But we will put faith in the trees they 

produce.

Thus in step 2, we “pollinate” the trees separately with the treated and untreated populations. 

That is, we send data down each tree and compute new predictions for each terminal node. 

The resulting estimates τ i of the treatment effect have lower variance, as explained in 

Section 3, because we are replacing a TO estimator with a conditional mean estimator. 

Finally, in step 3, we can postprocess these predictions by fitting one more forest, primarily 

for interpretation.

Figure 2 illustrates the benefits of pollination. In this example, n = 100, p = 50, and the 

response is simulated in each arm according to Y i ∼ 𝒩 1 − Xi1 + Xi2, 1  for treated patients 

and Y i ∼ 𝒩 Xi1 + Xi2, 1  for untreated patients. Hence, the true personalized treatment effect 

for patient i is 1 + 2Xi1. In the top row, the treatment is randomly assigned, while in the 
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bottom row, the probability of treatment assignment is 1 + e
Xi1 + Xi2 −1

. The raw estimates 

correspond to a random forest (as in step 2) grown to predict the TO. The pollinated 

estimates correspond to reestimating (as in step 3) the means of the leaves within each arm. 

We observe that in each case, the pollination improves the estimates.

5 CAUSAL BOOSTING

The PTO forest has the advantage of being implementable through preexisting software, but 

we would prefer to build our regression basis using conditional means rather than the TO. 

The causal tree and causal forest described in Section 2 accomplish this using specialized 

software. An alternative to a random forest for least squares regression is boosted trees. 

Boosting builds up a function approximation by successively fitting weak learners to the 

residuals of the model at each step. In this section, we adapt least squares boosting for 

regression28 to the problem of heterogeneous treatment effect estimation.

Given data of the form (Xi, Yi), i = 1, …, n, least squares boosting starts with a regression 

function F x = 0 and residuals Ri = Y i − F xi . We fit a regression tree to Ri, yielding 

predictions f 1 x . Then we update F x F x + ε ⋅ f 1 x  and Ri Ri − ε ⋅ f 1 xi  and repeat 

this (say) a few hundred times. The final prediction is simply F x , a sumof trees shrunk by 

ε.

For our current problem, our data have the form (Xi, Ti, Yi), i = 1, …, n, with Ti ∈ {0, 1}. 

For now, assume randomized treatment assignment: In the next subsection, we show to 

handle the nonrandomized case. Here is how we propose to adapt least squares boosting. As 

with causal forests,9 our building block is a causal tree, which returns a function g x, t  as 

described in Section 2. The estimated causal effect for an observation X = x is 

τ x = g x, 1 − g x, 0 . This is a standard causal tree, except that for each terminal node, we 

return the pair of treatment-specific means rather than the treatment effect. In other words, if 

observation Xi = x gets you into terminal node k, where the pair of estimated means are μ1k

(treated) and μ0k (untreated), then these are the values returned, respectively, for g x, 1  and 

g x, 0 . The algorithm is summarized in Algorithm 2. The estimated treatment effect for any 

observation x is GK x, 1 − GK x, 0 .

Algorithm 2

Causal boosting.

Require: Data (Xi, Ti, Yi), parameters K,ε > 0

 Initialize Ri = Yi and Ĝ0(x, t) = 0.

 for k in 1,…,K do

  Fit a causal tree ĝk to data (Xi, Ti, Ri)

  Ri ← Ri − ε · ĝk(Xi, Ti)

  Gk ← Ĝk−1 + ε · ĝk
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 end for

 Return ĜK(x, t).

Note that this generalizes to loss functions other than squared error. For example, if the 

causal tree was trained for a binary outcome, then each terminal node would return a pair of 

logits η1k = logit Pr Y = 1 X = x, T = 1  and η0k = logit Pr Y = 1 X = x, T = 0 . Thus, ĜK(x, t) 

would be a function that returned a pair of logits at x, and hence treatment success 

probabilities. The treatment effect would be the appropriate function of these differences of 

log-odds. Other enhancements to boosting, such as stochastic boosting, are also applicable in 

the setting.

Note that causal boosting is not strictly a gradient boosting algorithm, because there is no 

loss function for which we are evaluating the gradient at each step, in order to minimize this 

loss. Rather, causal boosting is an adaptation of gradient boosting on the observed response, 

with a different function in each arm of the data. The adaptation is that we use causal trees 

as our weak learners instead of a standard regression technique. This tweak encourages the 

learned function to find treatment effect heterogeneities.

5.1 Cross-validation for causal boosting

Unlike random forests, gradient boosting algorithms can overfit the training data as the 

number of trees increases.29 This is because each successive tree is not built independently 

of the previous ones but rather with the goal of fitting to the residuals of the previous trees. 

Whereas a random forest will only benefit from using more trees, the number of trees in 

gradient boosting is itself an important parameter that needs to be tuned.

Complicating matters, the usual cross-validation framework does not apply to the setting of 

estimating a heterogeneous treatment effect because in this setting each observation does not 

come with a response corresponding directly to the function we are interested in estimating. 

We do not observe a response τi for the ith patient. What we observe is either Y i
0  or Y i

1 , 

depending on whether or not the patient received the treatment.

We describe our approach in the context of a held-out validation set, but this fully specifies 

our cross-validation procedure. Cross-validation is simply validation done by partitioning 

the training set into several folds and averaging the results obtained by holding out each fold 

as a validation set and training on all other folds. The data in this context are a training set 

(Xtr, Ttr, Ytr) and a validation set (Xv, Tv, Yv). After training causal boosting on (Xtr, Ttr, 

Ytr), we are left with a sequence of models G1(x, t), …, GK(x, t), and we would like to 

determine which of these models gives us the best estimates of treatment effect.

Our validation procedure uses a pollination of the causal boosting model much like Step 2 of 

the PTO forest (Algorithm 1). We construct a new sequence of models H1(x, t), …, HK(x, t) 
using the same tree structures (split variables and split points) as G1(x, t), …, GK(x, t), but 

we send the validation points Xv down each tree to get new estimates in the terminal nodes 

based on Tv and Yv. The first causal tree g1 x, t  is pollinated with the data (Xv, Tv, Yv), 
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yielding a new tree h1 x, t . The validation set residuals of this first tree are given by 

Y i − hk Xi, T i , and these validation set residuals are used to reestimate the terminal nodes of 

the next causal tree and so on. The sequential sum of these trees (times the learning rate ε) is 

H1(x, t), …, HK(x, t).

We are ready to define our validation error for each of the original models G1(x, t), …, 

GK(x, t). The validation error for a causal boosting model with k trees is given by

∑
x ∈ v

Gk x, 1 − Gk x, 0 − HK x, 1 − HK x, 0 2 .

We have several remarks to make about this form. Gk(x, 1) − Gk(x, 0) is the estimated 

treatment effect at x, for causal boosting with k trees. HK(x, 1) − HK(x, 0) is the estimated 

treatment effect corresponding to the maximum number of trees, using the responses from 
the validation set. For a large number of trees, we can be sure that this is overfitting to the 

response, and this is the analog of traditional cross-validation, which compares predictions 

on the validation set with observed response in the validation set. This observed response, 

corresponding to the saturated model, is as overfitted as possible. Intuitively, we are 

comparing our estimated treatment effect for each validation point against another estimate, 

which uses the same structure as the model fit to find similar patients and estimate the 

treatment effect based on those similar patients, some of whom will have received treatment 

and some of who will have received control. The better the structure is that causal boosting 

has learned for the heterogeneous treatment effect, the more the local ATE in the training set 

will mirror the local ATE in the validation set. For the results in Section 7, we use this 

procedure to do cross-validation for causal boosting.

5.2 Within-leaf propensity adjustment

When the goal is to estimate not an ATE but rather an individualized treatment effect, the 

propensity score methods described in Section 2.1 and in the Appendix do not immediately 

extend. Consider for example propensity score stratification. Because each patient belongs to 

only 1 stratum of propensity score, we cannot average treatment effect estimates for a patient 

across strata. Technically, if we were to fit a causal boosting model within each stratum, 

each of these models would be able to make a prediction for the query patient. But then all 

but one of these models would be unwisely extrapolating outside of its training set to make 

this prediction. An alternative to propensity score stratification, inverse probability 

weighting is still viable, but the volatility of this method is exacerbated by the attempt to 

estimate a varying treatment effect, rather than a constant one.

Within each leaf of a causal tree, however, we estimate an ATE. This is where causal 

boosting adjusts for nonrandom treatment assignment, using propensity score stratification 

to reduce the bias in the estimate of the within-leaf ATE. Before initiating the causal 

boosting algorithm, we begin by evaluating the propensity score for each patient, which is an 

estimate of probability of being assigned the treatment, conditioned on the observed 

covariates. Any binomial regression technique could be used here. We fit a probability 

forest,25 which is similar to a random forest for classification,10 except that each tree returns 

Powers et al. Page 11

Stat Med. Author manuscript; available in PMC 2019 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a probability estimate rather than a classification. The trees are combined by averaging the 

probability estimates and not by majority vote. We denote the treatment assignment 

probability function by π x ≡ ℙ T = 1 X = x  and the corresponding propensity scores by 

πi ≡ π xi .

We group the patients into S strata of similar propensity scores denoted 1, …, S. For 

example, there could be S = 10 strata, with the first comprising π ∈ 0, 0.1  and the last 

comprising π ∈ 0.9, 1 , with equal-length intervals in between. We use si ∈ {1, …, S} to 

denote the stratum to which patient i belongs. Hence, the data that we observe within each 

leaf of a causal tree are of the form (Xi, si, Ti, Yi) ∈ ℝp × {1, …, S} × {0, 1} × ℝ. We use nℓ 
to denote the number of patients in leaf ℓ and index these patients by i = 1, …, nℓ. The 

propensity-adjusted ATE estimate in leaf ℓ is given by

τ𝓁 =
∑s = 1

S ns𝓁 Y1s𝓁 − Y0s𝓁

∑s = 1
S ns𝓁

, where Y ts𝓁 =
∑i = 1

n𝓁 𝕀
Ti = t ∧ si = s

Y i

nts𝓁
(3)

is the mean response among the treatment (t = 1) or control (t = 0) group in stratum s and 

nts𝓁 = ∑i = 1
n𝓁 𝕀

si = s
 is the corresponding number of patients in leaf ℓ for t ∈ {0, 1}, s ∈ {1, 

…, S}. Finally, nsℓ = n1sℓ + n0sℓ.

The estimated variance of π𝓁 is

Var τ𝓁 =
∑s = 1

S n2𝓁
2 σ2𝓁

2

∑s = 1
S ns𝓁

2 , where σs𝓁
2 =

s1s𝓁
2

n1s𝓁
+

s0s𝓁
2

n0s𝓁

and sts𝓁
2  is the sample variance of the response for arm t of stratum s in leaf ℓ.

Hence, for 2 candidate daughter leaves ℓ and r of the same parent, the natural extension of 

the squared T-statistic splitting criterion from Athey and Imbens8 is

τ𝓁 − τr
Var τ𝓁 +Var τr

.

This is the propensity-stratified splitting criterion used by causal boosting. This criterion 

could also be used by a causal forest as it applies directly to its constituent causal trees.

We use this propensity adjustment not only for determining the split in a causal tree but also 

for estimating the treatment effect in the node. Specifically, the causal tree returns 2 values 

in each leaf: the propensity-adjusted mean response in the treatment and control groups.
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∑s = 1
S ns𝓁Y1sl

∑s = 1
S ns𝓁

and
∑s = 1

S ns𝓁Y0sl

∑s = 1
S ns𝓁

6 CAUSAL MARS

One drawback of tree-based methods is that there could be high bias in this estimate because 

they use the average treatment effect within each leaf as the prediction for that leaf. This is 

especially problematic when it comes to confidence interval construction for personalized 

treatment effects. The variance of the estimated treatment effect is relatively straightforward 

to estimate, but the bias presents more of a challenge. We do not develop confidence 

intervals in this manuscript, but we want to develop a more promising method for this 

endeavor in future work.

Multivariate adaptive regression splines30 can be thought of as a modification to 

classification and regression tree (CART), which alleviates this bias problem. Multivariate 

adaptive regression splines starts with the constant function f(x) = β0 and considers adding 

pairs of functions of the form {(xj − c)+, (c − xj)+} and also the products of variables in the 

model with these pairs, choosing the pair that leads to the greatest drop in training error 

when it is added to their model, with regression coefficients estimated via ordinary least 

squares. The difference between this and CART is that in CART the pairs of functions 

considered are of the form 𝕀
x j − c ≥ 0

, 𝕀
c − x j > 0

, and when a product with one of the 

included terms is chosen, it replaces the included term in the model.29 Because MARS does 

not replace but adds terms, it can do a better job of capturing lower-order regression 

functions.

We propose causal MARS as the adaptation of MARS to the task of treatment effect 

estimation. We fit 2 MARS models in parallel in the 2 arms (treatment and control) of the 

data, at each step choosing the same basis functions to add to each model. The criterion that 

we use identifies the best basis in terms of explaining treatment effect: We compare the drop 

in training error from including the basis in both models with different coefficients to the 

drop in training error from including the basis in both models with the same coefficient in 

each model. The steps of causal MARS are as follows. The parameter D controls the 

maximum dimension of the regression basis, and in practice, we use 11 in our examples. 

Algorithm 3 has the details. In Section 7, we illustrate the lower bias of causal MARS 

(relative to the causal forest) in a simulation.

Algorithm 3

Causal MARS.

Require: Data (Xi, Yi, Yi), parameter D

 Define ℱ ≡ {{(xj − c)+, (c −xj)+} : c ∈ {Xij}, j ∈ {1,…,p}}

 Initialize ℬ = {1}
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  β arg minβ ∑i = 1
n Yi − βh

1𝕀Ti = 1 − βh
0𝕀Ti = 0

2

  Ri Yi − βh
1𝕀Ti = 1 − βh

0𝕀Ti = 0

 for d in 1,…,D do

  for {f, g} in {{b(x)f*(x), b(x)g*(x)} : b ∈ ℬ, {f*,g*} ∈ ℱ} do

    RSSμ minβ ∑i = 1
n Ri − ∑h ∈ f , g βhh Xi

2

    RSSτ minβ ∑i = 1
n Ri − ∑h ∈ f , g βh

1h Xi 𝕀Ti = 1 − ∑h ∈ f , g βh
0h Xi 𝕀Ti = 0

2

   dRSS = RSSτ − RSSμ

  end for

  Choose {f,g} which maximize dRSS

   β arg minβ ∑i = 1
n Yi − ∑h ∈ f , g βh

1h Xi 𝕀Ti = 1 − ∑h ∈ f , g βh
0h Xi 𝕀Ti = 0

2

   Ri Yi − ∑h ∈ f , g βh
1h Xi 𝕀Ti = 1 − ∑h ∈ f , g βh

0h Xi 𝕀Ti = 0

   ℬ ℬ ∪ f , g

 end for

 Backward deletion: delete terms one at a time, using the same criterion dRSS = RSSτ − RSSμ

 Use out-of-hag dRSS to estimate the optimal model size.

To reduce the variance of causal MARS, we perform bagging by taking B bootstrap samples 

of the original dataset and fitting the causal MARS model to each one. The estimated 

treatment effect for an individual is the average of the estimates for this individual by the B 
models. When bagging, we can save on computation time by skipping the backward deletion 

and model selection steps in Algorithm 3. We found in simulation that this gives similar 

results to including these steps.

Note that the algorithm described above applies to the randomized case, not observational 

data. Given S propensity strata and membership s ∈ 1, …, S, for each patient, we use the 

same basis functions within each stratum but different regression coefficients. Within each 

stratum, the coefficients are estimated separately from the coefficients in other strata. Given 

the entry criterion dRSSs in each stratum, we simply combine these into a single criterion Σs 

dRSSs. This is the propensity-adjusted causal MARS.

7 SIMULATION STUDY

In the design of our simulations to evaluate performance of methods for heterogeneous 

treatment effect estimation, there are 4 elements to the generation of synthetic data:
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1. The number n of patients in the training set and the number p of features 

observed for each patient.

2. The distribution 𝒟X of the feature vectors Xi. Across all scenarios, we draw odd-

numbered features independently from a standard Gaussian distribution. We 

draw even-numbered features independently from a Bernoulli distribution with 

probability 1/2.

3. The propensity function π(·), the mean effect function μ(·), and the treatment 

effect function τ(·). We take the conditional mean effect functions to be μ1(x) = 

μ(x) + τ(x)/2 and μ0(x) = μ(x) − τ(x)/2.

4. The conditional variance σY
2  of Yi given Xi and Ti. This corresponds to the noise 

level, and for most of the scenarios σY
2 = 1. In scenarios 2 and 4, the variance is 

lower to make the problem easier; in scenarios 7 and 8, the variance is higher.

Given the elements above, our data generation model is, for i = 1, …, n,

Xi ∼iid 𝒟X,

Ti ∼iid Bernoulli π Xi ,

Yi ∼iid Normal μ Xi + Ti − 1/2 τ Xi , σY
2 .

The third element above, encompassing π(·), μ(·), and τ(·), is most interesting. Note that π(·) 

and μ(·) are nuisance functions and τ(·) is the function we are interested in estimating. In this 

section, we present 2 batches of simulations, the first of which represent randomized 

experiments. The second batch of simulations represent observational studies. Within each 

set of simulations, we make 8 different choices of mean effect function and treatment effect 

function, meant to represent a wide variety of functional forms: both univariate and 

multivariate, both additive and interactive, and both linear and piecewise constant. The 8 

functions that we chose are as follows:

f 1 x = 0, f 2 x = 5𝕀
x1 > 1 − 5, f 3 x = 2x1 − 4,

f 4 x = x2x4x6 + 2x2x4 1 − x6 + 3x2 1 − x4 x6 + 4x2 1 − x4 1 − x4 + 5 1 − x2 x4x6

+ 6 1 − x2 x4 1 − x6 + 7 1 − x2 1 − x4 x6 + 8 1 − x2 1 − x4 1 − x6 ,

f 5 x = x1 + x3 + x5 + x7 + x8 + x9 − 2,

f 6 x = 4𝕀
x1 > 1 𝕀

x3 > 0
+ 4𝕀

x5 > 1
𝕀

x7 > 0
+ 2x8x9,

f 7 x = 1
2 x1

2 + x2 + x3
2 + x4 + x5

2 + x6 + x7
2 + x8 + x9

2 − 11 ,

f 8 x = 1
2 f 4 x + f 5 x .
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Each of the 8 functions above is centered and scaled so that with respect to the distribution 

𝒟X, each has a mean close to 0 and all have roughly the same variance. Table 1 gives the 

mean and treatment effect functions for the 8 randomized simulations, in terms of the 8 

functions above. In these simulations, π(x) = 1/2 for all x ∈ ℝp. In addition to the methods 

described in Sections 4, 5, and 6, we include results for 4 additional estimators for 

comparison. First, the null estimator is simply the difference Y1 − Y0 in mean response 

between treated and untreated patients. This provides a naive baseline. Second, the TO forest 

is a random forest built on the TO, as in step 1 of Algorithm 1. Hence, it is a straightforward 

TO regression as in Section 3. Third, the different-basis (DB) forests are 2 separate forests 

constructed, one predicting the response in the control group and the other predicting the 

response in the treatment group. The difference between these 2 predictions is the estimated 

treatment effect. This method reflects conditional mean regression from Section 3 without 

using a shared basis. The other competitor is the causal forest of Athey et al,23 using the 

gradient. forest R package made available online by the authors. The results of the first 

batch of simulations are shown in Figure 3.

If we pick “winners” in each of the simulation scenarios based on which method has the 

lowest distribution of errors, causal MARS would win in scenarios 5, 7 and 8, tying with the 

PTO forest in scenario 4. The PTO forest would win in scenarios 2 and 3, tying with causal 

boosting in scenario 6. In general, all of the methods outperform the null estimator except in 

scenario 1, when the treatment effect is constant, and in scenario 6, when the causal forest 

performed worst. We also observe that the TO regression and conditional mean regression 

without shared-basis (DB) estimators are not competitive with the ones that we propose, 

illustrating the value of shared-basis conditional mean regression.

The second batch of simulations matches the parameters listed in Table 1: Scenario 9 is like 

scenario 1, scenario 10 is like scenario 2, and so on. The difference is in the propensity 

function. For this second batch of simulations, we use

π x = eμ x − τ x /2

1 + eμ x − τ x /2 . (4)

The interpretation of this propensity function is that patients with greater mean effect are 

more likely to receive the treatment. This resembles a situation in which greater values of the 

outcome are worse for the patient, and only patients who have need for treatment will 

receive it. There are many possible forms for the propensity function, but we focus on this 

one because it is particularly troublesome, and a good estimator of the treatment effect needs 

to avoid the pitfall of overestimating the effect because the treated patients have greater 

mean effect. This is exactly the kind of bias we are most concerned about in observational 

studies. The results of this second batch of simulations are shown in Figure 4.

In the batch of simulations with biased treatment assignments, propensity-adjusted causal 

boosting shines. In 6 of the 8 simulations, causal boosting as either the lowest error 

distribution or is one of the 2 methods with the lowest error distribution. Curiously, in 
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scenario 13, unadjusted causal MARS performs very well, but the propensity adjustment 

ruins this performance. In scenario 15, PTO forest and causal forest produce the best results 

although all of the methods perform well. Overall, across the 16 simulation scenarios, causal 

boosting and causal MARS stand out as having the best performance.

Figure 5 illustrates the promised reduction in bias achieved by causal MARS relative to the 

causal forest, in scenario 8. In this scenario, we have the most complex treatment effect 

function, with quadratic terms and stepwise interactions between variables. With a large 

number of observations (n = 1000) relative to the number of variables (p = 100), it pays to 

use the more flexible causal MARS algorithm, which has much lower bias than the causal 

forest. The greater flexibility comes at the cost of greater variance, but reducing the bias 

makes for a more promising candidate for confidence interval construction in future work.

8 REAL-DATA APPLICATIONS

8.1 Randomized trial

In September 2016, the New England Journal of Medicine opened The SPRINT Data 

Analysis Challenge, based on the complete dataset from a randomized trial of a novel 

intervention for the treatment of hypertension (high blood pressure).31 The goal was open-

ended: to draw novel or clinically useful insights from the SPRINT dataset, possibly in 

tandem with other publicly available data.

The intervention in the randomized trial31 was a more intensive control of systolic blood 

pressure (target 120 mm Hg) than is standard (target 140 mm Hg). The primary outcome of 

interest was whether the patient experienced any of the following events: myocardial 

infarction (heart attack), other acute coronary syndrome, stroke, heart failure, or death from 

cardiovascular causes. The trial, which enrolled 9361 patients, ended after a median follow-

up period of 3.26 years, when researchers determined at a preplanned checkpoint that the 

population average outcome for the intensive treatment group (1.65% incidence per year) 

was significantly better than that of the standard treatment group (2.19% incidence per year).

In addition to the primary event, for each patient, researchers tracked several other adverse 

events, as well as 20 baseline covariates recorded at the moment of treatment assignment 

randomization: 3 demographic variables, 6 medical history variables, and 11 laboratory 

measurements. The question that we seek to answer in this section is whether we can use 

these variables to give personalized estimates of treatment effect, which are more 

informative than the population-level average treatment effect. To answer this question, we 

apply causal boosting (with 500 trees) and bagged causal MARS to these data.

Of the 9361 patients who underwent randomization, 1172 (12.5%) died, discontinued 

intervention, withdrew consent, or were lost to follow-up before the conclusion of the trial. 

There is little evidence (χ2 P value = 31%) that this censorship was more common in either 

arm of the trial. To extract a binary outcome from these survival data, we use as our response 

the indicator that a patient experiences the primary outcome within 1000 days of beginning 

treatment, ignoring patients who were censored before 1000 days. Additionally, we dropped 

the 1.8% of patients who have at least 1 laboratory measure missing. This leaves us with a 
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sample of 7344 patients, which we split into equally sized training and validation sets. In the 

training set, 223 patients (6.1%) experienced the primary outcome within 1000 days, 

compared with 244 patients (6.6%) in the validation set.

The results of fitting causal boosting and bagged causal MARS on the training sample of 

3672 patients are shown in Figure 6. We proceeded with these 2 methods based on their 

strength in the simulation study. We observe that the 2 methods yield very different 

distributions of estimated personalized treatment effects in the aggregate. Causal boosting 

produces estimates resembling a normal distribution with a standard deviation of about 3.5% 

risk. In contrast, bagged causal MARS estimates almost all patients to have a treatment 

effect between −5% risk and +0% risk, but for a small percentage of patients, the treatment 

effect is much greater or much lesser. The tails of this distribution are much heavier than 

those of a normal distribution. In fact, a very small number of patients (0.4% of the training 

sample) are not included in this figure because their treatment effect estimate from bagged 

causal MARS falls outside of the plotted region.

Figure 7 depicts decision trees that summarize the key inferences made by causal boosting 

and bagged causal MARS. Each leaf gives the average estimated treatment effect for patients 

who belong to that leaf. Such a decision could be reported to a physician to explain the basis 

for these personalized treatment effect estimates. According to causal boosting, for example, 

older patients with high triglycerides stand to gain more from the intensive blood pressure 

treatment than younger patients with high triglycerides. Among patients with low 

triglycerides and high glucose, those with low creatinine stand to benefit more from the 

intensive treatment than those with high creatinine. The decision tree for bagged causal 

MARS makes the extreme claim that for patients with urine albumin/creatinine ratio above 

1874, the average treatment effect is a 21% increase in risk. Discussions with practitioners 

suggest that the distribution of personalized treatment effects estimated by causal boosting is 

more plausible than that of bagged causal MARS. As such, we focus our interpretation on 

the results of causal boosting for the remainder of this section.

To simplify the results even more than the decision tree does, we note that for both causal 

boosting and bagged causal MARS, the 2 features that correlate most to the personalized 

treatment effect estimates are estimated glomerular filtration rate (eGFR) and creatinine. 

These two variables are highly correlated with each other, as creatinine is one of the 

variables used to estimate the glomerular filtration rate. Both are used to assess kidney 

health, and patients with eGFR below 60 are considered to have chronic kidney disease 

(CKD). Figure 8 shows the relationship between eGFR and the estimated personalized 

treatment effects from both methods. Despite there being no manual notation in the data that 

there is something special about an eGFR of 60, we have learned from causal boosting that 

patients below this cutoff have less to gain from the intensive blood pressure treatment than 

patients above this cutoff.

Note that we are not only interested in whether a patient’s personalized treatment effect is 

positive or negative. Intensive control of blood pressure comes with side effects and should 

only be assigned to patients for whom the benefit of reducing the risk of an adverse coronary 
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event is substantial. The results of causal boosting on the training set suggest that patients 

with CKD have less to gain from this treatment than do other patients.

8.1.1 Validation—The results above tell an interesting story: If you are a patient with CKD 

(eGFR < 60), you are expected to benefit less from intensive blood pressure control. As 

discussed in Section 5.1, validating treatment effect estimates is challenging because we do 

not observe the treatment effect for any individual patient. In this section, we make an 

attempt to validate the more general conclusion from the previous section: that the treatment 

has less benefit for patients with CKD.

Figure 9 shows the results of fitting causal boosting and bagged causal MARS on the held-

out validation set of 3672 patients. Bagged causal MARS again picks up on a similar 

negative relationship between eGFR and the treatment effect. Meanwhile, causal boosting 

does not tell the same story as in the training set. For these estimates, there is no clear 

relationship with eGFR in the validation set.

It is promising that at least bagged causal MARS leads us to the same finding as both 

methods do in the training set. The team from Boston University, which placed second in the 

SPRINT Data Analysis Challenge, made the same finding as shown in the causal boosting 

results. They found that intensive blood pressure management does not improve primary 

outcomes for patients with CKD.32 Something that the authors do not address is why they 

chose to analyze patients with CKD. Presumably, they used some combination of prior 

medical knowledge and manual hypothesis selection. In our training set, we came to the 

same conclusion using both methods without the benefit of either of these steps. The lack of 

agreement by causal boosting on the validation set could be explained by insufficient power. 

The ratio of primary outcome-positive patients (223) to covariates (20) in the training set 

may not be enough, considering that we cannot know the true signal-to-noise ratio in this 

application.

In addition to the qualitative validation above, we considered and ultimately rejected more 

quantitative validation techniques. As described in Section 5.1, validation for causal 

inference is more complicated than for supervised learning, which relies on measures like 

mean square error and misclassification error. Because we do not observe point estimates of 

the treatment effect for individual patients, treated and untreated patients need to be grouped 

together in some way to yield a treatment effect point estimate. One idea is to pair each 

treated patient with the nearest untreated neighbor and vice versa. In simulations (where the 

truth is known), this did not work well because even in moderately small dimensions, like 20 

covariates, nearest neighbors tend not to be very similar to each other. One solution is to use 

an adaptive nearest-neighbor technique that learns variable importance, and this is the 

approach used in Section 5.1. But this is not well suited for comparing between methods 

because it requires substantial modeling assumptions beyond summarizing the data. We 

settled on a qualitative validation addressing the question, “Are the actionable conclusions 

from the training set borne out in the validation set?”
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8.2 Observational study

In this section, we continue to investigate heterogeneous treatment effects for treatments of 

high blood pressure. Four common classes of treatment are angiotensin-converting enzyme 

(ACE) inhibitors, beta blockers, calcium channel blockers, and diuretics. Literature suggests 

that ACE inhibitors tend to work well for patients who do well on beta blockers and that 

calcium channel blockers tend to work well for patients who do well on diuretics.33 For a 

patient newly diagnosed with hypertension, it would be useful to know whether they would 

respond better to a drug in the ACE inhibitors/beta blockers (A/B) groups or a drug in the 

calcium channel blockers/diuretics (C/D) groups.

We used anonymized EMRs from Stanford Health Care to construct a cohort of 5242 

patients who were diagnosed with high blood pressure and then were prescribed one of the 

antihypertensives above within 1 year of the diagnosis and were not prescribed an 

antihypertensive drug from a different group within 90 days of the initial prescription. We 

required that the medical record include blood pressure measurements at one point before 

antihypertensive prescription and another point at least 30 days after prescription. In addition 

to blood pressure data, we have 644 additional variables describing the patients: 9 

demographic variables, 25 laboratory measurements, 250 recent prescriptions, and 360 

recent diagnoses. Laboratory values present in over 85% patients in the time prior to initial 

treatment were included as features. If a patient had more than one value recorded, the most 

recent value was used. Patients without recorded values had those values imputed as column 

means. The recent prescription and recent diagnosis variables indicate whether the patient 

has been prescribed each drug or diagnosed with each ailment within the past 6 months.

We randomly split the data into equally sized training and validation sets of 2621 patients 

each. In the training set, 1837 patients received an antihypertensive in the A/B group, which 

we label as treatment. Patients who were prescribed a drug in the C/D group are considered 

control group patients. In the validation set, 1834 patients are in the treatment group. As 

described in Section 2.1, we trained a random forest on the training and validation sets 

together to estimate the probability of each patient being in the treatment group, based on 

covariates. We used cross-validation to determine the number of variables to try at each split 

(25) and the minimum node size (5) for each tree. Figure 10 shows the distribution of 

propensity scores across both training and validation sets, along with the cutoffs for 5 

propensity strata into which the patients were binned.

The response of interest is change in systolic pressure from pretreatment measurement to 

posttreatment measurement. We applied causal boosting (with cross-validation) and causal 

MARS to these data to estimate personalized treatment effects for the patients, fitting each 

method on both training and validation sets. Here, the agreement between models and 

between data subsets was much greater than in Section 8.1, but the conclusion is less 

interesting. The number of trees selected for causal boosting was 1 in the training set and 2 

in the validation set—effectively a null result. In the training set, 96.4% of patients are 

estimated to have a treatment effect of +0.01 mm Hg, meaning that there is no practical 

difference between the treatments. The standard deviation in response (change in systolic 

blood pressure) is 20 mm Hg. In the validation set, 96.0% of patients are estimated to have a 

treatment effect of −0.01 mm Hg. The training set and validation set distributions of 
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personalized treatment effects from causal MARS are shown in Figure 11. Almost all 

estimates are between −0.1 and +0.1 mm Hg.

The results of both models suggest that there is no evidence in these data for a practical 

difference between the A/B drug group and the C/D drug group and there is no evidence for 

heterogeneity between patients in this null treatment effect. This is likely a limitation of the 

particular dataset. Noisy blood pressure measurements and unreliable follow-up could cover 

up a true treatment effect heterogeneity. Despite prior evidence of the A/B and C/D 

groupings, there is likely heterogeneity being hidden by grouping those classes together—

each drug class (ie, A, B, C, or D) is already an amalgamation of 10 to 50 unique drugs. 

Nonetheless, this dataset is useful for illustrating the application of our methods to 

observational data, and the null finding is consistent between both methods.

9 DISCUSSION

We have proposed and compared a number of different methods for estimating 

heterogeneous treatment effects from high-dimensional covariates. The causal boosting and 

bagged causal MARS approaches seem particularly promising in simulations. Both of these 

methods found in the SPRINT data a relationship between kidney health and the treatment 

effect that has also been identified by other researchers.32 An important next step is 

confidence interval construction. We have developed causal MARS so that it would be 

conducive to confidence interval construction, but we leave this task to future work.

Another area of future work is to generalize these methods to handle other data types. In 

Sections 7 and 8.2, the outcome variables are continuous. In Section 8.1, the SPRINT 

dataset has survival (time-to-event) outcome that we dichotomize into a binary variable, 

sacrificing some power. It would be preferable to adapt the techniques to make full use of 

survival data with censorship. This would mean developing data type–specific methods for 

choosing the regression basis (see Section 3.1) and estimating the treatment effect given the 

basis.
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APPENDIX A

In this appendix, we outline the already-established techniques for using propensity score to 

adjust for bias in treatment assignment for observational studies in which the goal is to 

estimate a population ATE. Define f(x) as themarginal feature density and f1(x) as the 

conditional density of X given T = 1 (and likewise f0(x)), where T is the binary treatment 

indicator, and let π1 = ℙ T = 1  be the marginal proportion of treated. Let 

μ1 X = 𝔼 Y T = 1, X , and likewise μ0(X), and τ(X) = μ1(X) − μ0(X). Finally, let 

π X = ℙ T = 1 X  be the treatment propensity.
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A.1 | TO averaging

Note that the TO

Z ≡ T Y
π X + 1 − T −Y

1 − π X

satisfies

𝔼 Z X = ℙ T = 1 X 1
π x 𝔼 Y T = 1, X − ℙ T = 0 X 1

1 − π x 𝔼 Y T = 1, X

= 𝔼 Y T = 1, X − 𝔼 Y T = 0, X = μ1 X − μ0 X = τ X .

Hence, if the expectation of Z is evaluated with respect to the distribution of X,

𝔼X Z = 𝔼X 𝔼 Z X = 𝔼X τ X .

In other words, the TO is unbiased for the ATE. So a natural estimator for the ATE in a 

sample of patients would be the sample mean of the TO. This justifies for example using Z 
as a response to grow a random forest in our PTO forest.

A.2 | Propensity score stratification

Note that it is not necessarily the case that E[Y|T = 1] = E[μ1(X)|T = 1] and EX[μ1(X)] are 

the same; it is possible that conditioning on T changes the distribution of X and 

consequently the distribution of μ1(X). This is the essence of why we cannot ignore 

nonrandomized treatment assignment in observational studies. However, it is the case that

𝔼 Y T = 1, π X = 𝔼 μ1 X π X .

To see this, note that X ⫫ T|π(X) because by assumption T ∼ Binomial(1, π(X)). Hence, the 

conditional distribution of X given π(X) and T is the same as the conditional distribution of 

X given π(X). This implies that

𝔼 Y T = 1, π X = 𝔼 𝔼 Y T = 1, X T = 1, π X = 𝔼 μ1 X π X .

What this says is that for fixed π(X), the mean response under treatment is unbiased for the 

conditional expectation of μ1(X). This equality holds for any value of X, so the expectations 

of these 2 quantities are the same with respect to the distribution of π(X):

𝔼π X 𝔼 Y T = 1, π X = 𝔼π X 𝔼 μ1 X π X = 𝔼X μ1 X .

This leads to the following estimator for 𝔼X μ1 X : Compute the average response for all 

treated patients for each value of the propensity, and integrate with respect to the distribution 
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of the propensity. In practice, we approximate this by using a rough approximation to the 

distribution of π(X): Define strata (or bins) of the propensity score, for example (0, 0.1], …, 

(0.9, 1). Within each stratum, find the average response among treated patients. Then 

combine these values in a weighted average, weighting according to the frequency of each 

stratum. This is our estimate of 𝔼X μ1 X . We follow the same procedure in the control arm 

to estimate 𝔼X τ1 X , and the difference is our estimate of 𝔼X τ1 X .

A.3 | Inverse probability weighting

From Bayes’ theorem, f1(x) = f(x)π(x)/π1. Consider weighting this density with weights 

proportional to 1/π(x). The density of this weighted distribution is given by

f
∼

1 x =
1

π x f x π x /π1

∫ℝ
1

π x f x π x /π1
dx =

f x /π1

∫ℝ
f x /π1dx

=
f x /π1
1/π1

= f x .

Hence, the weighted conditional distribution of X given T = 1 is the same as the marginal 

distribution of X. So the expectation of any function of X with respect to this distribution is 

the same as with respect to the marginal distribution of X. Specifically, using X∼ to denote the 

random variable following the weighted density f
∼

1 x ,

𝔼
X∼

μ1 X∼ = 𝔼X μ1 X .

On the basis of this result, we use the sample mean of the response in the treatment arm, 

with weights proportional to the inverse of the propensity, as an unbiased estimator for 

𝔼X μ1 X . Similarly, in the control arm, we use weights proportional to 1/(1 − π(x)) to get 

an unbiased estimate for 𝔼X μ0 x . The difference between these 2 is our estimate for 

𝔼X τ X .
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FIGURE 1. 
The variance of 2 average treatment effect estimators for n = 10, 30, 100, and 300, as the 

ratio of the absolute main effect |μ1 + μ0|/2 to the noise level σ increases from 0 to 0.5
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FIGURE 2. 
A comparison of raw and pollinated transformed outcome forests. Each method is applied to 

a randomized simulation and a nonrandomized simulation, and we visually compare the 

estimated treatment effect with the true treatment effect. We see that in each case, the 

pollination improves the estimates. For each method, we report the mean square error (MSE) 

for the treatment effect estimates, along with standard errors
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FIGURE 3. 
Results across 8 simulated randomized experiments. For details of the generating 

distributions, see Table 1. The 7 estimators being evaluated are as follows: NULL = the null 

prediction, TO = transformed outcome forest, DB = different-basis forest, CF = causal 

forest, PTO0 = pollinated transformed outcome forest (using propensity = 1/2), CB0 = 

causal boosting, and BCM0 = causal MARS. The ranges of the y axis are chosen to start 

from 0 and be at least as great as the response standard deviation in each scenario while 

showing at least 95% of the data
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FIGURE 4. 
Results across 8 simulated observational studies, in which treatment is more likely to be 

assigned to those with a greater mean effect. The 7 estimators being evaluated are as 

follows: NULL = the null prediction, CF = causal forest, PTO = pollinated transformed 

outcome forest, CB1 = causal boosting (propensity adjusted), CB0 = causal boosting, BCM1 

= causal MARS (propensity adjusted), BCM0 = causal MARS. CB0 and CM0 are in gray 

because they would not be used in this setting. They are provided for reference to assess the 

effect of the propensity adjustment. The ranges of the y axis are chosen to start from 0 and 

be at least as great as the response standard deviation in each scenario while showing at least 

95% of the data
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FIGURE 5. 
Illustration of the bias of causal forest and causal multivariate adaptive regression splines 

(MARS). Patient features were simulated once, and then treatment assignment and response 

were simulated 50 times. Causal forest and causal MARS were applied to each of the 50 

simulations, and the average estimate for each patient is plotted
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FIGURE 6. 
Personalized treatment effect estimates from causal boosting and (bagged) causal 

multivariate adaptive regression splines (MARS). Each circle represents a patient, who gets 

a personalized estimate from each method. The dashed line represents the diagonal, along 

which the 2 estimates are the same
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FIGURE 7. 
Decision trees summarizing with broad strokes the inferences of causal boosting and 

(bagged) causal multivariate adaptive regression splines (MARS). The variables are as 

follows: trr = triglycerides (mg/dL) from blood draw; age = age (y) at beginning of trial; glur 

= glucose (mg/dL) from blood draw; screat = creatinine (mg/dL) from blood draw; umalcr = 

albumin/creatinine ratio from urine sample; dbp = diastolic blood pressure (mm Hg); egfr = 

estimated glomerular filtration rate (mL/min/1.73m2). If the inequality at a split is true for a 

patient, then that patient is on the left side of the split. The number in each terminal node is 

the estimated increase in risk due to treatment for a patient in that terminal node
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FIGURE 8. 
Training set personalized treatment effects, estimated via causal boosting and (bagged) 

causal multivariate adaptive regression splines (MARS), versus the estimated glomerular 

filtration rate. Patients are stratified according to the estimated glomerular filtration rate on 

the x axis, and each point gives the average personalized treatment effect among patients in 

that stratum. Error bars correspond to 1 standard error for the mean personalized treatment 

effect. The vertical dashed line represents a medical cutoff, below which patients are 

considered to suffer from chronic kidney disease. ATE, average treatment effect
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FIGURE 9. 
Validation set personalized treatment effects, estimated via causal boosting and (bagged) 

causal multivariate adaptive regression splines (MARS), versus the estimated glomerular 

filtration rate. Patients are stratified according to the estimated glomerular filtration rate on 

the x axis, and each point gives the average personalized treatment effect among patients in 

that stratum. Error bars correspond to 1 standard error for the mean personalized treatment 

effect. The vertical dashed line represents a medical cutoff, below which patients are 

considered to suffer from chronic kidney disease. ATE, average treatment effect
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FIGURE 10. 
Histogram of propensity scores for real observational data application. The propensity score 

is the estimated probability that the patient would receive an A/B treatment (instead of a C/D 

treatment) based on the patient's covariates. Patients were binned into propensity score strata 

with cutoffs at 0.5, 0.6, 0.7, and 0.8
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FIGURE 11. 
Densities of causal multivariate adaptive regression splines (MARS) treatment effect 

estimates in training and validation sets. The results on both data subsets agree that almost 

all personalized treatment effects are practically 0
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