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1  | BACKGROUND

Data on shape and size variation are essential in many fields, in-
cluding evolutionary biology and ecology, engineering, medical sci-
ence, and anthropology (Loncaric, 1998; McIntyre & Mossey, 2003; 
Slice, 2006). For most of these studies, the most widely used tools 
for analyzing morphological variation within or between a group of 

organisms or objects are based on Cartesian coordinates of land-
marks (Bookstein, 1997).

Of the wide array of methods using Cartesian coordinates, geo-
metric morphometrics (GM) is the most common, especially when 
analyzing shape and size variation and covariation (Adams, Rohlf, 
& Slice, 2013; Mitteroecker & Gunz, 2009). The first two steps of 
this GM procedure consist of a landmark approach that (1) gathers 
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Abstract
The quantification of complex morphological patterns typically involves comprehen-
sive shape and size analyses, usually obtained by gathering morphological data from 
all the structures that capture the phenotypic diversity of an organism or object. 
Articulated structures are a critical component of overall phenotypic diversity, but 
data gathered from these structures are difficult to incorporate into modern analyses 
because of the complexities associated with jointly quantifying 3D shape in multiple 
structures. While there are existing methods for analyzing shape variation in articu-
lated structures in two-dimensional (2D) space, these methods do not work in 3D, a 
rapidly growing area of capability and research. Here, we describe a simple geometric 
rigid rotation approach that removes the effect of random translation and rotation, 
enabling the morphological analysis of 3D articulated structures. Our method is 
based on Cartesian coordinates in 3D space, so it can be applied to any morphomet-
ric problem that also uses 3D coordinates (e.g., spherical harmonics). We demon-
strate the method by applying it to a landmark-based dataset for analyzing shape 
variation using geometric morphometrics. We have developed an R tool (ShapeRotator) 
so that the method can be easily implemented in the commonly used R package geo-
morph and MorphoJ software. This method will be a valuable tool for 3D morphologi-
cal analyses in articulated structures by allowing an exhaustive examination of shape 
and size diversity.
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(two- or three-dimensional) coordinates of anatomically defined and 
homologous loci, followed by (2) a generalized Procrustes analysis 
(GPA) that superimposes configurations of each set of landmarks in 
all specimens, by removing all effects of size, translation, and rota-
tion, in order to only obtain shape information (Adams et al., 2013; 
Klingenberg, 2008). Geometric morphometrics, therefore, allows 
accurate quantitative analyses of shape and size, in either two-
dimensional (2D) or three-dimensional (3D) space.

3D morphological analyses are the most accurate, as objects and 
organisms exist in 3D space. The recent growth in X-ray micro-CT 
scanning and surface scanning has seen a rapid increase in the appli-
cation of 3D geometric morphometric techniques, but progress has 
been hampered by the lack of a simple method to incorporate data 
from complex articulated structures.

In evolutionary biology, identifying morphological differences 
among different groups or taxa is crucial in order to understand evo-
lutionary processes and their relationship to the environment (Losos, 
1990; Pagel, 1999; Ricklefs & Miles, 1994). This can be difficult, es-
pecially, if traits have coevolved, or if morphological diversification 
has been hindered by phylogenetic legacy or trade-offs imposed 
by the organism’s functional habitat (Ghalambor, McKay, Carroll, & 
Reznick, 2007). Complex body shape patterns require more detailed 
analyses of shape, obtained by collecting data from several struc-
tures that capture the whole gamut of morphological variation in an 
organism. One example of this is the extraction and assembly of data 
from articulated structures, such as skeletons, for 3D analyses with 
geometric morphometric techniques. This is especially important in 
functional morphological studies, as they usually involve analyzing 
more than one structure due to mechanical correlations or morpho-
logical integration. For example, jointly analyzing the skull and man-
dible could be crucial to disentangle the relationship between diet 

and head shape evolution (Cornette, Baylac, Souter, & Herrel, 2013). 
Similarly, collectively evaluating different modules in the limbs, es-
pecially when correlated to locomotion, or considering several struc-
tures across the whole body, could improve our understanding of 
the effect of environmental conditions on morphological evolution 
(Vidal-García & Keogh, 2017).

Unfortunately, nonrigid structures, such as articulated struc-
tures, will inevitably suffer the effects of natural or free rotation 
or translation events and be different in each individual and struc-
ture (Adams, 1999). These events could obstruct the correct quan-
tification of shape variation by adding rotation artifacts to GM 
analyses (Adams, Rohlf, & Slice, 2004). Thus, orientation of these 
structures needs to be corrected and standardized prior to perform-
ing shape analyses. Several approaches for shape analysis of land-
mark data in articulated structures already have previously been 
proposed (Adams, 1999; Bookstein, 1991). However, even though 
these approaches can be used in 2D and also in 3D data with fur-
ther modifications, currently, it has only been implemented in the 
two-dimensional space, such as in geomorph’s function fixed.angle()
(Adams et al., 2017).

Here, we present the R tool ShapeRotator: a simple geometric 
rigid rotation approach to study three-dimensional (3D) shape of 
articulated structures, or independent structures, within an organ-
ism. We describe a method that removes shape variation due to the 
effect of translation between independent structures and rotation 
generated by movement in an articulation, among others. Thus, our 
approach translates and rotates articulated (or even independent) 
structures in order to obtain a comparable dataset with all effects of 
random movement and rotations removed.

We apply this method to two landmark-based datasets for an-
alyzing shape variation using geometric morphometrics: (A) two 

F IGURE  1 Two structures in a 
simple-point articulation and a double-
point articulation being rotated using 
simple.rotation() and double.rotation(), 
respectively. The structures depicted 
are a frog humerus and radioulna for the 
single-point articulation and a skull and a 
detached mandible for the double-point 
articulation

simple.rotation() double.rotation()
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F IGURE  2  (a) Application of a translation -translate()- and the 3D rigid rotation method simple.rotation() in a simple-point articulation 
(e.g., humerus and radioulna) for three different “specimens,” by rotating articulated structures to a standardized position relative to each 
other. (b) Application of the translation -translate()- and the 3D rigid rotation method double.rotation() in a double-point articulation for three 
different “specimens” (e.g., skull and mandibles). (c) Rotation method exemplified for simple.rotation() by depicting the plane spanned by the 
already translated point p0 and A. Please note that p0 depicts the origin point (0, 0, 0). The rotated resulting point pM, landmarks B, C, D, 
E, and F, and angle θT (desired angle between the two structures) are also depicted. (d) Rotation method exemplified for double.rotation(). 
Please note that as both structures are not attached for the double-point articulation example, they are both translated to p0, which depicts 
the origin point (0, 0, 0). The rotated resulting point pM, landmarks A, B, C, D, E, F, G, and H, and angles θ1, θ2, and θT (desired angle between 
the two structures) are also depicted
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substructures in a single-point articulation and (B) two substruc-
tures in a double-point articulation (Figures 1 and 2a,b). We also 
provide the example dataset used in ShapeRotator (available in 
GitHub) to execute these two kinds of rigid rotations, which then 
allows geometric morphometric analyses to be performed in the 
two most commonly used 3D GM analytical software packages: 
geomorph (Adams et al., 2017) and MorphoJ (Klingenberg, 2011). 
This method also will allow exporting of the rotated coordinates 
for posterior analyses in other software platforms, even outside of 
the field of geometric morphometrics. As the basis of this method 
lies upon rigidly spinning any structure defined by 3D coordinates, 
it could be used in any other shape analyses that use coordinate 
data, such as continuous surface meshes used in spherical har-
monics (Shen, Farid, & McPeek, 2009). Our method is a convenient 
addition to the rapidly evolving tool kit of geometric morpho-
metrics because it allows a more comprehensive exploration of 

morphological diversity through the gathering of shape data from 
complex 3D structures.

2  | METHODOLOGY

We begin with a set of points ̃P=
{
p̃0,… ,p̃M

}
⊂ℝ

3. which represents 
a 3D object and are ordered so that p̃0 represents the base point 
and p̃M represents the end point, by which we mean that this object 
has an axis starting from p̃0 and ending at p̃M. Our goal was to rotate 
these points via a rigid motion so that the axis on which these two 
points sit is either on the X, Y, or Z-axis in ℝ3. Rotation of vectors in ℝ3 
is a well-known and easily resolved problem, and various formalisms 
exist in geometry. Thus, we translate our set of points ̃P so that p̃0 
maps to the origin (0, 0, 0). This is a simple transformation T defined 
by:

Note that the axis X = span {(1, 0, 0)}, Y = span {(0, 1, 0)}, 
Z = span {(0, 0, 1)}, where each of the generating vectors is unit. 
Let us fix our desired axis to which we rotate the object to be 
A = span {a} where a = (1, 0, 0), or a = (0, 1, 0), or a = (0, 0, 1). As 
we have translated points {pi} and vectors correspond to positions, 
we are simply looking to rotate the vector pM to A, and each other 
vector as a rigid motion with respect to this rotation. There are 
a number of ways to do this, but the simplest way is to consider 
the plane spanned by pM and A and then to rotate by the angle 
between pM and A within this plane (Figure 2c,d). Such a rotation 
is performed via rotating on the axis to the plane, which is deter-
mined by a normal vector to this plane.

Let us describe this setup slightly more generally. For two vec-
tors u,v∈ℝ

3, the axis to the plane spanned by these two vectors is 
determined by a unit normal to the plane (there are two choices due 
to orientation), which we denote by N (u, v):

where × is the cross product. The angle between these vectors is then 
given by ∠(u,v):

where · is the dot (scalar) product between vectors. The rotation ma-
trix about an axis w∈ℝ

3, where w = (w1, w2, w3) is a unit vector, of 
angle θ radians is given by the well-known matrix:

Thus, to obtain a rotation matrix which is the rigid motion rotat-
ing the vector u to v in the plane spanned by u and v, we obtain the 
expression:

Getting back to our original problem, we set v = pM and u = a, and 
then we have the rotated points:

where R (pM, a) pi is the action of the matrix R (pM, a) on the vector  
pi.

It may be necessary to introduce a further constraint in the rota-
tion. For instance, suppose a =  (0, 1, 0) and there is a point pI, now 
rotated to rI via the method we describe, which should lie in the Y-
axis. That is, we need to further rotate rI to a point r�

I
= (∗ ,∗ ,0). To do 

this, we simply rotate in the axis a, by an angle θY(rI) = arctan ((rI)3/
(rI)1), where rI = ((rI)1, (rI)2, (rI)3). That is,

3 | IMPLEMENTATION

3.1 | Overview of the ShapeRotator package

Here, we illustrate the functions available within the ShapeRotator R 
tool and the basic steps required in order to successfully implement 
the rotation on a dataset of 3D coordinates. ShapeRotator allows the 
rigid rotation of sets of both landmarks and semilandmarks used in 
geometric morphometric analyses, enabling morphometric analyses 
of complex objects, articulated structures, or multiple parts within 
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an object or specimen. This tutorial uses two example datasets: (A) 
two neighboring bones of the arm in a frog (humerus and radioulna), 
representing a single-point articulation example and (B) a skull and a 
mandible, representing a two-point articulation example (Figure 1). 
The main steps required are as follows: (1) importing the data and 
fixating the rotation axes, (2) translating the whole dataset of co-
ordinates or points so that the main selected point p̃0= (0,0,0), and 
(3) rotating the two structures to the desired angle (as outlined on 
Figure 2a,b).

3.2 | Importing a dataset

In the first example dataset (example A), we use two geometric mor-
phometric datasets containing both landmarks and semilandmarks 
for two neighboring and articulated bones (humerus and radioulna) 
from a group of several species of frogs (details in Appendix S1), in 
tps format. We first import the datasets using the R package geo-
morph (Adams et al., 2017): 
library(devtools)

install _ github(“marta-vidalgarcia/ShapeRotator”) 

library(geomorph)

radioulna <- readland.tps(“radioulna.tps”, specID = “ID”,  

readcurves = F)

humerus <- readland.tps(“humerus.tps”, specID = “ID”,  

readcurves = F)

These two GM datasets (radioulna and humerus) will be ro-
tated on different rotation axes in order to conform the aimed 
angle between them. This process is not exclusive to two neigh-
boring structures, and thus, it could be performed for as many 
independent subunits as desired by choosing the different angles 
among different rotation axes and all the translation processes. 
For more help on importing the GM datasets, please see Adams 
et al., (2017) and the associated help files. Please note that this 
method also works for semilandmarks as long as they have been 
equidistantly positioned prior to the translation and the rigid 
rotation. The same process is needed for the second example 
dataset (example B).

3.3 | Translating

During this step, each structure will be translated to the point of 
origin so that p̃0= (0,0,0); thus, the distance from the coordinates 
of landmark_a (Ax, Ay, Az) is substracted from all the landmarks in 
all specimens, for example (Nx − Ax, Ny – Ay, Nz – Az) for landmark N. 
This translation is made with the function translate(), as it follows for 
the one-point articulation example (example A): 
data.1 _ t  <- translate (T=data _ 1, landmark=landmarkA)

data.2 _ t  <- translate (T=data _ 2, landmark=landmarkD)

And for the double-point articulation (example B): 
data.3 _ t  <- translate (T=data _ 3, landmark=landmarkA)

data.4 _ t  <- translate (T=data _ 4, landmark=landmarkE)

Please note that the default is to set the origin point to, but this 
can be changed to another origin point. For example: 

data.1 _ t  <- translate (T=data _ 1, landmark=land-

markA, origin = c(1,3,5))

data.2 _ t  <- translate (T=data _ 2, landmark=land-

markD, origin = c(1,3,5))

3.4 | Fixing the rotation axis

In order to fix a rotation axis in a structure, we first need to select 
in our dataset two suitable landmarks for each structure which the 
rotation axis will go through landmarks A and B (for the first struc-
ture), and landmarks D and E (for the other structure). In the radi-
oulna dataset from example A, landmark A is the landmark in the 
1st position and landmark B is in the 10th position. Similarly, for the 
humerus dataset, landmark D would be the landmark on the 52nd 
position, and landmark E would be in the 19th position. Please note 
that in example A, we would perform a simple rotation between 
two structures, based on the angle formed by three points (one on 
each structure and the articulation point itself. However, as we aim 
to remove all articulation-related variation, including torsional ro-
tations and mirroring artefacts, we need an extra landmark in each 
structure that shares at least one of their coordinates (but ideally 
two) with the distal landmark (e.g., yA = yB for the first structure, 
and zD = zE for the second). This extra landmark is needed for the 
simple reason that there is not enough information about the ori-
entation of the structure with only two landmarks per structure, so 
even though the rigid rotation will work properly, it could position 
this structure in the wrong “mirroring” orientation (Figure 2c). This 
orientation issue is corrected by adding landmark C. In this exam-
ple, landmark C is the 17th landmark, while landmark F is the 107th 
landmark in the humerus dataset. We need to know which land-
marks will be selected in both structures prior to the rotation pro-
cess in order to insure that the rotation process will work properly. 
Setting up landmarks that will be used in the rotation process of 
example B is very similar to example A, but it needs four landmarks 
for each structure instead of three, as it is a more complex articula-
tion that requires two separate rotations per structure (Figure 2d). 
Even though each of these rotations are calculated internally (only 
the four landmarks per structure and the desired angle between 
them need to be provided), it will be beneficial to choose land-
marks that are spatially arranged in a way that facilitates the ro-
tation process, and results in the rotating multistructure being 
placed in a biologically relevant angle between each substructure. 
ShapeRotator will give a warning message if the landmarks chosen 
are not optimal.

3.5 | Rotating

In the rotation step, we will use the function simple.rotation() in order 
to rigidly rotate the two structures of example A to the desired angle 
(in degrees), as it follows: 
joined _ dataset <- simple.rotation(data.1 = data.1 _ t,  

data.2 = data.2 _ t, land.a = 10, land.b=1, land.c=17, 

land.d=52, land.e=19, land.f=107, angle = 90)
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The input datasets data.1 and data.2 correspond to the two 
translated datasets (in this case translated_radioulna and translated_
humerus. We then use the selected landmarks as explained in the 
previous section. Finally, we include the angle (in degrees) that we 
would like to use to position the two structures to one another. One 
of the options of the function simple.rotation() is to select the desired 
angle between the two structures so that we can perform the rigid 
rotation of each structure positioning them in the selected angle in 
relation to each other. In order to do so, we use the internal function 
vector.angle(), by providing the desired angle in degrees (from 0° to 
360°). The function vector.angle() will return angle.v, a vector that 
forms that angle with the vector (1, 0, 0). In the example dataset in 
ShapeRotator, we rotate the coordinates from the two bones so that 
they form an angle of 90° degrees to each other: 
New _ vector <- vector.angle(90)

So that New_vector = c(0, 1, 0). Thus, we could check the vec-
tor that the function simple.rotation() will use, based on the input 
angle. The output from the function simple.rotation() is a 3D array 
with the two joined datasets (data.1 and data.2). Please note that the 
two datasets are joined based on their associated specimen names 
(dimnames). Thus, the order of the specimens in each dataset is not 
important, as long as all the cases match perfectly between the two 
datasets in the same specimen. If there are extra specimens for one 
of the datasets or the names do not match properly, simple.rotation() 
will not include them in the output rotated joined dataset.

As explained in the previous section, the function used for the 
rotation step for example B needs four landmarks for each structure 
instead of three, as it is a more complex articulation that will need 
to get landmarks from both structures joined (or very close) to form 
the double-articulation hinges, as well as internally running separate 
rotations per structure on top of the final rotation. We will use dou-
ble.rotation() function. For this function, we will need to match the 
dimnames: 
matched = match.datasets(data.3 _ t, data.4 _ t)

The datasets that will need to be rotated are the following: 
data.3 _ rotate = matched$matched1

data.4 _ rotate = matched$matched2

Similarly to simple.rotation(), the double.rotation() will be as 
follows: 
dr45l = double.rotation(data.1= data.3 _ rotate, data.2= 

data.4 _ rotate, land.a=1, land.b=2, land.c=3, land.d=4,  

land.e=1, land.f=2, land.g=3, land.h=4, angle=45)

joined _ dataset <- double.rotation(data.1 = trans-

lated _ skull, data.2 = translated _ mandible, land.a 

= 1, land.b=2, land.c=3, land.d=4, land.e=1, land.

f=2, land.g=3, land.h=4, angle = 45)

The function double.rotation() will return a list that will need to 
be joined as it follows: 
dr45 = join.arrays (dr45l$rotated1, dr45l$rotated2)

Double.rotation() allows the user to translate one of the objects 
after the rotation, in the case of not wanting them in contact to one 
another. For example
skull _ translate = c(1.7,0.1, 0)

dr45 _ st = join.arrays (dr45l$rotated1, trans-

late(dr45l$rotated2,land.e, skull _ translate))

3.6 | Plotting

Finally, after the rotation process, we can visualize a 3D plot for each 
specimen with the two rotated structures for both a single-point and 
a double-point articulations using the function plot.rotation.3D():
plot.rotation.3D(joined.data= joined _ dataset, data.1= 

data.1, data.2=data.2, specimen.num =1)

plot.rotation.3D(joined.data=dr45 _ st, data.1=data.3,  

data.2=data.4, specimen.num =1)

The default plotting colors for the landmarks of the joined ro-
tated structure (joined.data) is black and red for each original struc-
ture (data.1 and data.2).

3.7 | Exporting

After the rotation process, we could either use the joined GM array 
in further analyses, visualize the resulting joined structure through 
geomorph (Adams et al., 2017), or we could also export it and save it 
in order to use it in another software, such as MorphoJ (Klingenberg, 
2011). In this step, we will be using the function writeland.tps() in the 
R package geomorph (Adams et al., 2017) in order to save a tps file 
from the joined GM array: 
writeland.tps(A=“joined _ arm”, file = “joined _ arm.

tps“, scale = NULL)

3.8 | Other applications

Our method is an important addition to the tool kit of the geometric 
morphometrics field. It will facilitate the analyses of compound 3D 
morphological datasets in geometric morphometrics analyses but 
will also be useful outside of this field as it can be applied to any 
method that uses 3D coordinates. The examples of applications are 
numerous in different fields of study, such as biology, anthropology, 
paleontology, medical sciences, archeology, and engineering. For ex-
ample, in evolutionary biology, ShapeRotator would allow analyses 
of multiple or articulated hard structures (such as different segments 
of an exoskeleton, different articulated bones, or neighboring plant 
structures, among others), different structures from the same object 
or organism (e.g., different and not adjacent body parts), or pieces 
from damaged specimens. In medicine and veterinary science, it 
could be used to examine shape and size variation in different organ-
isms’ growth due to different nutritional treatments or to examine 
how different structures respond to injuries or surgery. It would be 
useful in paleontology or archeology when trying to quantify shape 
of different objects or organisms that might have been preserved 
in disarticulated pieces. Finally, we would like to include a word of 
caution on how the angle chosen between different substructures 
could produce different results. As common sense would suggest, 
the angle chosen should always be within the range of angles possi-
ble for that complex object, but in some cases, it might be necessary 
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to perform the GM analysis on more than one angle to be sure that 
the results do not differ. In other cases, it might even be better to 
analyse substructures separately.
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