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Ovarian cancer is one of the most common gynecologic malignancies. Accurate clas-
sification of ovarian cancer types (serous carcinoma, mucous carcinoma, endometrioid
carcinoma, transparent cell carcinoma) is an essential part in the different diagnosis.
Computer-aided diagnosis (CADx) can provide useful advice for pathologists to determine
the diagnosis correctly. In our study, we employed a Deep Convolutional Neural Networks
(DCNN) based on AlexNet to automatically classify the different types of ovarian cancers
from cytological images. The DCNN consists of five convolutional layers, three max pool-
ing layers, and two full reconnect layers. Then we trained the model by two group input
data separately, one was original image data and the other one was augmented image data
including image enhancement and image rotation. The testing results are obtained by the
method of 10-fold cross-validation, showing that the accuracy of classification models has
been improved from 72.76 to 78.20% by using augmented images as training data. The
developed scheme was useful for classifying ovarian cancers from cytological images.

Introduction
Ovarian cancer is the most frequent and aggressive gynecologic cancer [1]. Primary epithelial ovarian
carcinoma is subclassified into serous, mucinous, endometrioid, and clear cell subtypes [2]. It is often
difficult to precisely differentiate the four subtypes from cytological images only by pathologists’ eyes and
mind, especially when a large number of images need to be analyzed and diagnosed, errors can occur. In
order to improve the accuracy of diagnosis and reduce pathologists’ workload, we tried to use computer
technology in the pathologic diagnosis.

Computer-aided diagnosis (CADx) schemes can potentially make a differential diagnosis more ac-
curate and less dependent on the skill of the observer [3]. With the advent of Whole-Slide Imag-
ing (WSI) and machine learning (ML) algorithms, CADx technology has been greatly developed in
recent years. Various studies that apply CADx technology to medical images (such as X-ray, CT,
MRI etc.) have been conducted [4-11]. Chang et al. [4] proposed a CADx system to diagnose liver
cancer using the features of tumors obtained from multiphase CT images. Nishio and Nagashima
[5] developed a CADx system to differentiate between malignant and benign nodules. Yilmaz et
al. [6] proposed a decision support system for effective classification of dental periapical cyst and
keratocystic odontogenic tumor lesions obtained via cone beam computed tomography. Wang et al.
[7] proposed an automatic quantitative image analysis technique of breast cell histopathology im-
ages by means of support vector machine (SVM) with chain-like agent genetic algorithm (CAGA).
de Carvalho Filho et al. [8] used image processing and pattern recognition techniques to develop
a methodology for diagnosis of lung nodules. Alharbi and Tchier [9] designed a CADx system by
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Figure 1. Cytological images preprocessing for automatic classification of ovarian cancer by DCNN

combining two major methodologies, which are the fuzzy base systems and the evolutionary genetic algorithms.
The accuracy of the system can be 97%. Bron et al. [10] used voxel-wise feature maps and SVM to investigate the
added diagnostic value of arterial spin labeling and diffusion tensor imaging to structural MRI for computer-aided
classification of Alzheimer’s disease, frontotemporal dementia, and controls. Chena et al. [11] established an expert
diagnosis system for cerebrovascular diseases and assessed accuracy of the diagnosis system.

From above, we can easily see that ML is widely used in CADx. Amongst them, we found that a branch of ML called
deep learning became very popular in medical image processing fields recently. Deep learning is part of a broader
family of ML methods based on learning data representations, as opposed to task-specific algorithms. It started from
an event in late 2012, when a deep-learning approach based on a convolutional neural network (CNN) won an over-
whelming victory in the best-known worldwide computer vision competition [12]. Compared with the traditional
medical image processing methods, deep learning such as deep belief nets (DBNs) and deep CNNs uses image pixel
values directly as input data instead of image features calculated from segmented objects; thus, manual feature cal-
culation or object segmentation is not required any more, which makes the process more simple and efficient. Since
then, researchers in virtually all fields, including medical imaging, have started actively participating in the explo-
sively growing field of deep learning. Xu et al. [13] proposed leveraging Deep CNN (DCNN) activation features to
perform classification, segmentation, and visualization in large-scale tissue histopathology images. Teramoto et al.
[14] developed an automated classification scheme for lung cancers presented in microscopic images using DCNN.
Gao et al. [15] proposed an automatic framework for human epithelial-2 cell image classification by utilizing the
DCNNs. The results showed that the system has excellent adaptability and accuracy. Masood et al. [16] proposed
a computer-assisted decision support system in pulmonary cancer which was based on deep fully CNN to detect
pulmonary nodule into four lung cancer stages. The application of DCNNs to medical images has been increasingly
investigated by many groups that have achieved certain degrees of success [17-22].

After consulting a large number of relevant studies, we found that until now no one applied deep learning in ovarian
cancer classification. Thus, our study focussed on applying DCNN (one of important deep learning methods for image
processing) to automatically classify different ovarian cancer types from a certain number of pathological images. The
results of the study are helpful for clinical technologists and pathologists to evaluate malignancies accurately and make
correct diagnosis decisions.

Materials and methods
Image dataset
Eighty-five (85 specimens in all, 24 serous carcinoma, 22 mucinous carcinoma, 21 endometrioid, and 18 clear cell car-
cinoma.) qualified Hematoxylin-Eosin (H&E) stained tissue sections of ovarian cancer were obtained from First Af-
filiated Hospital of Xinjiang Medical University. And the time of making specimens varied from year 2003 to 2016.
Each tissue section was clearly marked with the subtype, which was confirmed by at least two pathologists.

All the H&E stained tissue sections were partly digitized to images in JPG format by a microscope with 40× ob-
jective lens (Model: PH100-DB500U-IPL, Brand: Phenix, Place of origin: China) and a digital still camera (Model:
Phenix, Brand: MC-D200UVA, Place of origin: China). There were approximately 20–27 qualified images captured
from different parts of every H&E tissue section while keeping their orientation invariable. Thus, we finally got
1848 ovarian cancer cytological images, which had uniform matrix size – 1360*1024 pixels. For the requirement
of follow-up research, we cropped all the images into 1024*1024 pixels from the center part, each of which was di-
vided into four small images from the center point with the same size of 512*512 pixels, and then resized them to
the 227*227 pixels. At last we got 7392 original images with the uniform size of 227*227 pixels. Figure 1 showed the
imaging process.
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Figure 2. Image enhancement

Figure 3. Image rotation

Our study was approved by an established ethics committee and institutional review board. All the tissue sections
and other data related to the patients were anonymous.

Data augmentation
A deep neural network model typically requires a large amount of training data [22].

Insufficient size of training sample can directly lead to overfitting and other mistakes. In our study, we increased
the sample size by image manipulation in order to improve the accuracy of classification [23,24]. Image manipulation
includes image enhancement and image rotation. A Gaussian High Pass-filter with kernel size = 3*3 and Laplass
filter were applied to the image to improve the image clarity and edge sharpness. The direction of H&E stained tissue
sections was invariable during the image acquisition by the microscope and camera. Thus, we rotated the original
images (size: 227*227) from 0◦ to 270◦ in 90 steps around their center point to increase the sample sizes. Figures 2
and 3 show the process of image enhancement and rotation.

Two independent recognition models were made by our two group data, one group used original image dataset as
training data without image augmentation, and the other one used image dataset augmented as training data, whose
sample size was 11 times (81312) bigger than original image sets (7392).
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Figure 4. The architecture and illustration of DCNN for ovarian cancer images classification

DCNN architecture
In our study, we employed a DCNN based on AlexNet to automatic classify the ovarian cancer cytological images.
AlexNet, designed by the SuperVision group, consisting of Alex Krizhevsky, Geoffrey Hinton, and Ilya Sutskever, had
become well known since it won the first place in the ImageNet Large Scale Visual Recognition Challenge 2012 with
a high curacy of image classification [25]. The architecture and illustration of DCNN we built for classifying ovarian
cancer types were shown as in Figure 4.

The DCNN for our study had five convolutional layers, three max pooling layers, and two full reconnect layers.
Each of the layers was followed by a Rectified Linear Unit (ReLU) as the activation function. Three max pooling
layers whose size was 3*3 pixels and stride was 2 were applied to reduce the size of image, which was the input of next
convolutional layer. Two full connected layers consisting of a large numbers of the neurones were applied at the end
part of the DCNN. Because a fully connected layer occupies most of the parameters, it is prone to overfitting. One
method to reduce overfitting was dropout [26-], which was employed in our networks. Dropout is an efficient method
for reducing the overfitting, and It is usually used to improve the performance of neural networks on supervised
learning tasks in vision, computational biology, document classification, and obtaining state-of-the-art results on
many benchmark data sets []. The dropout rate we applied was 50%. The output was the probabilities for four ovarian
cancer types, which were calculated by the softmax function.

The DCNN was built by the Caffe package under the Ubuntu 16.04 operation system.
It costed approximately 11 h for training the models by using two graphics cards (Nvidia GeForce GTX 1060, 6 GB

memory). The CPU was Intel(R) i5-7500 CUP @ 3.40 GHz and the RAM volume of computer was 4 GB.
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Table 1 The number of images in each dataset for 10-fold cross-validation (‘O’ stands for original images and ‘A’ stands for
augmented images)

Serous Mucinous Endometrioid Clear cell
O A O A O A O A

Dataset1 42 462 48 528 42 462 41 451

Dataset2 41 451 50 550 45 495 40 440

Dataset3 54 594 41 451 47 517 40 440

Dataset4 52 572 40 440 54 594 52 572

Dataset5 51 561 44 484 46 506 46 506

Dataset6 52 572 50 550 50 550 42 462

Dataset7 47 517 46 506 47 517 40 440

Dataset8 46 506 41 451 53 583 40 440

Dataset9 48 528 51 561 53 583 45 495

Dataset10 48 528 42 462 47 517 44 484

Table 2 The classification accuracies for two models

Original Augmented

Serous 82.33% 84.14%

Mucinous 71.62% 77.51%

Endometrioid 64.53% 72.93%

Clear cell 72.57% 78.21%

Total 72.76% 78.20%

Table 3 Confusion matrix of classification results generated by the DCNN model trained and tested by augmented data

Serous Mucinous Endometrioid Clear cell

Serous 84.14% (4452) 2.34% (124) 6.46% (342) 7.06% (374)

Mucinous 4.21% (210) 77.51% (3862) 5.64% (281) 12.64% (630)

Endometrioid 15.11% (804) 9.70% (516) 72.93% (3883) 2.26% (120)

Clear cell 3.76% (178) 11.39% (539) 6.64% (314) 78.21% (3699)

Results
We finally got two independent models of ovarian cancer type classification by training original images (1848 sam-
ples) and augmented images (20328 samples) separately. The 10-fold cross-validation was applied to calculate the
classification accuracy of the models. The random number of original and augmented images for each dataset is
listed in Table 1.

The classification accuracies of each type in two independent models trained by original images and augmented
images were shown in Table 2.

From Table 2, we can see that the accuracy of classification model trained by augmented image data (78.20%) in-
creased approximately 5.44% compared with the classification model trained by original image data (72.76%). The
two models’ architecture are same, however the results are different. It must be caused by the different training data.
That indicates image augmentation, including image enhancement and rotation has meaning to the DCNN. Image
enhancement, including image sharpening and edge enhancement, make the features of image more prominent. Im-
age rotation amplified the sample size, which directly improved DCNN classification performance.

Table 3 shows our classification model often misclassified endometrioid as serous carcinoma (error rate: 15.11%),
mucinous carcinoma as clear cell (error rate: 12.64%), and clear cell carcinoma as mucinous (error rate: 11.39%).

From Figure 5, we can see most of misclassified images have a common point that the morphological features of
the cells are not obvious. Some of them have blurred cell membranes or nuclei. Some of them are overlapped. Some
of them are mixed with two types carcinoma cells in one image, which are prone to error.
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Figure 5. Misclassified ovarian cancer images by DCNN

Discussion
Different from the traditional methods of image recognition, we built the automatic classification model for four
ovarian cancer types from cytological images by DCNN, which directly used the image matrix as input data with-
out processes of object segmentation and feature extraction. Generally speaking, a DCNN with high recognition
rate need to be trained by a large number of samples. So we augmented the original images by image enhancement
and image rotation, which directly led the amount of samples expended by 11 times. The results showed that the
accuracy of our classification model trained by augmented image was 78.20%, which increased by 5.44% compared
with the model trained by original images. To validate the statistical significance of two models’ accuracy, we per-
formed paired-sample t test using above data. The result showed that two models’ accuracy has a significant difference
(P<0.05). The increase had statistical significance. The accuracy of the classification model trained by augmented
data is close to the pathologist’s diagnosis level, which is considered as a satisfied result. It demonstrated that the
DCNN built based on AlexNet can recognize most ovarian cancer cells after training without any prior knowledge of
pathology and cryobiology. However, we found some ovarian cancer images are misclassified, most of which have no
obvious cell morphology (overlapped cells, poor clarity etc). Further immunohistochemical tests and manual reading
by experienced pathologists are needed for those misclassified specimens in order to get the correct diagnosis results.
We thought misclassification may be caused by limited number of samples that have unobvious cell morphology. To
verify our proposal, we will try to especially increase the sample volume whose cell morphology was poor and train
the model again in future study. Not only that, we will try to adjust DCNN architecture (number of convolutional
layers and filters, size of max pooling etc.) spired by Teramoto et al. [14] and Miki et al. [27] or apply other networks
such as GoogleNet-scratch, VGGS-scratch, etc. to improve the classification accuracy [28] .

Conclusion
In this preliminary investigation, we applied the DCNN to automatically classify four different ovarian cancer types.
By increasing the sample amount by image augmentation, the accuracy of classification models improved from 72.76
to 78.20%. It indicates that the quantity and quality of the images for training DCNN directly affect its classifica-
tion performance. The classification result can be effectively used as a helpful suggestion for pathologists in clinical
diagnosis.
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