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Carotenoids are essential light-harvesting pigments in natural photosyn-

thesis. They absorb in the blue–green region of the solar spectrum and

transfer the absorbed energy to (bacterio-)chlorophylls, and thus expand

the wavelength range of light that is able to drive photosynthesis. This

process is an example of singlet–singlet excitation energy transfer, and

carotenoids serve to enhance the overall efficiency of photosynthetic light

reactions. The photochemistry and photophysics of carotenoids have

often been interpreted by referring to those of simple polyene molecules

that do not possess any functional groups. However, this may not always

be wise because carotenoids usually have a number of functional groups

that induce the variety of photochemical behaviours in them. These differ-

ences can also make the interpretation of the singlet excited states of

carotenoids very complicated. In this article, we review the properties of

the singlet excited states of carotenoids with the aim of producing as

coherent a picture as possible of what is currently known and what

needs to be learned.
1. Introduction
Carotenoids are a class of natural pigments. Over 750 species of carotenoid

have been found in nature and have had their chemical structures determined

[1,2]. Different carotenoids can have a wide variety of functions [3–8].

As illustrated in figure 1, they have light-harvesting and photoprotective func-

tions in photosynthesis [9], they have pro-vitamin A activity in vision [10–12],

they act as antioxidants in animals [13–16], they have an anti-ageing activity

[17–19], they can stimulate the immune system [20,21] and they can exhibit an

antitumour activity [22–24]. This extreme functional diversity means that

what you see depends on which carotenoid you look at. There is a tendency

for chemists to think that all carotenoids are the same as b-carotene. They

are of course not, and this has led to considerable misunderstanding.

Among the various functions of carotenoids listed above, those found in

photosynthesis are the most well studied. However, especially in the case of

the involvement of carotenoid excited singlet states, there are still a number

of open questions, debates and indeed contradictions. In this review,

we especially focus on the properties of these singlet excited states and

their involvement in photosynthetic light harvesting. Trying to fully under-

stand the molecular details of photosynthetic light harvesting so that they

can be replicated in robust chemical systems is a major target of artificial

photosynthesis [25].

Chlorophylls are the major light-absorbing pigments in photosynthesis.

However, they cannot efficiently absorb light in the 450–550 nm region

where the solar radiation profile (spectrum) at the surface of earth has its maxi-

mum intensity. This is precisely the region where carotenoids absorb light

strongly. They are able to transfer this excitation energy to the chlorophylls

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2018.0026&domain=pdf&date_stamp=2018-04-11
mailto:hideki-hassy@kwansei.ac.jp
http://orcid.org/
http://orcid.org/0000-0001-6858-9729


light-harvesting
(antenna)

(sensitization)
colour of

petals, fruits

quenching the
triplet state of

chlorophylls

remove radicals
remove

reactive oxygen
species

dissipation of
excess light

energy

electron transfer
stabilizing the protein

or  membrane

secondary
metabolite

prohormone

Figure 1. A schematic illustration that summarizes the functions of carotenoids in physiological systems. Chemical structure of b-carotene is shown as a
representative of carotenoids.
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by singlet–singlet excitation energy transfer, thereby making

it available to power photosynthesis [26,27]. This energy-

transfer reaction allows the carotenoids to function as acces-

sory light-harvesting pigments, broadening the spectral

range over which light can support photosynthesis. This

role of carotenoids is particularly significant in the cases of

purple photosynthetic bacteria, heterokontophyta (e.g. dia-

toms and brown algae) and dinoflagellates, all of which

tend to occupy environmental niches where light intensity

is usually limiting for growth. Especially in the case of dino-

flagellates, for example, in their position in the water column

most of the available solar energy is in the 450–550 nm

region [26] and hence most of their photosynthesis is

powered by light absorbed by carotenoids.

As illustrated in figure 2, carotenoids have strong absorp-

tion of visible light in the blue and green regions of the

spectrum. This is why most of the carotenoids found in

photosynthetic organisms have characteristic yellow, orange

and red colours. The lowest excited singlet (S1) state in most

pigment molecules represents the lowest energy, optically

allowed one-photon transition from the ground state. The

energy of this state then controls the colour of that pigment

molecule. However, carotenoids have a non-standard pattern

of excited states. The lowest energy, optically allowed excited

singlet state is not the lowest energy singlet state. The lowest

singlet excited energy state is formally a one-photon forbid-

den state. This unusual photophysical pattern is explained

classically using symmetry rules that have been developed

from studies of linear polyene molecules. In what follows

below, we first describe the assignment of the S1 state from

a historical point of view. Then we will expand this topic by

considering other possible optically forbidden singlet excited

states. Finally, time-resolved and coherent spectroscopy using

the ultrafast laser facilities having time resolutions beyond

100 fs will be discussed because many of these states only

exist on this ultrafast timescale. There are a number of good

review articles that have already been published on the photo-

physics and photochemistry of carotenoids [9,25,28–34].

Therefore, we will concentrate here on the most recent studies

as well as important milestones that have set the scene of our

current understanding.
2. The lowest excited singlet (S1) state of
carotenoids

The photophysics and photochemistry of carotenoids are

usually explained by referring to the results from the study

of polyene molecules. Polyenes are linear conjugated chains

of carbon atoms joined by alternating double and single

bonds. According to the ‘classical’ textbook written by

Hudson et al. [35], polyenes were (and continue to be) deserv-

edly the objects of a good deal of experimental and

theoretical attention. The historical importance of polyenes

is due to their involvement in the development of molecular

quantum theory and the understanding of fundamental mol-

ecular mechanisms of cis– trans photoisomerization. Before

the pioneering work by Hudson & Kohler [36–38], polyenes

were thought to be rather simple molecules, similar to that of

other conjugated systems such as the polyacenes, and well

described by approximate molecular orbital ideas. However,

this turned out not to be the case. Referring to the exact

words of Hudson et al. [35], ‘Polyene electronic structures

are both more complicated and more interesting than was

previously thought.’

The theoretical assignment of the electronic structures of

unperturbed linear polyene molecules comes from the appli-

cation of symmetry rules. Planarity and the C2h point

symmetry are the essential properties required to allow the

precise designation of the singlet excited states of the polyene

molecules to be described [38]. It is worth pointing out here

that interpretations from simple linear polyenes can only be

approximately applied to carotenoids because the presence

of the methyl groups perturbs the planarity of the conjugated

portion of the carotenoid molecules. It also should be pointed

out here that the carotenoids in the light-harvesting (LH)

complexes from phototrophs are distorted significantly so

that the selection rules and the standard symmetry labels

ought not to be relevant. In particular, the ‘dark’ Sx and S*

states might not be properly understood in the C2h frame-

work. The recent paper by Fiedor et al. [39] makes this

point explicitly, arguing in particular that the S1 state does

not have oscillator strength not because of the selection

rules but rather because of large distortions from planar
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Figure 2. (a) Absorption spectra in n-hexane solutions and (b) chemical structures of carotenoids bound to purple photosynthetic bacteria. Conjugated polyene
backbones are highlighted with orange rectangles in (b).
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conformations. This important issue will be touched upon

again in a later section.

The presence of an excited singlet state, nearly forbidden

in absorption, below the dipole-allowed state (11Bu state in

C2h symmetry) previously thought to be the lowest lying

excited singlet, was first found for a,v-dipenyl-1,3,5,7-octate-

traene [36]. This finding was theoretically rationalized by

Schulten & Karplus [40]. This one-photon forbidden lowest

singlet excited state was characterized as a ‘doubly excited’

Ag state (21Ag state), which was only poorly described with-

out extensive configuration interaction at that time. This

ordering of electronic states, 21Ag below 11Bu, is now recog-

nized as a general feature of polyene molecules whose

number of conjugated double bonds (n) is greater than 4

[35]. The identification of the S1 (21Ag) state of short polyenes

(n ¼ 4–8) is due to measurements of fluorescence and fluor-

escence-excitation spectra [35,41,42]. It is noteworthy here,

however, that a subtle reinterpretation of these observations

may be required, because the S1 (21Ag)! S0 (1Ag) fluor-

escence experiments previously thought to have been

carried out on pure all-trans isomers might actually be dis-

torted due to the presence of cis isomers as impurities or

formed as photochemical products from the S1 state [43].

Nevertheless, the overall state ordering has undoubtedly

been correctly predicted by theoretical work on simple

all-trans polyenes [44,45].

Tavan & Schulten [44,45] extended their theoretical work

on linear polyenes. They described the excitations within

Pariser–Parr–Pople (PPP) and Hubbard models by means

of a multiple-reference double-excitation expansion. The

PPP and Hubbard Hamiltonians give rise to another sym-

metry, the so-called ‘Pariser alternancy symmetry’ or

‘particle-hole symmetry’ [46]. This symmetry classifies ‘–’

and ‘þ’ states, e.g. the ground state is designated as 11Ag
–

and the lowest optically allowed state as 11Bu
þ. The alter-

nancy symmetry is useful for two reasons. Firstly, it allows

the computational time to be reduced by taking account

of the fact that the PPP and Hubbard many-electron Hamilto-

nians do not mix 1Ag
–, 1Ag

þ, 1Bu
– and 1Bu

þ states. Secondly,
the alternancy symmetry provides a very simple classification

of ionic states that are ‘þ’, and covalent states that are ‘–’. The

singlet excited states of carotenoids are often designated in a

similar manner by referring to this classification.

The lowest excited singlet (S1) state of carotenoids is fre-

quently designated as the one photon forbidden 21Ag
–

state, assuming both the planarity and C2h point symmetry

of their polyene backbones. Hashimoto and Koyama

were first to determine the Ag character of the S1 state of

carotenoids using picosecond transient resonance Raman

spectroscopy, which was then confirmed by Noguchi et al.
[47–50]. These studies were further extended using a series

of mono-cis isomers of both symmetric and asymmetric caro-

tenoids [51,52]. The S1 species of carotenoids give rise to

characteristic C ¼ C stretching Raman lines at extraordinary

high frequencies above 1750 cm21. This unusual observation

was explained based by the idea of vibronic coupling

between the S0 (11Ag
–) and S1 (21Ag

–) states through

ag-type C¼C stretching symmetric vibration [53–55]. There-

fore, the presence of the extraordinary high-frequency

shifted C¼C stretching mode can be taken as good evidence

that the S1 electronic state of carotenoids has an Ag character

that can induce vibronic coupling with the ground S0 state. The

lowest singlet excited state, S1 has 21Ag
2 symmetry, and hence

a one-photon-induced transition from the ground state is opti-

cally forbidden. The lowest optically allowed state is the 11Bu
þ

(S2) state. When the 11Bu
þ state is induced by a short excitation

pulse, it decays internally into the 21Ag
2 state within 100–

300 fs. The S1 state typically then decays back to the ground

state in a few picoseconds [56]. The exact rate constant of

these processes depends upon factors such as the number of

conjugated double bonds (n).

When the light-harvesting role of carotenoids in

pigment–protein complexes from purple bacteria is con-

sidered, a simplified view is usually presented. This

simplified picture is illustrated in figure 3. Probably the

easiest way to begin this discussion is to describe the exper-

iments of Macpherson et al. [57]. These authors compared

the excited state kinetics of a carotenoid in organic solvent
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with the same carotenoid when bound within an LH2 com-

plex. The idea was that any carotenoid singlet excited state

that was capable of transferring energy to bacteriochlorophyll

a in LH2 would be expected to have a shorter excited state

lifetime in the antenna complex than in the organic solvent.

Any energy transfer pathway would open another decay

channel, thereby accelerating the overall rate of decay of that

excited singlet state. Moreover, it was expected that the

decay of the donor carotenoid excited singlet state should

match the rate of the energy arriving at the acceptor bacterio-

chlorophyll a molecule. In the case of the carotenoid rhodopin

glucoside the decay of the S2 state in the LH2 complex from

Rbl. acidophilus was faster than that of the carotenoid in organic

solvent (56 fs in LH2 and 133 fs in benzyl alcohol). The rise

time of the arrival of the energy at both B800 and B850

matched the decay time of rhodopin glucoside’s S2 state. The

decay rate of the S1 state of rhodopin glucoside was the

same in the LH2 complex as in organic solvent. In this case,

the S1 state is not active in energy transfer to bacteriochloro-

phyll a. However, the LH2 complex from Rba. sphaeroides
contains carotenoids with fewer conjugated double bonds

and, in this case, the S1 state is able to transfer energy to the

bacteriochlorophyll a molecules and its decay is accelerated in

LH2 compared with organic solvent [58]. These findings show

clearly how the S2 and S1 states are involved in determining

the overall efficiency of excitation energy transfer from caroten-

oid to bacteriochlorophyll in the bacterial light-harvesting

systems. The excited-state lifetimes of the S1 and S2 states

of carotenoids are essential pieces of information when

possible mechanisms of carotenoid-to-(bacterio)chlorophyll

singlet–singlet energy transfer are being considered.
The exact energies (0–0 origin) of the S2 and S1 states rela-

tive to those of the Qx and Qy states of (bacterio)chlorophyll

are also important. The energy of the S2 state can be deter-

mined easily by ordinary absorption measurements because

the transition from the ground (S0) to S2 states is optically

allowed. On the contrary, the determination of the energy

of the S1 state is not straightforward because of the optical

forbiddenness. In the past, carotenoids had been thought to

be non-fluorescent [59]. However, carotenoid fluorescence

has clearly been demonstrated [60–66]. Although the fluor-

escence quantum yields from the S1 state are of the order of

1025, the 0–0 origin of the S1 state has been suggested.

Location of the S1 state has also been determined indepen-

dently using the energy-gap law [67], by resonance Raman

excitation profile measurements [68,69], and by near-IR

(S1! S2) transient absorption measurements [70,71]. Table 1

summarizes the singlet excited-state energies of various caro-

tenoids reported so far. Depending on the methods that were

used for determination, small but not negligible deviation of

these values can be seen. Nevertheless, carotenoid to (bacter-

io)chlorophyll energy transfer has been discussed in most

cases based on the very simple energy diagram as illustrated

in figure 3 [77]. This, however, is probably an oversimplifica-

tion as theoretical studies based primarily on symmetrical

polyenes have predicted other possible excited singlet states

such as 31Ag
2 and 11Bu

2 [44,45] (vide infra). The possibility

of these multiple excited states, and indeed others, has

made understanding carotenoid photophysics extremely

complicated [75].
3. The 11Bu
2 and 31Ag

2 states
The efficiency of carotenoid-to-(bacterio)chlorophyll singlet

energy transfer in light-harvesting complexes varies from 30

to nearly 100%, depending on the species of photosynthetic

bacteria [29,30,31]. Until recently, it was thought that the mech-

anism of carotenoid-to-bacteriochlorophyll energy transfer

could be fully explained based on the energy diagram illus-

trated in figure 3. The lifetimes of these singlet excited states

depend on the extent of conjugation. In the case of b-carotene,

for example, the lifetime of the S2 state is as short as 200 fs,

while that of the S1 state is as long as 10 ps [56]. Time-resolved

fluorescence spectroscopy with sub-picosecond time resol-

ution shows clearly that energy transfer can take place from

both the S2 and S1 states to bacteriochlorophyll [57]. The effi-

ciency of carotenoid-to-bacteriochlorophyll energy transfer

depends on how effectively the energy can be harvested from

both these excited states.

However, recent suggestions that other low-lying one-

photon forbidden excited singlet states of carotenoids may

also be involved in light harvesting have made the story

more complicated. This is illustrated in figure 4, which

shows the results of theoretical calculations by Tavan &

Schulten [44,45]. They have predicted the presence of another

one-photon forbidden singlet-excited state, namely the 11Bu
–

state, between S2 and S1 in the case of shorter polyene mol-

ecules with greater than four C¼C double bonds. Indeed,

extrapolation of their calculations suggests the presence of

yet an additional 1Ag
– (31Ag

–) state between S2 and S1 for

long polyene molecules with more than 10 C¼C double

bonds. Kurashige et al. [78] confirmed these predictions

with more modern quantum chemical computations. They



Table 1. S0 (11Ag
2)! S2 (11Bu

þ) and S0 (11Ag
2)! S1(21Ag

2) transition energies of various carotenoids. n, number of conjugated double bonds; THF,
tetrahydrofuran; EPA, ether/isopentane/ethanol ¼ 5/5/2(v/v/v); RT, room temperature.

n carotenoid

transition energy (cm21) condition

referencesS0(11Ag
2)! S2(11Bu

1) S0(11Ag
2)! S1(21Ag

2) solvent, temperature (K)

13 all-trans-spirilloxanthin 18 900(100) 5% benzene/

3-methyl pentane

295,150 [72,73]

18 083 THF RT [74]

12 all-trans-

anhydrorhodovibrin

19 400 n-hexane or

3-methyl pentane

295 [72]

19 100(100) n-hexane 295,150 [72,73]

11 all-trans-b-carotene 22 040 n-hexane 293 [60]

21 390(100) toluene, isopentane 293,77 [60]

20 890(150) quinoline 293 [60]

20 300(100) 13 200(300) n-hexane 170,RT [63]

19 700(100) 13 100(300) toluene RT [63]

19 580 isopentane 4.2 [60]

19 380 carbon disulfide RT [61]

19 150 n-hexane 77 [10]

18 800(100) 13 200(300) carbon disulfide RT [75]

18 400 14 500 single crystal 11 [68]

b-apo-4’-carotene 19 700(10) EPA 77 [66]

all-trans-lycopene 19 800(200) n-hexane, acetone 170,RT [73]

18 600 n-hexane 77 [75]

13 300 5% benzene/

3-methyl pentane

RT [76]

10 b-apo-6’-carotene 20 450(15) EPA 77 [66]

rhodopin 18 490 carbon disulfide RT [61]

all-trans-spheroidene 20 800 methanol RT [64]

20 250(150) 14 200 n-hexane 200 [65,72]

19 600 14 200 film, n-hexane 77 [69]

18 138 carbon disulfide RT [61]

14 250(50) n-hexane 77, RT [75,76]

9 all-trans-neurosporene 21 100 n-hexane 190 [65]

20 880(80) n-hexane 190, RT [65]

19 800 n-hexane RT [61]

15 300 n-hexane RT [76]

b-apo-6’-carotenol 20 490 EPA 77 [62]

isozeaxanthin 19 890 EPA 77 [62]
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have applied multi-reference Møller–Plesset perturbation

theory with complete active-space configuration interaction

(CASCI-MRMP) to the study of the valence p! p* excited

states of all-trans linear polyenes C2nH2nþ2 (n ¼ 3–14). This

theory predicts that the 11Bu
– state becomes lower than the

11Bu
þ state at n � 7 and that the 31Ag

– state also becomes

lower than the 11Bu
þ state at n � 11. This theoretical treat-

ment has also been successfully expanded to the studies of

all-trans a,v-diphenyl polyenes and oligoacenes [79,80].

These theoretical predictions were supported experimen-

tally by the group of Koyama et al. using resonance Raman
excitation profiles on solid crystalline carotenoids [75,81,82]

and fluorescence, as well as steady-state absorption spectro-

scopies [72,73,83]. They further extended their studies using

sub-picosecond time-resolved absorption and stimulated

Raman spectroscopies [30,31,58,74,76,84–96]. They have

interpreted all the observed excited-state dynamics of caro-

tenoids following photoexcitation based on the ordering of

the forbidden singlet excited states (31Ag
– , 11Bu

– , 21Ag
–) pre-

sented by Tavan and Schulten. However, it should be noted

that the spectral analyses of Koyama et al. probably depend

too much on the application of a kinetic model that only



60 000

50 000

40 000

30 000

20 000

10 000

en
er

gy
 (

cm
–1

)

0.120.100.080.060.040.02

1/(2n + 1)

1614 12 10 8 6 4
n

31Ag
–

11Bu
–

11Bu
+

21Ag
–

Figure 4. Energy diagram calculated by Tavan & Schulten [44,45] using
the PPPMRD-CI method for the low-lying singlet excited state of polyenes
(n ¼ 4 – 16).

x1Ag
–

11Bu
+

21Ag
–

po
te

nt
ia

l e
ne

rg
y

11Ag
–

trans cis++ f = 90°
reaction coordinate

planar twisted

Sn

Sx

S*

X S2

S1

ICT

S0

f

a

a

f

+–

Figure 5. Proposed scheme for radiationless decay of carotenoids after optical
preparation of the S2 state. The states that apply to planar structures are indi-
cated by symmetry labels. Key points along the path back to the initial planar
ground-state conformation are labelled with ethylenic structures, depicting
the Sx, X and S* dark states as twisted structures near the S2 transition
state and the S2 twisted minimum and pyramidal structures near the S1

state minimum, respectively. (Reproduced with permission from [102].)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20180026

6

considers the theory of Tavan and Schulten as a possibility.

They also extended their analysis of their data beyond their

actual detection limit of 100 fs time resolution. The con-

clusions of Koyama et al. now need to be tested with

improved time resolution to see if they are still correct.
4. The other forbidden singlet excited states
(S*, SX and X)

Another type of intermediate excited state, termed S*, has

been found with carotenoids both free in solution and

bound to light-harvesting complexes, revealing a further

level of complication [97–101]. At the higher-energy side of

the S1! Sn transition, a new transient absorption band was

detected by means of pump–probe time-resolved absorption

spectroscopy and subsequent spectral analysis using SVD

(singular value decomposition) and global fitting. This

newly identified absorption band was assigned to the S*

state. The lifetime of this particular state was determined to

be between 5 and 12 ps, depending on both the species of

carotenoid and whether it was present in the light-harvesting

complex or in organic solvent. The S* state decayed into the

triplet state when the carotenoid was bound to the LH1 or

LH2 complex. However, when the carotenoid was free in

organic solvent, the S* state decayed to the ground state with-

out generating the triplet state. Applying a pump–dump and

transient absorption technique for b-carotene, lycopene and

zeaxanthin, Wohlleben et al. [100] re-examined the origin of

the S* state with the carotenoid free in solution (S*sol). They

suggested that the S*sol state is a vibrationally excited level

of the electronic ground state (S*sol ¼ hot S0), which is popu-

lated by a combination of impulsive Raman scattering of

the pump pulse and S1! S0 internal conversion. They also

found the S* state of the protein-bound carotenoid and re-

designated it as S*T. These ideas have recently been

supported by Hashimoto et al. for spirilloxanthin both free

in solution and bound to light-harvesting complexes [101].

However, the debate on the characterization of the S* state
is still ongoing. Beck et al. [102] reinterpreted the radiationless

decay of carotenoids after photoexcitation up to the S2 state

by referring to a model derived from studies of polymethine

cyanines [103]. They suggested that the S* state can be

assigned to a low-lying S1 state structure with intramolecular

charge transfer character and a pyramidal conformation

(figure 5). On the other hand, quite recently, the group of

Hauer et al. [104] have challenged this idea and presented a

comprehensive and unified interpretation of S*-related fea-

tures. They explained the features by vibronic transitions

either from S1, from vibrationally excited levels on S0, or

from both, depending on the chain length of the carotenoid

investigated (figure 6). These discrepancies in the interpret-

ation of the observed spectral data clearly demonstrate that

while it is easy to measure spectral changes, it can be difficult

to assign them. The problem is trying to determine from an

absorption change whether it reflects different electronic

states or different vibrational states. Involvement of vibration-

ally excited states in the relaxation process of carotenoids

after photoexcitation was initially detected by time-resolved

absorption spectroscopy [71,105–108], and has also been

studied by time-resolved stimulated Raman spectroscopy

[109–111].

Carotenoids that contain carbonyl groups have the possi-

bility of forming intramolecular charge-transfer states (SICT).

These states have been well documented in the case of caro-

tenoids such as peridinin and fucoxanthin (figure 7 for

chemical structures of these molecules) [107,108,112–119].

The importance of this charge transfer state seems to be

that it allows carotenoid to chlorophyll energy transfer to

be highly efficient. Readers who are interested in more details

about this state should consult the excellent review by

Polı́vka & Sundström [28]. In our recent study, it was demon-

strated that a large part of excitation energy captured by

fucoxanthin bound to FCP (Mozuku FCP) is transferred to
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Chl a via the coupled S1/ICT state, resulting from a strong

electronic dipole interaction between fucoxanthin and Chl a
[117]. This strong dipole interaction was attributed to the

ICT character of the excited state of fucoxanthin, enabling it

to enhance the transition dipole moment of the S1/ICT

state. Indeed, the enhancement of the excitation energy-transfer

efficiency from carotenoid to bacteriochlorophyll is demonstrated

by incorporating fucoxanthin into the LH1 complexes from a

purple photosynthetic bacterium [120]. However, the nature

and origin of the S1/ICT state of carbonyl carotenoids is yet

to be fully understood. To try to get more information on

this point, the ultrafast excited state dynamics of fucoxanthin

and its homologues have been investigated [115].

The spectroscopic properties of fucoxanthin in polar

(methanol) and non-polar (cyclohexane) solvents were

studied [115]. Transient absorption associated with the opti-

cally forbidden S1 (21Ag
2) and/or the ICT states were

observed following one-photon excitation to the optically

allowed S2 (11Bu
þ) state in methanol. The transient absorption

measurements carried out in methanol showed that the ratio

of the ICT-to-S1 state formation increased with decreasing

excitation energy. The ICT character was clearly visible in

the steady-state absorption in methanol based on a Franck–

Condon analysis. The results suggest that two spectroscopic

forms of fucoxanthin, blue and red, exist in a polar environ-

ment. The spectroscopic properties of fucoxanthin in

methanol were further studied by femtosecond pump–

probe measurements in the near-infrared region, where

transient absorption associated with the optically allowed

S2 (11Bu
þ) state and stimulated emission from the strongly

coupled S1/ICT state were observed following one-photon

excitation to the S2 state [118]. The results showed that the

amplitude of the stimulated emission from the S1/ICT state

increased with decreasing excitation energy, demonstrating

that the red form of fucoxanthin exhibits a stronger ICT

character. The magnitude of ICT character of carbonyl

carotenoids has often been evaluated from (1) solvent

polarity-dependent S1/ICT lifetimes, (2) amplitudes of the

ICT transient absorption and stimulated emission bands
and (3) the dipole moment of the ICT state. Femtosecond

pump–probe spectroscopic measurements were performed

on fucoxanthin homologues with varying numbers of conju-

gated double bonds (n ¼ 4–8) [119,121]. The ICT properties

of fucoxanthin homologues were characterized by the

S1/ICT lifetimes and the transient absorption and stimulated

emission bands due to the S1/ICT state.

Figure 7 shows a schematic illustration of the relative

energies of the carotenoid excited singlet states discussed

above together with the proposed relaxation pathways from

the S2 state as well as the energy-transfer pathways between

carotenoid and bacteriochlorophyll. As the relaxation from

the S2 state is very fast, ultrafast vibrational spectroscopies

are going to be important to try to clarify further the

structure–function relationship of the above singlet excited

states [34].
5. Time-resolved and coherent spectroscopies
beyond 100 fs time resolution

Recently, it has become possible to use much shorter femto-

second pulses. When this was done by Cerullo et al. [122],

the data claimed the presence of an intermediate state

between S2 and S1. This state was formed as S2 decayed

and gave rise to S1 as it decayed. However, with these extre-

mely fast reactions it was not possible to be sure that this
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intermediate state was another pure excited singlet state such

as 11Bu
2. Therefore, this dark state was tentatively designated

as SX. Since this time there have been many studies that have

suggested that such an intermediate state is required to fully

explain the experimental data. It has also been suggested that

these results could be due the appearance of a nonlinear opti-

cal effect [123]. There have even been further studies that

have not seen or required the presence of such an extra inter-

mediate state to fit the data [29]. This has led to a lot of

confusion. Most recently, broadband two-dimensional (2D)

electronic spectroscopic measurements on light-harvesting

proteins from purple bacteria and isolated carotenoids have

been performed in order to characterize in more detail the

excited-state manifold of carotenoids that channel energy

to bacteriochlorophyll molecules. The data revealed a

well-resolved signal (cross peak) consistent with a previously

postulated carotenoid dark state, the presence of which was

confirmed by global kinetic analysis. The most recent results,

therefore, suggest that a carotenoid dark state does have a

role in mediating energy flow from carotenoid to bacterio-

chlorophyll [124], and this state was designated as X. All

these findings clearly suggest the presence of a dark state in

between S2 and S1. However, it is worth pointing out that it

is worth looking back at some older up-conversion exper-

iments by the group of Gillbro et al. [57]. Carotenoids in

solution show the decay time 150 fs for S2 emission. If S2 in

a few fs goes to another state, then one has to assume that

the other intermediate state emits. If that state emits, why

doesn’t it absorb? This old emission study should not be for-

gotten and strongly implies that there is more to be

understood here.

Another sophisticated ultrafast spectroscopic technique

called four-wave mixing (FWM) or coherent spectroscopy
has been employed in order to investigate the ultrafast photo-

physics of carotenoids. FWM measurement is performed

with an optical configuration illustrated in figure 8a.

Namely, laser light is split to three using a beam splitter,

and two of them are independently guided towards transla-

tional stages in order to induce time delays among three

laser pulses. If these three laser pulses are well focused

onto a single spot in the sample, FWM signals can be

observed. This type of optical configuration, where three

laser pulses excite the sample from three distinct directions,

is called the BOXCARS configuration.

When such three laser pulses simultaneously reach to the

sample (zero time delays), FWM signals are generated in the

area surrounding the transmitted excitation laser light. As

illustrated in figure 8b, if the wavevectors of excitation and

signal lights are defined, respectively, as ki ¼ (1, 2, 3) and

ks, FWM signals appear at the direction that satisfies the

relation of ks ¼+k1+ k2+ k3 and ks ¼ 2ki2kj( j ¼ 1, 2, 3,

and j = i). It should be noted here that FWM signals are

strong enough for carotenoids to be seen with the naked

eye. This means that carotenoids are suitable molecules for

investigation of their nonlinear optical responses. Information

concerning the coherence can be obtained by investigating

the time evolution of the FWM signals.

FWM signals in carotenoids have been reported for

b-carotene and its homologues, lycopene, astaxanthin and

spheroidene [125–137]. As an example, the results with

b-carotene are given here. Figure 9a shows the time evolution

of an FWM signal with b-carotene. In this example, the

abscissa gives the time interval T between pulse 2 and

pulse 3 (figure 8c). The time interval t between pulse 1 and

pulse 2 was set to be zero. The FWM signal that is measured

under this condition is frequently called the transient grating
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(TG) signal. The intense signal that appears around the time

origin in figure 9a is assigned as a coherent spike. Following

this spike signal, a coherent vibration signal with a very fast

period of oscillation of about 20–30 fs can be observed on top

of the slowly decaying background that has a lifetime of

about 5 ps.

The origin of this coherent vibration can be clarified if the

TG signal in figure 9b is Fourier transformed. It can be readily

understood, based on the comparison with the Raman spec-

trum of b-carotene shown in figure 10b, that the peaks

obtained by the Fourier transformation of the coherent

vibration (figure 10a) show good coincidence with those of

the ground-state Raman spectrum of b-carotene. Namely,

the peaks that appeared at n1 ¼ 1522 cm21 and n2 ¼

1157 cm21, respectively, are attributed to the totally sym-

metric vibration of C¼C and C–C stretchings, and the

peak that appeared at n3¼ 1007 cm21 is attributed to the in-

plane rocking vibration of methyl groups. These vibrational

modes appeared because all the b-carotene molecules

under inspection start to vibrate in phase, i.e. coherently, fol-

lowing the impulsive excitation with ultrashort laser pulses.

The stretching vibrations of carotenoids usually appear in

the 1000–1500 cm21 frequency domain. These frequencies

correspond to 30–20 fs in the time domain, if the frequency

to time domain conversion is performed. Therefore, coherent

vibration can be induced in carotenoids if we use the

sub-20 fs ultrashort laser pulses for the FWM experiment.
The most important information that is obtained by the

measurement of FWM signals is the coupling between

carotenoids and their surrounding environment. This

information is reflected in spectral density (figure 10c). It is

known that there are couplings with slow vibrations of

100 fs (approx. 300 cm21) or less in organic solvents

[127,131,133]. Obtaining the spectral density, various optical

responses including absorption and fluorescence spectra can

be calculated and, therefore, the precise discussion on the

experimental data based on theoretical models becomes

feasible [138]. One of those examples, figure 9c, shows the

results of the theoretical calculation for the FWM signal.

The experimental result is in good agreement with the

theoretical calculation. As shown here, spectral density

includes meaningful information; however, there are a few

reports on carotenoids bound to pigment–protein complexes

[139]. On the other hand, many studies have already been

performed on the coherent vibrations that directly reflect

the effect of coupling with the surrounding environment in

bacteriochlorophyll [140–147]. Revealing the correlation

among these coherent vibrations as well as the role of coher-

ent vibration in excitation energy transfer will be rewarding

challenges for the future.

Coherent vibrations are also observed in the electronic

excited state of carotenoids. The group of Motzkus et al.
were able to observe the coherent vibration in the S1 state

of b-carotene with 20 fs temporal and 10 cm21 spectral resol-

utions [126,128,130,148–153]. They introduced a pre-pump

pulse that excites b-carotene to its S2 state for FWM
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measurement (pump-FWM) to produce a populated S1 state

via internal conversion from the S2 state. They concluded that

the coherence of the molecular vibrations is not conserved

during the process of S2! S1 internal conversion [126].

They also claimed that the lifetime of coherent vibration in

the S1 state is an order of magnitude smaller than that in

the ground state for all the vibrational modes. Quite recently,

they further extended their study to a series of open-chain

carotenoids with different numbers of conjugated double

bonds n ¼ 9, 10, 11 and 13 (neurosporene, spheroidene, lyco-

pene and spirilloxanthin, respectively), and a closed-chain

carotenoid (lutein) [154]. They have interpreted their data

on the relaxation from S2 to S1 based on the model including

the forbidden singlet states (31Ag
– and 11Bu

–). They were

successful to detect the frequency shift of the C¼C stretching

mode along the course of deactivation. They suggested that

the vibrational dynamics directly after the initial excitation

of carotenoids is dominated by two different vibronic coup-

lings: (1) diabatic mixing between 1Bu states takes place

only for shorter open-chain carotenoids (n ¼ 9 and 10),

where the vibrational levels of the 11Bu
þ and 11Bu

– states

are energetically close (figure 11). The interaction between

these states leads to a typical frequency downshift after the

deactivation of the Franck–Condon region. (2) Adiabatic

vibronic coupling between the 1Ag states is a well-known

general feature of the Raman spectra of carotenoids (see

§2), which is responsible for the generation of the typical S1

C¼C stretching frequency at 1800 cm21. Nevertheless, their

results suggest that it does not lead to any modification of

the vibrational dynamics during 11Bu
þ deactivation, because

adiabatic vibronic coupling does not take place between

11Bu
þ and 21Ag

– states. The evolution of the S1 C¼C stretch-

ing frequency at 1800 cm21 as well as of other modes for
carotenoids without diabatic mixing follows a frequency

upshift due to potential anharmonicity (figure 11). This is

quite a new interpretation that warrants further study on

both the experimental and theoretical sides.
6. Conclusion
The properties of the singlet excited state of carotenoids,

which have the major role in photosynthetic light harvesting,

were reviewed extensively. The underlying photophysics to

understand the forbidden singlet excited states is based on

the historical work by Tavan & Schulten [44,45] which

assumes both the planarity and C2h point symmetry of the

polyene backbone of the carotenoids. Quite recently,

Fiedor et al. [39] have raised an objection to this idea. This

is because structures of many naturally occurring caroten-

oids are asymmetric due to the side groups that are

coupled with the polyene backbone as has been described

in the textbook by Hudson et al. [35]. They proposed that

the reason for inactivity of the S0! S1 transition of caroten-

oids is not due to the symmetry, but it is due to a severe

molecular deformation in the S1 state, which cannot be

accessed by one-photon excitation from the ground state.

This is quite an interesting new idea, but a more sophisti-

cated experimental and computational effort is needed to

better understand this issue and to see what the correct

interpretation really is.

Carotenoids are indeed fascinating molecules. They have

remarkable photophysical and photochemical properties

[155]. Though a lot of details are known about the properties

of the singlet-excited states of carotenoids, there are still a lot

more to be unravelled. Now is an exciting time to be involved

in carotenoids research. It has been particularly notable, as

physical methods have evolved and have been applied to

studying carotenoids, how the knowledge of the way in

which carotenoids function in photosynthesis has advanced.

We expect this trend to continue. One can highlight areas

where we expect these developments to really help the under-

standing of the molecular mechanisms by which carotenoids

discharge their photosynthetic functions. Examples are the

further application of advanced two-dimensional coherent

time-resolved spectroscopies [156,157] and time-resolved

stimulated Raman spectroscopy [158–161]. These methods

should be able to help resolve the ongoing problems of

understanding the pattern of carotenoid excited singlet

states and their involvement in light harvesting. They

should be able to resolve the key issues of which absorption

changes reflect discrete electronic states and which come

from different vibrational ones. Sorting this out will

hopefully remove many of the current controversies.
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