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Drug interactions, including drug–drug interactions (DDIs) and
drug–food constituent interactions (DFIs), can trigger unexpected
pharmacological effects, including adverse drug events (ADEs),
with causal mechanisms often unknown. Several computational
methods have been developed to better understand drug interac-
tions, especially for DDIs. However, these methods do not provide
sufficient details beyond the chance of DDI occurrence, or require
detailed drug information often unavailable for DDI prediction.
Here, we report development of a computational framework
DeepDDI that uses names of drug–drug or drug–food constituent
pairs and their structural information as inputs to accurately gen-
erate 86 important DDI types as outputs of human-readable sen-
tences. DeepDDI uses deep neural network with its optimized
prediction performance and predicts 86 DDI types with a mean
accuracy of 92.4% using the DrugBank gold standard DDI dataset
covering 192,284 DDIs contributed by 191,878 drug pairs. DeepDDI
is used to suggest potential causal mechanisms for the reported
ADEs of 9,284 drug pairs, and also predict alternative drug candi-
dates for 62,707 drug pairs having negative health effects. Further-
more, DeepDDI is applied to 3,288,157 drug–food constituent pairs
(2,159 approved drugs and 1,523 well-characterized food constit-
uents) to predict DFIs. The effects of 256 food constituents on
pharmacological effects of interacting drugs and bioactivities of
149 food constituents are predicted. These results suggest that
DeepDDI can provide important information on drug prescription
and even dietary suggestions while taking certain drugs and also
guidelines during drug development.
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Intended efficacy of a drug can be substantially altered when
coadministered with another drug or consumed together with

specific food constituents. Therefore, understanding drug inter-
actions, including drug–drug interaction (DDI) and drug–food
constituent interaction (DFI), is critical to minimize unexpected
adverse drug events (ADEs) (1) and to maximize synergistic
benefits when treating a disease. This motivation has grown
larger as the number of prescriptions of multiple drugs (e.g., at
least two drugs) for disease treatment continues to increase (2,
3). According to a recent study in 2010–2011, 67% of elderly
Americans were taking five or more medications, including
prescription drugs, over-the-counter drugs, and dietary supple-
ments (3). A problem is that DDIs have been estimated to be
associated with 30% of all of the reported ADEs (4). In addition,
ADEs due to DDIs are one of the major reasons for drug
withdrawal from the market (5). Despite the importance, clinical
examination of the effects of all possible drug interactions, in-
cluding DDIs and DFIs, is highly constrained due to the diffi-
culties of performing the actual study with the patients who are
taking different food with the drugs, which also requires much
time and high costs.
To solve this problem, various computational methods have

been developed using methods based on structural and other
similarities (6–11) or drug-target associations (12–14). These

computational methods have greatly contributed to better un-
derstanding of DDIs, but they have two major limitations. The
computational methods developed so far predict the chance of
interactions between the given drugs in pair, but do not provide
specific descriptions on DDI in terms of pharmacological effects.
Also, many of the computational methods often require a large
volume of detailed drug information such as drug targets, inter-
acting drugs, and side effects, which are often unavailable, as input
to predict DDIs (7, 9–14). Thus, the DDI prediction methods
previously developed are largely applicable to drugs with known
mechanisms of action (e.g., approved or investigational drugs).
Finally, the DDI prediction methods developed so far have not
been examined as to whether they could be used to analyze DFIs,
another category of drug interactions equally important as DDIs.
Here, we present a computational framework DeepDDI that

takes structural information and names of two drugs in pair as
inputs, and accurately predicts relevant DDI types for the input
drug pair (Fig. 1A). Input structural information is provided in
the simplified molecular-input line-entry system (SMILES) that
describes the structure of a chemical compound. DDI types
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predicted by DeepDDI are generated in the form of human-
readable sentences as outputs, which describe changes in pharma-
cological effects and/or the risk of ADEs as a result of the
interaction between two drugs in pair; to the best of our knowledge,
DDI prediction methods developed so far do not generate in-
formation at this level of detail and at a sufficiently high mean
accuracy. For example, DeepDDI output sentences describing
potential interactions between oxycodone (opioid pain medi-
cation) and atazanavir (antiretroviral medication) were generated
as follows: “The metabolism of Oxycodone can be decreased when
combined with Atazanavir”; and “the risk or severity of adverse
effects can be increased when Oxycodone is combined with Ata-
zanavir” (Fig. 1A). The DeepDDI output sentences were gener-

ated from the predefined 86 important general sentence structures,
representing 86 DDI types that are described at DrugBank (15) (SI
Appendix, Materials and Methods and Dataset S1). These general
output sentence structures were prepared using the gold standard
DDI dataset from DrugBank, which covers 192,284 DDIs contrib-
uted by 191,878 drug pairs also presented in the form of sentences
(Dataset S2). Importantly, DeepDDI can also be applied to drug–
food constituent pairs as long as their structural information is
available. This extended application is possible because the
gold standard DDI dataset used to develop DeepDDI covers a
wide range of compound types including natural products that
could be found as food constituents (SI Appendix, Materials
and Methods).

Fig. 1. Overall scheme, performance evaluation, and application of DeepDDI. (A) DeepDDI consists of the structural similarity profile (SSP) generation
pipeline and deep neural network (DNN). DeepDDI accepts chemical structures (in SMILES describing the structure of a chemical compound) and names of
drugs in pairs as inputs, and predicts their potential drug–drug interaction (DDI) types as outputs in human-readable sentences having the input drug names.
DNN of DeepDDI is a multilabel classification model that can predict multiple DDI types at the same time for a given drug pair. To develop DeepDDI, a gold
standard DDI dataset covering 191,878 drug pairs was obtained from DrugBank, and used to train the DNN of DeepDDI. A single, combined SSP (feature
vector of a drug pair) is generated for each input drug pair (SI Appendix, Materials and Methods). DeepDDI has many implications such as prediction of
potential causal mechanism for the adverse drug evens (ADEs) of a drug pair of interest (blue dotted arrow) using the output sentences. It should be noted
that the use of input data on the same drug pairs, but with different drug orders, results in different DeepDDI output sentences. For example, the use of input
data in the order of atazanavir and oxycodone generated a DeepDDI output sentence corresponding to the DDI type 26 with atazanavir appearing before
oxycodone; and the output sentence for DDI type 6 was not generated in this case. (B) Number (percentage) of drug pairs in the gold standard DDI dataset
having a single DDI type or two. The dataset does not have drug pairs having more than two DDI types. (C) Prediction performance of DeepDDI for classifying
DDI types for drug pairs in the gold standard DDI dataset using three different machine learning algorithms (SI Appendix, Materials and Methods). (D)
DeepDDI prediction results for the drug pairs reported to have ADEs in the gold standard DDI dataset. (E) Number of drug pairs having additionally predicted
DDI types using DeepDDI in addition to the reported ADEs.
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Results
For the development of DeepDDI to effectively classify the DDI
types for a given drug pair, deep neural network (DNN) was
employed among other machine learning approaches due to its
proven outstanding performance in classification without the
need of feature extraction (16, 17). To implement DNN, struc-
tural information (SMILES) of each drug in the input drug pair
was first used to generate a feature vector called structural
similarity profile (SSP); SSP was devised to effectively capture a
unique structural feature of a given drug and to associate this
feature with a set of the reported DDI types (Fig. 1A and SI
Appendix, Fig. S1 and Materials and Methods). To predict the
DDI types for a given drug pair, two SSPs were generated for
each drug pair, subjected to the dimension reduction and com-
bined as a single vector (Fig. 1A and SI Appendix, Fig. S2 and
Materials and Methods); the combined SSP is a feature vector of
a drug pair. The combined SSPs of all of the DDIs in the gold
standard DDI dataset were created, and the entire set was used
to develop the DNN for the accurate prediction of DDI types
(Fig. 1A and SI Appendix, Fig. S3 and Materials and Methods).
The DNN of DeepDDI was designed to be a multilabel classi-
fication model that can predict multiple DDI types for a given
drug pair (i.e., simultaneous activation of multiple output neu-
rons, each representing DDI type) because drug pairs can have
multiple DDI types as suggested by such 406 drug pairs in the
gold standard DDI dataset (Fig. 1B). The DNN of DeepDDI has
86 output neurons, which represent 86 DDI types considered in
this study; these output neurons’ activity values range between
0 (no interaction between the pair) and 1 (interaction between
the pair with the highest confidence), which can be considered as
a probability (18). A given drug pair was considered to have a
specific DDI type if the corresponding output neuron became
activated by having its activity greater than a predetermined
threshold of 0.47 (see below). DNN was trained by minimizing
prediction errors in comparison with the gold standard DDI
dataset using cross entropy as loss function and the Adam
method for optimization (SI Appendix, Materials and Methods).
DNN was trained up to 100 epochs. For architecture optimiza-
tion, all of the combinations of one to nine hidden layers and
128, 256, 512, 1,024, and 2,048 nodes in each hidden layer were
tested (SI Appendix, Fig. S3). Using the optimal DNN architec-
ture after training and validation (SI Appendix, Figs. S4 and S5),
the complete DeepDDI showed reasonably accurate perfor-
mance, attaining 84.8–93.2% for the seven different performance
metrics using the DrugBank gold standard DDI dataset (Fig. 1C
and SI Appendix, Materials and Methods); here, the threshold of
0.47 was used to determine the activation of an output neuron
(see SI Appendix, Fig. S6 for this value and SI Appendix,Materials
and Methods). DeepDDI was further evaluated with respect to
the use of SSP versus 685 molecular descriptors as a feature
vector of the drug pair (SI Appendix, Fig. S7). DeepDDI using
SSP achieved greater accuracies for all of the 86 DDI types.
Also, SSP showed a slightly greater mean accuracy than feature
vectors generated by two state-of-the-art vectorization methods,
namely Molecular Autoencoder (19) and Mol2vec (20), when
used with the DeepDDI framework (SI Appendix, Fig. S7). For
the comparison of DNN performance, two other machine
learning approaches, random forests and K-nearest neighbors,
were employed for the DDI type classification. DeepDDI with
DNN was better than the others by achieving greater accuracies
for 82 of 86 DDI types (SI Appendix, Fig. S8), suggesting that
DNN was indeed better than the other machine learning meth-
ods. Although outstanding performance of DNN in processing a
large volume of complex data are well known (16, 17), un-
derstanding precise reasons for the observed performance dif-
ferences needs further in-depth studies. Finally, DeepDDI was
compared with another DDI prediction method called hetero-

geneous network-assisted inference (HNAI) (7), which uses in-
formation on chemical structures, drug targets, drug side effects,
and the Anatomical Therapeutic Chemical (ATC) classification
system as inputs; DeepDDI again showed a greater mean accu-
racy (SI Appendix, Fig. S9).
DeepDDI was then applied to various drug–drug pairs and

drug–food constituent pairs to generate sentences describing
relevant interactions. In particular, the DeepDDI output sen-
tences can be used to provide in-depth inferences associated with
the drug interactions. In actual prediction of DDI and DFI,
57 among the 86 DDI types were considered to ensure reliability
of prediction. These 57 DDI types are those having at least
10 drug pairs in the gold standard DDI dataset, and those
showing accuracies of 70% or greater by DeepDDI (SI Appendix,
Fig. S7). It should be noted that five drug pairs were considered
for a DDI type during the development (training and validation)
of DeepDDI (SI Appendix, Materials and Methods).
The gold standard DDI dataset in DrugBank contains DDI

information for 191,878 drug pairs. However, only 406 drug pairs
(0.2%) are associated with two DDI types, while the rest (99.8%)
of them are associated with only single DDI type (Fig. 1B). Since
DeepDDI systematically suggests all possible DDI types, it was
reasoned that the outputs of DeepDDI can be used to suggest
unknown (1) causal mechanisms of ADEs reported for the drug
pairs in the gold standard DDI dataset. For the 60,935 drug pairs
reported to show ADEs in the gold standard DDI dataset,
60,509 drug pairs (99.3%) were correctly predicted to have
ADEs, which had the expression of “the increased risk or se-
verity of adverse effects” in the DeepDDI output sentences
(DDI type 26) (Fig. 1D). Among the 60,509 drug pairs, 12,632 drug
pairs were assigned with multiple DeepDDI output sentences
suggesting specific pharmacological effects (e.g., “the de-
creased metabolism” and “the increased serum concentra-
tion”) in addition to “the increased risk or severity of adverse
effects” (Fig. 1E).
For further validation, the DeepDDI outputs were compared

with the consistent descriptions on the DDIs of 182 drug pairs
present in the Drugs.com database (https://www.drugs.com/),
which provides additional information regarding DDIs beyond
those described in DrugBank (Dataset S3). The most frequently
observed DDIs of the 182 drug pairs were involved in decreasing
metabolism of interacting drugs (69 drug pairs for DDI type 6),
followed by DDIs increasing serum concentration (37 drug pairs
for DDI type 10), increasing corrected QT interval (QTc)-
prolonging activity (23 drug pairs for DDI type 76), and in-
creasing anticoagulant activity of interacting drugs (13 drug pairs
for DDI type 46). These results suggest that abnormally increased
bioavailability (DDI types 6 and 10) could be one of the major
causes for the observed ADEs of various drug pairs (21) (Fig. 1E).
Other than 182 drug pairs examined above by comparing with

the information presented in the Drugs.com database, the pos-
sible causal mechanisms of ADEs for the remaining 12,450 drug
pairs are not available elsewhere to the best of our knowledge.
Therefore, DeepDDI output sentences describing additional
DDI types for the drug pairs with the reported ADEs can serve
as the likely causal mechanisms of DDIs for further validation.
Since DeepDDI could predict potential causal mechanisms of

a given drug pair, we extended our work of employing DeepDDI
to suggest alternative drug members for drug pairs reported to
have negative health effects so as to achieve only the intended
beneficial pharmacological effects of each drug member (Fig.
2A); the drug pairs having “negative health effects” are those in
the gold standard DDI dataset described with “the increased risk
or severity of adverse effects” and/or explicit expression such as
“cardiotoxic activity,” “nephrotoxic activity,” and “the increased
risk or severity of bleeding.” In the gold standard DDI dataset,
62,707 drug pairs were found to have clear “negative health effects”
and corresponded to one of the 14 DDI types. Other than these 14
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DDI types, the remaining DDI types were not considered in this
analysis because health effects of their pharmacological effects,
such as “the decreased absorption” (DDI type 1) and “the de-
creased serum concentration” (DDI type 9), are rather ambiguous
and depend on physiological condition of individuals. To find an
alternative drug that does not exert “negative health effects,” the
62,707 drug pairs were redesigned by changing an original drug
member to another approved drug from DrugBank, having the
same pharmacological effects, one at a time (bidirectional blue line
in Fig. 2A). The DDI types of candidate drug pairs were sub-
sequently predicted using DeepDDI. If none of the 14 DDI types
was predicted for the candidate drug pair (i.e., corresponding
output neuron’s activity in the DNN of DeepDDI less than 0.47),
the new drug pair was considered to have a low chance of the
reported negative health effects; the new drug pair with the output
neuron’s activity value closer to zero was considered more benefi-

cial in this case (Fig. 2A). A total of 9,284 drug pairs were predicted
to have alternative drug members that would help avoid corre-
sponding negative health effects for the intended pharmacological
effects of each original drug member (Fig. 2B and see Dataset S4
for details). For example, an anticancer drug cyclophosphamide
was reported to interact with 168 drugs in the gold standard DDI
dataset, and predicted to be replaceable with seven different anti-
cancer drugs (i.e., busulfan, dacarbazine, lomustine, melphalan,
pipobroman, temozolomide, and thiotepa) with lower chance of
cardiotoxicity (Fig. 2C). Cyclophosphamide has been known to
exert cardiotoxicity, which might be increased when coadministered
with one of 168 drugs. An interesting observation here is that cy-
clophosphamide and its 168 drugs are commonly metabolized by a
greater number of enzymes (e.g., cytochrome P450) compared with
seven alternative anticancer drugs and the same set of interacting
drugs (Fig. 2D). This means that the serum concentration of

Fig. 2. Prediction of new drug members for a drug pair to avoid the reported negative health effects. (A) For a drug pair with DDI reported to have negative
health effects (bidirectional red arrow, see Fig. 2B and Dataset S1 for the 14 relevant DDI types), new drug pairs (bidirectional blue arrow) having alternative
drug members were predicted using DeepDDI. (B) Percentage (number) of the reported drug pairs that were predicted to have new drug members that
would lower the chance of each DDI type having negative health effects. Key toxicity terms are listed for each DDI type next to the graph. (C) Alternative drug
members predicted for cyclophosphamide and its three interacting drugs (among the 168 interacting drugs), which could lower the chance of cardiotoxic
activity (DDI type 18). If cyclophosphamide has to be used to treat a cancer despite its cardiotoxicity, its interacting drugs (i.e., belinostat, pamidronate, and
sulindac) can be replaced with alternative drugs having the same pharmacological effects to minimize the chance of cardiotoxicity. (D) Number of enzymes
that commonly metabolize cyclophosphamide and each of its 168 interacting drugs (red box), and seven new drug members predicted in place of cyclo-
phosphamide and each of its 168 interacting drug (blue box). Boxes represent the 25th–75th percentiles, while whiskers represent the 5th–95th percentiles.
Drug pairs with new drug members were predicted to have lower chance of cardiotoxic activity, while achieving the intended anticancer efficacy.
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cyclophosphamide would be higher than desired (22) when ad-
ministered with one of 168 drugs. If cyclophosphamide has to be
used to treat a cancer despite its cardiotoxicity, its interacting drugs
(i.e., belinostat, pamidronate, and sulindac) can be replaced with
alternative drugs having the same pharmacological effects to min-
imize the chance of cardiotoxicity (Fig. 2C). Despite the impor-
tance, there were few systematic methods or resources to design
prescription or suggest treatment strategies for diseases involving
more than one drug compound without “negative health effects.”
DeepDDI can meet this demand by suggesting alternative drug
members for a given drug pair of interest, or even new drug pairs to
examine. When more information on DDIs of drug pairs becomes
available, beyond the 14 DDI types explicitly known to exert
“negative health effects,” the use of DeepDDI will serve as a more
powerful tool suggesting alternative drug compounds and designing
drug pairs to be used. Finally, although alternative drug members
may be prioritized using output neuron activity values for a given
drug pair as described above, additional important factors, such as
an individual’s genetic makeup and lifestyle (e.g., diet), should be
carefully considered because they can siginficantly affect DDIs.
Personal multiomics data profiling (23), for example, can be very
useful in this respect.
As an extended application, DeepDDI was applied to drug–

food constituent pairs to understand the effects of food con-
stituents on pharmacological effects of interacting drugs. This
information is important in designing diet that helps avoid ADEs
from unwanted DFIs during medication. For this, information on
1,523 well-characterized food constituents from 377 food sources
was obtained from FooDB (foodb.ca/). Subsequently, the DDI
types of 3,288,157 drug–food constituent pairs (2,159 approved
drugs individually paired with 1,523 food constituents) were
predicted using DeepDDI (SI Appendix, Materials and Methods).
Although we are examining the DFI type, the output is given as
the DDI type by DeepDDI; thus, the DDI type reported below
should be considered as the DFI type. The same DNN generated
above was used because the gold standard DDI dataset used to
develop it also covers some, but not all, known natural products
found in food sources. Since not all of the known natural
products (food constituents) to examine here were covered in the
DNN trained above, another validation step was added. The
predicted DDI type of a drug–food constituent pair was con-
sidered valid if there exist drug pairs in the gold standard DDI
dataset showing the same DDI type as the observed drug–food
constituent pair, and at the same time at least one of the drugs in
the pair is structurally similar (Tanimoto coefficient >0.75) (8,
11) to the food constituent under examination. This inference
was based on a well-known assumption that a drug pair A is
likely to have the same DDI as another drug pair B if both drug
pairs have structurally similar drug members (8). As a result,
319,993 drug–food constituent pairs were predicted to have a
total of 690,956 DDI types, while the remaining drug–food
constituent pairs were not assigned with any DDI types from
DeepDDI. The names of 274 food constituents appeared as the
“subject” in 358,995 out of the 690,956 DeepDDI output sen-
tences (e.g., alliospiroside A in the sentence of “Alliospiroside A
may decrease the cardiotoxic activities of Mianserin”) (SI Ap-
pendix, Fig. S10A). From a grammatical perspective, such
274 food constituents could be considered to affect pharmaco-
logical effects of their interacting drugs (see Dataset S5 for full
list). In particular, attention was paid to those food constituents
that might decrease in vivo concentration of interacting drugs,
which could potentially reduce the therapeutic efficacies. Among
the 358,995 output sentences with food constituents as “subject,”
73 food constituents were predicted to decrease in vivo con-
centrations of 430 drugs used to treat a total of 357 diseases by
decreasing absorption, bioavailability, or serum concentration of
drugs, or by increasing metabolism of drugs (Fig. 3 and Dataset
S6 for details). For example, in vivo concentrations of 30 drugs

for treating hypertension could be potentially decreased by at
least one of 18 food constituents such as L-glutamic acid, levo-
glutamide, and spermidine (abundant in oat according to FooDB;
names of the food source shown in parentheses hereafter), and
levoglutamide (red beetroot). Similarly, in vivo concentrations of
11 drugs for treating hyperlipidemia could be reduced by at least
one of 20 food constituents such as aminoadipic acid and levo-
glutamide (broccoli), and alliin and S-allylmercaptocysteine (gar-
lic), while three drugs for type 2 diabetes mellitus were affected
by at least one of nine food constituents such as L-glutamic acid
and L-aspartic acid (abundant in many food sources including
soybean, wheat, and gelatin; Fig. 3 and see Dataset S6 for details).
Furthermore, polyvalent cations such as aluminum, calcium,
chromium, iron, and magnesium were found to reduce the in vivo
concentrations of the drugs for the above-mentioned three chronic
diseases; polyvalent cations were reported to cause treatment
failures by binding to drugs (24, 25). These results altogether
suggest that DeepDDI can be useful in suggesting which food or
its food constituents might need to be avoided during specific
medication. In particular, information on the relationship among
diseases, drugs to treat the disease, food sources, and food con-
stituents generated in this study (Fig. 3 and Dataset S6) can serve
as an essential consideration for medication guideline.
Finally, bioactivities of food constituents were inferred from

the above-mentioned 690,956 DeepDDI output sentences for
the whole set of 3,288,157 drug–food constituent pairs analyzed.
Food constituents were assigned with bioactivities if they were
described with the expression form of “[pharmacological effects]
activities of [food constituent]” in the 690,956 DeepDDI output
sentences (Fig. 4A and SI Appendix, Fig. S10B); for example,
salicylic acid could be assigned to have “anticoagulant activity”
based on the DeepDDI output sentence of “Cefixime may in-
crease the anticoagulant activities of Salicylic acid”). Conse-
quently, 149 food constituents could be assigned with at least one
of the 30 types of bioactivities using 29,423 DeepDDI output
sentences having such expression form (Fig. 4A and Dataset S7).
Among the 149 food constituents, 23 food constituents were
found to have relevant experimental evidences previously re-
ported for the predicted bioactivities; for example, antihyper-
tensive activities of octopamine (mandarin orange), L-DOPA
(broad bean), and L-tyrosine (red bell pepper) could be pre-
dicted (Fig. 4B). This analysis demonstrates another strategy of
deciphering useful information from the DeepDDI output sen-
tences; DeepDDI could be used to predict bioactivities of rela-
tively unknown food constituents involved in drug interactions,
provided that their structures are available.

Discussion
In this paper, we report development of DeepDDI that accu-
rately predicts DDI types for given drug pairs and drug–food
constituent pairs simply by using names and chemical structures
as inputs. DeepDDI employs an optimized DNN along with SSP
as a feature vector of drugs, which showed high accuracies (84.8–
93.2%) according to the seven standard performance metrics
(Fig. 1C). We then showcased four applications of DeepDDI to
better understand drug interactions in the context of DDIs and
DFIs, including prediction of DDI mechanisms causing ADEs,
suggestion of alternative drug members for the intended phar-
macological effects without negative health effects, prediction of
the effects of food constituents on interacting drugs, and pre-
diction of bioactivities of food constituents. These applications
suggest that DeepDDI provides more specific information on
drug interactions beyond the occurrence chance of DDIs or
ADEs typically reported to date (7). When the DNN used in this
study is upgraded based on more training with more data on drug
pair interactions, the accuracy of prediction will be further
increased. An interesting future study will be performing the
above predictions by DeepDDI on a group of multiple (more
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than two) drugs and/or food constituents. In the real world,
we obviously intake many more than two food constituents.
Also, such a study will be essential to examine DDIs and DFIs
when traditional oriental medicine is used (26). Another
important future study will be considering the effects of the
concentrations of drugs and metabolites and also in vivo af-

finities of two given molecules in pair to their targets on DDIs
and DFIs, which will require development of new algorithms.
So far, the best DDI database offered by DrugBank only pro-

vides DDI types for two drugs only. Once DDI data for multiple
drugs and/or food constituents become available, the DNN can be
upgraded by training for DeepDDI analysis of DDIs and DFIs

Fig. 3. Prediction of food constituents that reduce the in vivo concentration of approved drugs. A network showing relationships among 357 diseases,
430 approved drugs, 274 food constituents, and 356 food sources was created using the DeepDDI output sentences obtained from 358,995 drug-food constituent
pairs (Datasets S5 and S6). As representative examples, local networks for hypertension, hyperlipidemia, and type 2 diabetes mellitus are presented in gray boxes.
In vivo concentration of drugs was predicted to be reduced by the decreased absorption (DDI type 1), decreased bioavailability (DDI type 4), increased metabolism
(DDI type 7), and decreased serum concentration (DDI type 9) through drug–food constituent interactions (DFIs). Networks were drawn using Gephi (33).
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of multiple drugs and food constituents. Also, to complement
DeepDDI in understanding the mechanisms of action of multiple
drugs, increasingly available complementary data and methods can
be used, including transcriptome data under drug treatment con-

ditions (27), and the use of drug target association-based methods
(12–14), text mining-based methods (28, 29), molecular docking (30),
and/or human genome-scale metabolic models (31, 32). For ex-
ample, the method by Huang et al. (14) provides additional

Fig. 4. Bioactivity prediction of food constituents. (A) Number of food constituents predicted to have each bioactivity based on the DeepDDI output sen-
tences (SI Appendix, Fig. S10B). A unique set of 149 unique food constituents were predicted to have at least one of the 30 bioactivities. (B) Twenty-three food
constituents grouped in gray boxes based on their predicted bioactivities among the 149 food constituents. These food constituents have reported evidences.
Number below each chemical name refers to PubMed identifier (PMID) of relevant literature (see Dataset S7 for details).
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information on the potential of two drugs in pair to interact with
the same protein target, which helps better understand mechanisms
of action associated with the predicted DDI type (SI Appendix, Fig.
S11). In this context, DeepDDI will serve as an essential tool to
analyze the pairs of drugs and/or food constituents, and can be
further extended to the “real world” DDI and DFI studies on
multiple compounds in the future.

Materials and Methods
All of the materials and methods conducted in this study are detailed in SI
Appendix, Materials and Methods: preparation of the gold standard DDI

dataset for DeepDDI, calculation of structural similarity profile used as an
input for DNN, optimization of DNN architecture, DNN training, DNN eval-
uation, and prediction of drug–food constituent interaction. Source code for
DeepDDI is available at https://bitbucket.org/kaistsystemsbiology/deepddi.

ACKNOWLEDGMENTS. This work was supported by the Technology Devel-
opment Program to Solve Climate Changes on Systems Metabolic Engineering for
Biorefineries (Grants NRF-2012M1A2A2026556 and NRF-2012M1A2A2026557)
from the Ministry of Science and ICT through the National Research Founda-
tion (NRF) of Korea. This work was also supported by the Fourth Industrial
Revolution AI Flagship initiative from the Korean Advanced Institute of Science
and Technology.

1. Edwards IR, Aronson JK (2000) Adverse drug reactions: Definitions, diagnosis, and
management. Lancet 356:1255–1259.

2. Kantor ED, Rehm CD, Haas JS, Chan AT, Giovannucci EL (2015) Trends in prescription
drug use among adults in the United States from 1999-2012. JAMA 314:1818–1831.

3. Qato DM, Wilder J, Schumm LP, Gillet V, Alexander GC (2016) Changes in prescription
and over-the-counter medication and dietary supplement use among older adults in
the United States, 2005 vs 2011. JAMA Intern Med 176:473–482.

4. Pirmohamed M, Orme M (1998) Drug Interactions of Clinical Importance (Chapman &
Hall, London), pp 888–912.

5. Onakpoya IJ, Heneghan CJ, Aronson JK (2016) Post-marketing withdrawal of
462 medicinal products because of adverse drug reactions: A systematic review of the
world literature. BMC Med 14:10.

6. Vilar S, Uriarte E, Santana L, Tatonetti NP, Friedman C (2013) Detection of drug-drug
interactions by modeling interaction profile fingerprints. PLoS One 8:e58321.

7. Cheng F, Zhao Z (2014) Machine learning-based prediction of drug-drug interactions
by integrating drug phenotypic, therapeutic, chemical, and genomic properties. J Am
Med Inform Assoc 21:e278–e286.

8. Vilar S, et al. (2012) Drug-drug interaction through molecular structure similarity
analysis. J Am Med Inform Assoc 19:1066–1074.

9. Gottlieb A, Stein GY, Oron Y, Ruppin E, Sharan R (2012) INDI: A computational
framework for inferring drug interactions and their associated recommendations.
Mol Syst Biol 8:592.

10. Zhang P, Wang F, Hu J, Sorrentino R (2015) Label propagation prediction of drug-
drug interactions based on clinical side effects. Sci Rep 5:12339.

11. Vilar S, et al. (2014) Similarity-based modeling in large-scale prediction of drug-drug
interactions. Nat Protoc 9:2147–2163.

12. YildirimMA, Goh KI, Cusick ME, Barabási AL, Vidal M (2007) Drug-target network. Nat
Biotechnol 25:1119–1126.

13. Park K, Kim D, Ha S, Lee D (2015) Predicting pharmacodynamic drug-drug interactions
through signaling propagation interference on protein-protein interaction networks.
PLoS One 10:e0140816.

14. Huang J, et al. (2013) Systematic prediction of pharmacodynamic drug-drug inter-
actions through protein-protein-interaction network. PLoS Comput Biol 9:e1002998.

15. Wishart DS, et al. (2017) DrugBank 5.0: A major update to the DrugBank database for
2018. Nucleic Acids Res 46:D1074–D1082.

16. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444.
17. Angermueller C, Pärnamaa T, Parts L, Stegle O (2016) Deep learning for computa-

tional biology. Mol Syst Biol 12:878.

18. Wan EA (1990) Neural network classification: A Bayesian interpretation. IEEE Trans
Neural Netw 1:303–305.

19. Gómez-Bombarelli R, et al. (2018) Automatic chemical design using a data-driven
continuous representation of molecules. ACS Cent Sci 4:268–276.

20. Jaeger S, Fulle S, Turk S (2018) Mol2vec: Unsupervised machine learning approach
with chemical intuition. J Chem Inf Model 58:27–35.

21. Ferslew KE, Hagardorn AN, Harlan GC, McCormick WF (1998) A fatal drug interaction
between clozapine and fluoxetine. J Forensic Sci 43:1082–1085.

22. Huitema AD, Mathôt RA, Tibben MM, Rodenhuis S, Beijnen JH (2001) A mechanism-
based pharmacokinetic model for the cytochrome P450 drug-drug interaction be-
tween cyclophosphamide and thioTEPA and the autoinduction of cyclophosphamide.
J Pharmacokinet Pharmacodyn 28:211–230.

23. Price ND, et al. (2017) A wellness study of 108 individuals using personal, dense, dy-
namic data clouds. Nat Biotechnol 35:747–756.

24. Suda KJ, Garey KW, Danziger LH (2005) Treatment failures secondary to drug inter-
actions with divalent cations and fluoroquinolone. Pharm World Sci 27:81–82.

25. Palleria C, et al. (2013) Pharmacokinetic drug-drug interaction and their implication in
clinical management. J Res Med Sci 18:601–610.

26. Kim HU, Ryu JY, Lee JO, Lee SY (2015) A systems approach to traditional oriental
medicine. Nat Biotechnol 33:264–268.

27. Subramanian A, et al. (2017) A next generation connectivity map: L1000 Platform and
the first 1,000,000 profiles. Cell 171:1437–1452.e17.

28. Raja K, Patrick M, Elder JT, Tsoi LC (2017) Machine learning workflow to enhance
predictions of adverse drug reactions (ADRs) through drug-gene interactions: Appli-
cation to drugs for cutaneous diseases. Sci Rep 7:3690.

29. Tari L, Anwar S, Liang S, Cai J, Baral C (2010) Discovering drug-drug interactions: A
text-mining and reasoning approach based on properties of drug metabolism.
Bioinformatics 26:i547–i553.

30. Lavecchia A, Cerchia C (2016) In silico methods to address polypharmacology: Current
status, applications and future perspectives. Drug Discov Today 21:288–298.

31. Thiele I, et al. (2013) A community-driven global reconstruction of human metabo-
lism. Nat Biotechnol 31:419–425.

32. Ryu JY, Kim HU, Lee SY (2017) Framework and resource for more than 11,000 gene-
transcript-protein-reaction associations in human metabolism. Proc Natl Acad Sci USA
114:E9740–E9749.

33. Bastian M, Heymann S, Jacomy M (2009) Gephi: An open source software for ex-
ploring and manipulating networks. International AAAI Conference on Weblogs and
Social Media (Association for the Advancement of Artificial Intelligence, Palo Alto,
CA), pp 361–362.

Ryu et al. PNAS | vol. 115 | no. 18 | E4311

SY
ST

EM
S
BI
O
LO

G
Y

PN
A
S
PL

U
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1803294115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1803294115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1803294115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1803294115/-/DCSupplemental
https://bitbucket.org/kaistsystemsbiology/deepddi

