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Bioinspired polarization vision enables
underwater geolocalization
Samuel B. Powell,1,2 Roman Garnett,1 Justin Marshall,2 Charbel Rizk,3 Viktor Gruev4,5*

With its never-ending blue color, the underwater environment often seems monotonic and featureless. How-
ever, to an animal with polarization-sensitive vision, it is anything but bland. The rich repertoire of underwater
polarization patterns—a consequence of light’s air-to-water transmission and in-water scattering—can be
exploited both as a compass and for geolocalization purposes. We demonstrate that, by using a bioinspired
polarization-sensitive imager, we can determine the geolocation of an observer based on radial underwater polar-
ization patterns. Our experimental data, recorded at various locations around the world, at different depths and
times of day, indicate that the average accuracy of our geolocalization is 61 km, or 6 m of error for every 1 km traveled.
This proof-of-concept study of our bioinspired technique opens new possibilities in long-distance underwater
navigation and suggests additional mechanisms by which marine animals with polarization-sensitive vision
might perform both local and long-distance navigation.
INTRODUCTION
Navigation using photoreceptor arrays specifically sensitive to patterns
of the polarization of light in the sky is well documented in terrestrial
animals, especially among arthropods such as ants, bees, crickets, dung
beetles, and spiders (1–3). Honey bees journeying to and fromhives rely
on the predictable pattern of polarized light relative to the Sun’s posi-
tion, as noted by von Frisch (4) and Rossel andWehner (5). This line of
research has been recently extended to vertebrates: Longer-rangemigra-
tory birds may use polarization patterns in the sky during sunrise and
sunset to calibrate their magnetic compasses (6, 7). The underwater
environment is another less explored area with highly structured polar-
ization patterns down to at least 200 m, as first discovered by Talbot
Waterman in 1954 (8). Although more than half a century has passed
sinceWaterman’s seminal publication, the scientific community seems
to be divided about the true state of underwater polarization patterns
and their usefulness. Scientists from various backgrounds, ranging from
computer vision (9) and remote sensing to marine biology (10–12), ar-
gue that underwater light is almost or completely horizontally polarized
based on either incomplete or incorrect underwater measurements and
physical models. However, uniformly across the board, scientists have
agreed and demonstrated that marine animals can use polarization
patterns of the sky as viewed from underwater as a compass for navi-
gation purposes (13, 14). Here, we demonstrate that underwater polar-
ization light patterns not only are highly structured and dependent
on the position of the Sun but also can be used for geolocalization
purposes—amuchmore complicated and complete task thanperformed
by a compass when it comes to navigation in underwater environments.

Two optical phenomena, light scattering and refraction, are mostly
responsible for the underwater polarization patterns (8, 15, 16). As
shown in Fig. 1, light from the Sun and sky (itself a product of scattered
sunlight) enters the water by refracting through the surface. The refrac-
tion bends the light such that the image of the celestial hemisphere is
compressed into an approximately 97° cone known as Snell’s window.
The transmitted light waves are preferentially polarized in the plane of
the incident and refracted rays. The bulk of the light outside of Snell’s
window is refracted sunlight that has scattered from the water itself, but
some of it is internally reflected light from the underside of the water’s
surface or reflected light from the seafloor (17). Scattering events par-
tially polarize the light perpendicular to the plane of the incident and
scattered rays, which produces a general trend of polarization perpen-
dicular to the refracted ray (18). Figure 1B shows simulated underwater
polarization patterns produced by this combination of refraction and
single scattering for different Sun elevations. The background polariza-
tion patterns are highly variable and depend on the Sun’s elevation and
viewing angle of the observer. In certain situations, particularly when
the Sun is low in the sky, it is possible for the polarization effect of
the refraction to cancel or even to dominate that of the scattering. This
causes “neutral points” in the polarization state of the light field facing
the Sun and away from it, where the partial polarization drops to zero
and the polarization angle abruptly transitions from horizontal to ver-
tical (19). As the Sun’s elevation drops below 40° above the horizon,
skylight contributes an increasing fraction of the light incident on the
water’s surface (20). Although this effect was not included in ourmodel
because of computational complexity issues, it would be straightforward
to add given sufficient computing power. In addition, at increasing
depth or decreasingwater clarity,multiply scattered light becomesmore
prevalent—this increases the homogeneity of the observed polarization
states, resulting in less partial polarization and in polarization angles
that are closer to horizontal. However, these effects are only significant
beyond an optical depth of about 4, or about 2.35 times the Secchi disc
visibility (19), and Sun-dependent patterns in the polarization angle
have been observed as deep as 200 m (21).

The intensity and partial polarization of underwater light are highly
sensitive to many environmental factors in addition to the Sun’s posi-
tion, including atmospheric conditions, water quality, and depth (22).
However, the in-water patterns in the polarization angle (also known as
the e-vector angle) are less sensitive to perturbations, including surface
waves, and thus serve as a stable proxy for the Sun’s position (16, 19, 23).
Many marine animals are known to have polarization-sensitive vision,
which has a variety of hypothesized uses, from improving visual con-
trast for predator and prey detection to covert communication (24–26).
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In addition, several works have focused on how salmonids could use the
polarization patterns of the sky for orientation (27).

We hypothesize that, based on the underwater polarization
patterns, the Sun’s heading and elevation angles can be determined
and hence the position of the observer can be estimated with accurate
knowledge of time and date. To test this hypothesis, we collected data
for inferring the Sun’s position from underwater polarization angles
using a bioinspired, visible-spectrum imaging polarimeter (28). The
sensor mimics the polarization-sensitive vision system of the mantis
shrimp by integrating various polarization optics within individual
pixels of a camera. More specifically, polarization filters composed
of parallel aluminum nanowires (140 nm thick × 70 nm wide) are
aligned and deposited onto each pixel of a low-noise, 2-megapixel
charge-coupled device image sensor. Similar to its biological coun-
terpart, the pixelated polarization filters are oriented at set angles of
0°, 45°, 90°, and 135° in a repeating 2 × 2 pattern across the focal
plane. This enables the polarimeter to capture intensity, partial po-
larization, and polarization angle images. We paired our bioinspired
polarization camera with an electronic compass and tilt sensor within
an underwater housing to measure the underwater polarization angles
versus heading at a variety of sites, depths, and times of day (seeMaterials
and Methods).
RESULTS AND DISCUSSION
Figure 2 shows several example measurements of the underwater
polarization patterns compared to the output of a single-scattering
model. The model agrees with the measurements when the Sun is at
least 40° above the horizon. At lower elevations, contributions from
the polarization patterns of the sky, among others, influence the over-
all underwater polarization pattern, and these physical phenomena are
not captured in our model. To infer the Sun’s position at different sites
around the world and various times of the day, we used a general-purpose
optimization algorithm to match the measured polarization angle pat-
Powell et al., Sci. Adv. 2018;4 : eaao6841 4 April 2018
terns against the predictions of a basic single-scattering model of under-
water light (Fig. 3). For Sun elevation angles that are at least 40° above
the horizon, the estimated Sun’s heading and elevation angle had root
mean square (RMS) errors of 8.57° and 5.82°, respectively, and a global
positioning RMS error of 817 km.

The smoothly varying nature of the residuals (Fig. 2B) indicates
that there are additional dependencies between the underwater po-
larization angle and the Sun’s position that the single-scattering model
does not capture. We incorporate these dependencies into our system
by using a k-nearest-neighbors (kNN) regression to estimate the resi-
duals of the model evaluated at the Sun’s true position, as a function of
the naïvely estimated Sun position. By subtracting the estimated resi-
duals from our measurements during a second phase of inference, we
can remove a significant amount of error: The RMS errors of the Sun’s
heading and elevation were reduced from 30 and 50% to 6.02° and
2.92°, respectively, and the global position RMS error improved from
46% to 442 km. Figure 3 shows the distribution of global position es-
timates and the improvements introduced by the kNN regression
from experiments performed at the Lizard Island Research Station
in northeastern Australia.

The model performance decreases as the Sun approaches the hori-
zon, likely because the model does not include skylight, which con-
tributes an increasingly large fraction of the light hitting the ocean’s
surface as the Sun drops below 40° above the horizon (20). When we
include this low-elevation data, our naïve inference method achieves
RMS errors of 9.22°, 8.07°, and 2915 km in Sun heading, Sun elevation,
and global position, respectively. Incorporating the kNN residuals re-
duces these by 41, 23, and 32% to 5.46°, 6.23°, and 1970 km, respectively.
Curiously, the accuracy of the kNN heading estimates improves when
the low-elevation data are included, possibly because the polarization
angle patterns develop a very strong gradient facing the Sun’s heading.
However, the lack of improvement in the Sun elevation estimate renders
this improvement moot for purposes of global positioning (for per-
formance statistics, see fig. S1).
Fig. 1. Schematic of in-water polarization patterns. (A) The cylinder shows the polarization states that the detector observes, in false color. (B) Polarization states
predicted by the single-scattering model, in false color (see key at right), for Sun elevations of 10°, 45°, and 80° above the horizon. For clarity, lines oriented at the
polarization angles are overlaid on the graphs. Neutral points in the polarization occur where the polarization state of the scattering event cancels that of the refraction.
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Although these errors may seem impractically large—following
a heading 6° off course would result in a 105-m error after traveling
1 km—the RMS statistic includes a measure of the variance. When navi-
gating with a noisy compass, one would use the average reading over
Powell et al., Sci. Adv. 2018;4 : eaao6841 4 April 2018
time, not pick a single heading and follow it blindly. When the Sun’s
elevation is above 40°, the mean heading error was just 0.38° (6.6 m
over 1 km), which is commensurate with the polarization compass
abilities of the desert ant (29). In a similar fashion, it is more realistic
Fig. 2. Example measurements and residuals. (A) Polarization angle measurements from four experiments at varying Sun elevations. Measurements are indicated by
dots; model predictions, by solid lines; the heading to the Sun, by the vertical dotted lines. (B) Differences between each measurement and the single-scattering model
prediction, indicated by color. The smoothly varying nature of the residuals indicates additional dependencies between the underwater polarization angle and the Sun’s
position that the single-scattering model does not capture.
Fig. 3. Maps of position estimates. (A) World map of all position estimates. The blue pluses show the locations of the measurement sites, the red exes and dotted
contour lines show the centroid and distribution of position estimates using just the single-scattering model for inference, and the green diamond and contours show
the centroid and distribution of position estimates using the kNN method. The contours are at 1, 2, and 3 SDs from the centroid. Too few data were collected in Finland
to estimate the SD contours. (B and C) Maps of position estimates from data taken at the Lizard Island Research Station when the Sun was at least 40° above the
horizon, using only the single-scattering model (B) or the kNN method (C). The blue pluses show the location of the collection site, black dots are individual position
estimates, and the red exes show the mean position estimate. The concentric curves are at 1, 2, and 3 SDs from the mean.
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Fig. 4. Example sensitivity data. (A) Intensity image taken during a sensitivity experiment performed during the morning. The camera is set vertically, with a disc to
block the Sun. The colored circles around the periphery show the regions over which the polarization angles are measured. Regions with partial polarization less than
5% were rejected. (B) Polarization angles measured during the sensitivity experiment; colors correspond to the regions shown in (A). The polarization angles vary
almost linearly at the time of day the data were recorded. The vertical dotted line shows how long it takes the angles to change with 99% confidence.
Fig. 5. Model schematics. (A) Single-scattering model geometry. (B) Refraction-event geometry. (C) Scattering-event geometry.
Powell et al., Sci. Adv. 2018;4 : eaao6841 4 April 2018 4 of 8
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to consider the average of our global position estimates rather than
treat them independently. As shown in Fig. 3, the centroid of position
estimates performed in northern Australia is only 61 km from the true
measurement location.

In addition to testing the inference algorithm on experimental data,
we also performed a sensitivity study of our instruments (see Materials
and Methods and Fig. 4). We wanted to determine the minimum dis-
tance between two sites required for our camera to detect significant
differences in their underwater polarization patterns. However, ap-
proaching this problem directly would require moving two identical
instruments to various distances from each other and collecting syn-
chronized recordings, which is a technically infeasible task. Instead,
we answered a slightly different question: If we place a polarization in-
strument underwater that is capable of instantaneously recording a 360°
field of view, how long does it take the Sun to travel far enough for the
camera to register a significant difference in the background polariza-
tion pattern? Once we determine the time it takes to detect a significant
difference in the background polarization pattern, the distance (that is,
solar angle) that the Sun has traveled can be computed. The solar angle
that we can measure is the equivalent to the difference between solar
angles at two locations at the same time. In one experiment, the instru-
ment was capable of detecting, with 99% confidence, changes to the
underwater polarization angle pattern in calm conditions caused by a
0.31°movement of the Sun,which corresponds to amovement of 35 km
along the latitude where the sensitivity measurements were performed.
Another experiment, recorded over a 9-hour period under calm con-
ditions, yielded an average sensitivity of 42 ± 4.1 km (mean ± SD).
The Sun’s elevation varied from 30° to 71° over the course of the exper-
iment, which indicates that the noise characteristics of the polarization
signals are stable over long periods and under a variety of solar eleva-
tions. We also observed that under windy conditions (~35 km/hour),
wave action caused a marked increase in noise levels in the polarization
angles and reduced the overall system sensitivity to 116 km (see fig. S2).
Unlike the instrument’s measurement noise, however, the noise intro-
duced by surface waves appears to be highly spatially correlated across
the sensor, which could enable more advanced statistical techniques to
mitigate it. This implies that a majority of the positioning error in our
system is due to model errors rather than sensor performance.

Our results show that underwater polarization angles can reasonably
serve as a solar compass for animals with polarization-sensitive vision
and can also be used to determine global location. Considering the
uniformity of the polarization properties of oceanic waters from
around the world, we believe that our method will generalize well
to locations beyond our measurement sites (30). This study also pro-
vides insight into an additional navigation method for animals with
polarization-sensitive vision.
MATERIALS AND METHODS
Instrument design
Two underwater polarization video cameras were used for this work.
The polarization image sensors were mounted in Imperx Bobcat GEV
camera bodieswithCanonEF-S 18- 55mm lenses. The lensmountswere
customized to provide electronic control of the lenses. Each video camera
included a PNI Sensor Corporation TCM MB electronic compass
module. These modules contain both a three-axis magnetometer and a
three-axis accelerometer and provide magnetic heading, roll, and pitch
information at 30 Hz over a digital interface with an RMS error of less
than 0.5°.
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The polarization sensor and compassmodule were both housed in a
Light and Motion Bluefin VX2000 underwater housing along with an
ADL Embedded Solutions QM67PC single-board computer running
CentOS Linux. A small HDMI (high-definition multimedia interface)
monitor was attached to the system for visual feedback, and a PJRC
Teensy 3.2 microcontroller was used to translate the housing controls
andCanon lens protocol to and from theUSB (universal serial bus). The
computer was programmed with a real-time user interface to allow a
diver to control the system while viewing the live polarization video.
The software records all data emitted by the sensors, including micro-
second-resolution time stamps, into standard HDF5 files for maximum
reliability and compatibility. Because of the nature of the computer’s
clock, the time stamps have very low jitter but are accurate to within
approximately 2 s of UTC (coordinated universal time).

For the sensitivity experiment, one of the instruments was modified
to accept an Aquatica 4″ glass dome port, and the Canon lens was re-
placed with a Fujinon FE185C057HA-1 fish-eye lens. See fig. S3 and
movie S1 for photos and video of the system in use, respectively.

Polarimetric calibration
The polarimeters were calibrated by collecting images of a white flat
field through a Newport 20LP-VIS-B 2″ linear polarization filter. The
flat field was produced by illuminating two layers of opal-glass diffuser
with a tungsten halogen lamp via a fiber-optic light pipe. Unwanted in-
frared illumination was blocked with a heat-absorbing glass disc. The
flat field was set to five different intensities, and at each, the polarization
filter was rotated through six angles from 0° to 180°; 100 polarization
images were averaged for each intensity-angle pair to reduce the effects
of temporal noise.

The flat-field images were used to compute dark offsets and polar-
imetric calibration matrices for each 2 × 2 square of pixels (31). These
calibration matrices normalize the relative intensity and partial polar-
ization responses across the focal plane and provide absolute calibration
of the measured polarization angles.

Sun position inference data collection
Polarization data for Sun position inference was collected at the Lizard
Island Research Station (Australia), the Hawaiian Electric Beach Park
(Hawaii), Miami (Florida), and the Tvärminne Zoological Station
(Finland) (see Fig. 3). The measurements were performed by scuba
divers at depths from2 to 20mat various times of the day from sunrise
to sunset. Dive site locations were recorded at the surface with aGarmin
Oregon 700 GPS receiver. The imaging instrument was mounted on a
tripod such that it rotated freely about the vertical axis, and pitched such
that neither thewater surface nor the seafloor was visible in the center of
the field of view. The operating diver then measured the instrument
depth with a dive computer. For each recording, the instrument was
rotated once around the vertical axis, pausing approximated every 45°
to allow the compass and tilt sensor to settle. Recordings were typically
less than 2min in duration, and anywhere from 2 to 10 recordings were
collected per dive depending on the circumstances.

To process these recordings, we polarimetrically calibrated each
video frame and cropped it to a 100 × 100–pixel region at the center
of the field of view. We computed the average Stokes vector over the
region and extracted the polarization angle from it. Frames were re-
jected if they contained the seafloor, water surface, objects, bubbles,
or animals in the region of interest, or if the Sun was visibly shaded
by clouds or nearby boats. The compass measurements were smoothed
by applying a low-pass sinc filter with a −3-dB frequency of 1.35 Hz.
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Single-scattering model
Our single-scattering model of underwater polarization states is based
on the Mueller-Stokes formalism of representing polarized light (see
Fig. 5). A ray of polarized light is represented by a wave vector k ∈ ℝ3

(rad/m), encapsulating its wave number and direction of travel, and a
Stokes vector S ∈ ℝ4 (W/m2), which encapsulates its intensity and po-
larization state. In addition,wemust track a vector x∈ℝ3, perpendicular
to k, which indicates the direction corresponding to a polarization angle
of zero. Optical events that modify the polarization state of the light are
modeled bymultiplying the Stokes vector by aMuellermatrixM∈ℝ4×4.

The first optical event of our model is the refraction of sunlight
(ki, xi, Si) through the water’s surface. The air-water interface is de-
fined by the surface normal n and the real indices of refraction of the
air and water, hi and ht. The transmitted light (kt, xt, St) is computed per
Snell’s law and Fresnel’s equations (18), with the x vectors lying in the
water surface

kt ¼ ka � n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðht=hiÞ2‖ki‖2 � ‖ka‖2

q
; ka ¼ ki � ðki⋅nÞn ð1Þ

xt ¼ xi ¼ n� ki=‖n� ki‖ ð2Þ

St ¼ MRSi ð3Þ

MR ¼ 1
2

t2s þ t2p t2s � t2p 0 0
t2s � t2p t2s þ t2p 0 0

0 0 2tstp 0
0 0 0 2tstp

0
BB@

1
CCA;

ts ¼ 2ki⋅n
ðki þ ktÞ⋅n ; tp ¼ 2hihtki⋅n

ðh2t ki þ h2i ktÞ⋅n
ð4Þ

The second optical event is the scattering of the transmitted sunlight.
The wave vector of the scattered light, ks, is the same magnitude as kt
but points to the detector. The typical coordinate system for represent-
ing scattering events has the x vectors of the incident and scattered
light lying in the same plane as the wave vectors; thus, St must be ro-
tated by a coordinate transform matrix MR→S before being multiplied
by the scattering matrix MS . We model the polarization effects of
scattering using the Rayleigh approximation but renormalized so
that the intensity follows ~βFF(q) (sr

−1), the Fournier-Forand volume
scattering phase function (17)

xs ¼ kt � ks � ks
‖kt � ks � ks‖

; xt;s ¼ kt � ks � kt
‖kt � ks � kt‖

ð5Þ

Ss ¼ MSMR→SSt ð6Þ

MS ¼
~bFFðqÞ
c2q þ 1

c2q þ 1 c2q � 1 0 0
c2q � 1 c2q þ 1 0 0
0 0 2cq 0
0 0 0 2cq

0
BB@

1
CCA;

cq ¼ cosq; q ¼ angleðkt ; ksÞ ð7Þ

Multiplying by ~β(q) changes the units of Ss to (W⋅m−2⋅sr−1); how-
ever, returning to (W⋅m−2) is not straightforward. This is because the
Powell et al., Sci. Adv. 2018;4 : eaao6841 4 April 2018
volume scattering phase function is the ratio of the scattered radiant
intensity per volume (W⋅sr−1⋅m−3) to the incident intensity (W⋅m−2)
normalized by the scattering coefficient per volume (W⋅m−3)/(W⋅m−2).
Thus, wemustmultiply Ss by the scattering coefficient and scattering vol-
ume to yield a radiant intensity (W⋅sr−1), which can then bemultiplied by
an area per solid angle to yield intensity again. These operations do not
affect the polarization angle, so we neglect them.

Finally, the Stokes vector of the scattered light is transformed to
the coordinate frame of the detector, with x to the right and polariza-
tion angles increasing in the counterclockwise direction, as viewed by
the detector. The detected Stokes vector is thus

Sd ¼ MS→DMSMR→SMRSi ð8Þ

We assumed that the incident sunlight was unpolarized, so Si =
(1, 0, 0, 0)T, and computed the Sun’s apparent position in the sky with
Reda and Andreas’s algorithm (32). When operating with magnetic
headings, we used the National Oceanic and Atmospheric Adminis-
tration’s Enhanced Magnetic Model (33) to provide local fields.

Sun position inference
Our system infers the Sun’s position in a two-phase process. During
the first phase, an initial estimate of the Sun’s angular position in the
sky, r̂s

ð1Þ ∈ S2, is obtained according to

r̂s
ð1Þ ¼ argmin‖y⊖ym rd; r̂

ð1Þ
s

� �
‖1 ð9Þ

where y ∈ Sn is the vector of polarization angles measured at each
detector orientation, rd ∈ S2×n, and ym : S2×n, S2→Sn is the single-
scattering model. The L1 norm is used to deemphasize outliers caused
by measurement noise. The ⊖ operator indicates an element-wise an-
gular difference

a⊖b ¼ ða–bþ t=2Þ modt–t=2; a mod b ¼ a� b a=bb c ð10Þ

where t is the period of the angle (180° for polarization angles). Be-
cause the predictive power of the single-scattering model is limited, we
use a kNN regression (34) over previously measured data to estimate
the residuals of the single-scattering model, Dym, at the true Sun po-
sition as a function of the estimated Sun position

Dŷm rd; r̂
ð1Þ
s

� �
≈ y⊖ymðrd; rsÞ ð11Þ

The second phase of the inference algorithm used the estimated
residuals to remove model errors from the minimization to improve
the inference results

r̂ð2Þs ¼ argmin‖y⊖Dŷm rd; r̂
ð1Þ
s

� �
⊖ym rd; r̂

ð2Þ
s

� �
‖1

≈ argmin‖ymðrd; rsÞ⊖ym rd; r̂
ð2Þ
s

� �
‖1

ð12Þ

The global position of the measurement, r̂g ∈S2, can be determined
from the estimated Sun position as in

r̂g ¼ argminarcdist r̂s; rsðr̂g; tÞ
� �

ð13Þ
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where t is the time of the measurement and rs : S2, ℝ→ S2 is a model
of the apparent Sun position using magnetic headings, as described
previously.

The inference algorithmwas tested using the L-BFGS-B algorithm to
solve theminimizations and the leave-one-outmethodology to separate
training from test data for the kNN regression. First, for each experi-
ment, we computed r̂s

(1), the naïve Sun position estimate, and Dym =
y − ym(rd, rs), the single-scattering model residuals evaluated at the
true Sun position.We then separated the data into groups based on col-
lection site and date, and for each group, we generated a residual
estimate function, D~ym(rd, rs), by training a kNN regression with the
r̂ s

(1) and Dym from all the data in the other groups. This residual
estimate function was then used to compute the second-phase Sun po-
sition estimate, r̂s

(2). We chose this methodology because it allows us to
test the effects of the kNN regression in a data-efficient manner.

Statistics on the global position distance errors were performed
assuming a normal distribution. Statistics on the Sun heading errors
and Sun elevation errors were performed independently, assuming a
wrapped normal distribution. The first moment of the population
was used to estimate the mean and variance of the normal distribution
underlying the wrapped normal

�q ¼ arg m1ðqÞ; ∈ varðqÞ ¼ �2 log jm1ðqÞj;
m1ðqÞ ¼ 1

n
∑
j
eiqj ð14Þ

TheRMSstatisticswere then computedusing themeanandvariance as

RMSðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�q2 þ varðqÞ

q
ð15Þ

Significance valuesweredeterminedwith apaired t test. Statistics on the
global position estimateswere performedby estimating theparameters of a
Kent distribution using the maximum likelihood estimation method. De-
tails are available in the online code listing.

Sensitivity analysis
The sensitivity analysis data were collected at Dique la Quebrada in
Argentina, Xpu-ha in Mexico, and Ohrid in Republic of Macedonia.
The instrument, configured with the fish-eye lens, was mounted verti-
cally on a tripod. A metal disc was mounted on a small arm above the
lens to block the Sun and prevent the image from blooming. The depth
of the instrument, 2.5 m, was estimated by the diver. The longest con-
tinuous clean data segment from each session was used for analysis. In
this case, the clean data were free from animals or foreign objects and
were recorded while the Sun was not obscured by clouds.

These videos were processed by taking the average polarization state
fromcircular regions placed every 6° of heading around the periphery of
the image at approximately 7.5° above the horizontal plane. Data from
regions where the partial polarization dipped below 5%were discarded.
The short duration of the time series allows us tomodel the polarization
angles using a Gaussian process with a linearly changing mean and sta-
tionary covariance

yðtÞ ∈ Sn eN y0 þ y1t;S
� � ð16Þ

The parameters of the mean were estimated with a linear least-
squares regression on the measured angles, unwrapped so that there
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are no discontinuities between 180° and 0°. The covariance matrix
was estimated from the regression’s residuals.Weused theMahalanobis
distance metric to determine how long it takes for the mean to change
such that it can be detected with a certain confidence. Because themean
of the process is a linear function in time, the Mahalanobis distance be-
tween means is

DMð�yðtaÞ; �yðtbÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�yðtbÞ � �yðtaÞÞTS�1ð�yðtbÞ � �yðtaÞÞ

q

¼ jtb � taj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yT
1S

�1
y1

q
e

ffiffiffiffiffi
c2n

q
ð17Þ

Thec2ndistribution’s inverse survival function gives us theminimum
Mahalanobis distance beyond which we would reject the hypothesis
that a sample was drawn from the distribution at time ta with a given
false rejection rate.We take advantage of the linear form of the distance
to solve for the amount of time required for themean polarization angle
to change with 99% confidence

Dt99% ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ISFc2nð1%Þ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yT
1S

�1
y1

q ð18Þ

Finally, because the change in polarization angles is driven by the
movement of the Sun, we claim that, under similar conditions, the in-
strument can detect changes in the Sun position of the samemagnitude
as that which occurred over the Dt99% interval during the experiment.
We estimated the instrument’s sensitivity to changes in location by
computing the linear distance the earth rotates relative to the Sun over
Dt99% at the latitude of the experiment.

Computer codes
Code listings of our algorithms are available online at https://bitbucket.
org/sbpowell/underwater-pol-nav. The code listings are written in
Python, using NumPy, SciPy, and various libraries (35–38).
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/4/eaao6841/DC1
fig. S1. RMS error statistics.
fig. S2. Sensitivity data recorded under windy conditions.
fig. S3. Camera hardware in use.
movie S1. Data collection with bioinspired polarization imaging sensor.
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