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Abstract

Human skill learning requires fine-scale coordination of distributed networks of brain regions linked by white matter tracts
to allow for effective information transmission. Yet how individual differences in these anatomical pathways may impact
individual differences in learning remains far from understood. Here, we test the hypothesis that individual differences in
structural organization of networks supporting task performance predict individual differences in the rate at which humans
learn a visuomotor skill. Over the course of 6 weeks, 20 healthy adult subjects practiced a discrete sequence production task,
learning a sequence of finger movements based on discrete visual cues. We collected structural imaging data, and using
deterministic tractography generated structural networks for each participant to identify streamlines connecting cortical
and subcortical brain regions. We observed that increased white matter connectivity linking early visual regions was
associated with a faster learning rate. Moreover, the strength of multiedge paths between motor and visual modules was
also correlated with learning rate, supporting the potential role of extended sets of polysynaptic connections in successful
skill acquisition. Our results demonstrate that estimates of anatomical connectivity from white matter microstructure can
be used to predict future individual differences in the capacity to learn a new motor-visual skill, and that these predictions
are supported both by direct connectivity in visual cortex and indirect connectivity between visual cortex and motor cortex.
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Introduction white matter tracts, which link distant brain regions in cortico-

Human skill learning is a complex phenomenon that involves
the fine-scale coordination of disparate cortical and subcortical
regions (Dayan and Cohen 2011). This coordination critically
depends on the effective transmission of information across

cortical networks and cortico-subcortical loops (Lynch and Tian
2006). Lesions or injuries to these interconnected tracts—
particularly in motor and visual systems—can directly cause
deficits in skill learning (Ding et al. 2001). The exact extent of
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these deficits is difficult to predict, largely due to the fact that
white matter tracts form a complex interconnected network
(Sporns et al. 2005). Damage to this network can have broadly
distributed repercussions on processing, causing loss of infor-
mation transmission (Scantlebury et al. 2014), or detrimental
alterations in transmission patterns (Crofts et al. 2011).

The interconnected nature of white matter tracts not only
complicates response to injury but it also forms a fundamental
substrate for individual differences in brain anatomy that may
have nontrivial effects on cognition and behavior. White mat-
ter connectivity displays large-scale differences across indivi-
duals (Bassett et al. 2011), being modulated by age (Betzel et al.
2014), gender (Ingalhalikar et al. 2014, Tunc et al. 2016), genet-
ics (Hong et al. 2015), and prior experience (Scholz et al. 2009,
Sampaio-Baptista et al. 2013). How these individual differences
may account for individual differences in skill learning is not
fully understood. Gaining such an understanding could dir-
ectly inform therapeutic interventions to enhance recovery of
motor skills after brain injury (Tomassini et al. 2011), and
furthermore could potentially inform training paradigms
to enhance motor-visual expertise in healthy individuals
(Neumann et al. 2016).

Here, we examine if connectivity networks defined by dif-
fusion magnetic resonance imaging (MRI) are predictive of
individual differences in the rate at which subjects acquire a
simple visuomotor task (Wymbs and Grafton 2015). In a dis-
crete sequence production (DSP) task, subjects perform a
sequence of finger movements based on visual cues (Rhodes
et al. 2004). Once the correct key for each movement is
pressed, the visual cue for the next sequence element is pre-
sented without delay. Consequently, a DSP task allows sub-
jects to develop exceptionally fast, contiguous movements,
much like an expert pianist performing a keyboard arpeggio.
Efficient acquisition of this specific visuomotor skill requires a
gradual autonomy of visual and motor functional subnet-
works (Bassett et al. 2013, 2015) (Fig. 1A, B). Initially, a person
relies on the visual cue to perform a finger movement, an
action that requires integration between motor and visual cor-
tices; however, once a sequence becomes overlearned, a sub-
ject has mastered direct motor-motor associations where a
given finger movement is the cue for the next finger
movement.

These functional network changes may depend on underlying
structure, shown to be a fundamental driver of brain dynamics at
rest (Honey et al. 2009, Becker et al. 2015, Goni et al. 2014) and
during task performance (Smith et al. 2009, Hermundstad et al.
2013, 2014, Jarbo and Verstynen 2015, Osher et al. 2016).
Furthermore, individual variability in behavior has been linked to
differences in structural networks (Johansen-Berg 2010), and IQ
and motor speed have been associated with greater white matter
connectivity (Li et al. 2009) and fractional anisotropy (FA)
(Hirsiger et al. 2016). Prior work in word learning tasks also sug-
gests that increased myelination, axonal diameter, and FA in
tracts implicated in task processing are associated with better
performance (Wong et al. 2011, Lopez-Barroso et al. 2013).
Building on these prior studies, we hypothesized that individuals
with greater structural connectivity in motor and visual cortices
(and particularly in primary motor and visual cortices) would
show faster learning rates than individuals with less connectiv-
ity. We also set out to test whether these structural differences
remained constant over the 6 weeks of practice (Le Bihan and
Johansen-Berg 2012) or changed appreciably with training (Scholz
et al. 2009, Blumenfeld-Katzir et al. 2011, Taubert et al. 2012).
Finally, due to the prevalence of physically extended sets of

polysynaptic connections in the visual-motor system, we
hypothesized that individual differences in long-distance walks
on the graph of structural connections between visual and motor
cortex would correspond to individual differences in leaming
rate.

To address these hypotheses, we examined diffusion tensor
imaging (DTI) data acquired from 20 healthy young adult subjects
over the course of 6 weeks of training on the DSP task (Bassett
et al. 2013, 2014, 2015, Wymbs and Grafton 2015). Subjects were
scanned in 4 separate sessions, including a scan on Day 1 before
training began and then a scan approximately every 2 weeks.
Between scanning sessions, subjects practiced a set of 10-
element sequences at home using a program installed on their
laptop computers, and behavioral performance was assessed by
calculating the movement time (MT) for each sequence defined
as the duration between the first button press and the last button
press in the sequence. The learning rate for each participant was
computed as the first exponential drop-off parameter in a
double-exponential fit of the MT as a function of trials practiced
across the entire 6 weeks of training. To compare individual dif-
ferences in learning rate to the organization of white matter con-
nectivity, we generated structural networks from the 4 DTI scans
using a deterministic fiber tracking algorithm (Fig. 1C), which pro-
vided estimates of the number of streamlines connecting pairs of
cortical and subcortical regions derived from brain atlases
(Fig. 1D). We observe 3 main results: individual differences in
learning rate are significantly correlated with white matter con-
nectivity in visual (but not motor) cortex, these relationships are
consistent across the 6 weeks of task practice, and individuals
with faster learning rates also show greater walk strength linking
motor and visual cortices, a measure suggesting increased
strength of polysynaptic pathways.
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Figure 1. Structural connectivity in motor and visual networks of interest. (A, B)
Previous research suggests that increased skill on the DSP task requires concerted
functional network changes in distributed regions of motor (A) and visual (B) sys-
tems (Bassett et al. 2015, 2013); see Table 2 for region names. (C) To assess struc-
tural correlates of individual differences in learning rate on the DSP task, we
performed deterministic diffusion imaging tractography on 4 scans dispersed
evenly throughout the 6 weeks of training. (D) We constructed structural networks
using diffusion imaging tractography and the 111 cortical and subcortical regions
in the Harvard-Oxford atlas to examine individual variability in connectivity
strength. We also show that our results are robust across atlases, replicating our
findings in the 90 cortical and subcortical regions parcellation of the AAL atlas.
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Materials and Methods
Participants and Experimental Design

Participants: Twenty-two right-handed participants (13 females
and 9 males; mean age, 24 years) volunteered and provided
informed consent in writing in accordance with the guidelines
of the Institutional Review Board of the University of California,
Santa Barbara. All had normal or corrected vision and no his-
tory of neurological disease or psychiatric disorders. We
excluded 2 participants because 1 participant failed to complete
the experiment and the other had excessive head motion (per-
sistent head motion greater than 5mm during the MRI scan-
ning). We also had technical problems for 2 participants and
were unable to collect DTI data during the pretraining session
for Scan 1. Finally, for one additional subject, Scan 1 was
removed due to the total of estimated streamlines differing by
more than 3 standard deviations from the subject mean.
Therefore, the structural analysis includes 17 participants for
Scan 1 and 20 participants for Scans 2—4.

Experimental setup and procedure: The DSP training protocol
occurred over a 6-week period with 4 MRI scanning sessions
spaced 2 weeks apart on Day 1, Day 14, Day 28, and Day 42
(Fig. 2A). On Day 1 of the experimental protocol, the partici-
pants completed their first MRI session, Scan 1, and the experi-
menter (N.F.W. installed the training module on the
participant’s personal laptop and taught them how to use it for
at-home training sessions. Participants were required to do the
training for a minimum of 10 out of the 14 days in each 2-week
period between the subsequent scanning sessions for Scans 2-
4. All participants completed the full expected training regi-
men; none completed less than 10 full training sessions.

In their at-home training sessions, participants practiced a
set of 10-element sequences using their right hand in a DSP task
(Bassett et al. 2013, 2014, 2015, Mattar et al. 2015, Wymbs and
Grafton 2015). Sequences were presented using a horizontal
array of 5 square stimuli, and the key responses were mapped
from left to right, such that the thumb corresponded to the left-
most stimulus and the pinky finger corresponded to the right-
most stimulus (Fig. 2B). A square highlighted in red served as the
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Each practice trial began with the presentation of a sequence-
identity cue that identified 1 of 6 sequences. These 6 sequences
were presented with 3 different levels of exposure, in order
to acquire data over a larger range of learning stages while con-
trolling for the effect of scanning day (Table 1). The 2 extensively
trained (EXT) sequences were identified with a colored circle
(cyan for sequence A and magenta for B), and they were each
practiced for 64 trials during every at-home training session. The
2 moderately trained (MOD) sequences were identified by trian-
gles (red for sequence C and green for D) and each practiced for 10
trials in every session. The 2 minimally trained (MIN) sequences
were identified by black outlined stars (filled with orange for
sequence E and white for F) and only practiced for 1 trial each dur-
ing the at-home training sessions. Participants were given feed-
back every 10 trials that reported the number of error-free
sequences and the mean time required to complete them.

During each of the 4 MRI scanning sessions, we collected fun-
ctional echo planar imaging data and structural imaging data
from magnetization prepared rapid acquisition gradient-echo
(MPRAGE) and DTI scans. In the functional runs, participants per-
formed 300 trials of the self-paced DSP task using the same block
structure with feedback as the at-home practice sessions, but the
sequences were presented equally for a total of 50 trials for each of
the 6 trained sequences. We have previously reported results from
functional analyses (Bassett et al. 2013, 2014, 2015, Mattar et al.
2015, Wymbs and Grafton 2015). In this paper, we analyze the
structural data and examine individual variability in structural
connections among the distributed motor and visual regions of
interest that were derived directly from the functional neuroima-
ging studies of this same data set (Bassett et al. 2015). In this previ-
ous work, a set of motor and visual regions that formed functional
modules was identified in a data-driven fashion whose task-based
modulation tracked the effects of training. Here we build on the
identification of these regions of interest by studying their struc-
tural connectivity derived from diffusion imaging.

Table 1 Number of trials practiced of each sequence type at the start
of each scanning session

imperative stimulus, and the next square in the sequence was Scan 1 Scan 2 Scan 3 Scan 4
highlighted immediately after each correct key press. If an incor- MIN sequences 50 110 170 230
rect key was pressed, the sequence was paused at the error and MOD sequences 50 200 350 500
restarted upon the appropriate key press. Participants had an EXT sequences 50 740 1430 2120
unlimited amount of time to respond and complete each trial.
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sessions: 6 Over Trials
» == Mean Fit
o ° = Fastest Learner
<4 44 44 4 1S == Slowest Learner
" . . . = 4
“paseline (50 trials/ (50 trials/ (50 trials/ SR manpin —
training” sequence) sequence) sequence) pping é 3
home training example
aaann 5 ,
v S ’

[0 EXT (64 trials/sequence)
ll MOD (10 trials/sequence)

index middle ring pinky
OOOE .

52 0 500 1000 1500 2000
1 %
Qf/{gé//”s Trial

©

B MIN (1 trial/sequence) Bt

Figure 2. Overview of training, task paradigm, and MT estimation. (A) Training schedule. Subjects underwent 4 scans, each approximately 2 weeks apart. Subjects
practiced once a day for at least 10 days between each scanning session. (B) Subjects viewed a screen on which stimuli were displayed. Each sequence was preceded
with the display of a sequence-identity cue, which informed the subject which of 6 sequences would follow. During the sequence, subjects saw 5 horizontally
arranged squares. For each element of the sequence, one box was highlighted for the subject, providing information on the key to press. Upon completion of the task,
a fixation cross was displayed for a short inter-trial interval, and every 10 trials performance feedback was provided. The squares were spatially mapped onto a key-
pad, one corresponding to each finger in addition to the thumb (see insert). (C) Double-exponential fit of MT to the number of trials practiced. The fit is shown for the

fastest learner, the slowest learner, and the mean across all subjects.
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Estimating Learning Rates for Individual Participants

For each sequence, we defined the MT as the duration between
the time of the first button press and the time of the last button
press. For the set of sequences of a single type (i.e., sequence A, B,
C, D, E, and F), we estimated the learning rate by fitting a double-
exponential function to the MT data (Schmidt and Lee 2005,
Rosenbaum 2014) using a robust outlier correction in MATLAB
(using the function “fitm” in the Curve Fitting Toolbox with
option “Robust” and type “Lar”): MT = Die* + D,e %, where t is
time, « is the exponential drop-off parameter (which we called
the learning rate) used to describe the fast rate of improvement, 1
is the exponential drop-off parameter used to describe the slow,
sustained rate of improvement, and D, and D, are real and posi-
tive constants. The magnitude of « indicates the steepness of the
learning slope: individuals with larger « values have a steeper
drop-off in MT, suggesting that they are faster learners (Yarrow
et al. 2009, Dayan and Cohen 2011). The decrease in MT has been
used to quantify learning for several decades (Snoddy 1926,
Crossman 2010). Several functional forms have been suggested
for the fit of MT (Newell and Rosenbloom 1993, Heathcote et al.
2000), and variants of an exponential are viewed as the most stat-
istically robust choices (Heathcote et al. 2000). In addition, the fit-
ting approach that we used has the advantage of estimating the
rate of learning independent of initial performance or perform-
ance ceiling. For the purpose of measuring effects on learning
rate, we used the average value of « for the 2 extensively trained
sequences, for which we had the greatest number of trials prac-
ticed (Table 1).

While we do not have explicit information on the computing
power of each subject’s laptop, the learning rate that we study
is independent of the starting MT, the ending MT, and the
mean MT. Instead, it is a measure of the rate of change in MT.
Thus, any differences in computing power cannot be used to
explain the results. Moreover, we should mention that error
rates on this task are on the order of 1 x 10-3 (Bassett et al.
2015), and error rates are not significantly correlated with
learning rates (r = 0.34, p = 0.13) (Bassett et al. 2015).

Neuroanatomical Data and Associated Methods

In this section, we briefly describe the neuroanatomical data
acquired from participants, as well as computational methods
associated with data preprocessing, structural network con-
struction, and statistical analyses.

Data Acquisition

All scans were acquired on a 3T Siemens TIM Trio scanner with a
12-channel phased-array head coil at the University of California,
Santa Barbara. Each data acquisition session included both a DTI
scan as well as a high-resolution T1-weighted anatomical scan.
The structural scan was conducted with an echo planar diffusion
weighted technique acquired with iPAT using an acceleration
factor of 2. The diffusion scan was 30-directional with a b value of
1000 s/mm? and TE/TR = 94/8400 ms, in addition to 2 b0 images.
Matrix size was 128 x 128 with a slice number of 60. Field of view
was 230x230mm? and slice thickness was 2mm. Acquisition
time per DTI scan was 9:09 min. The anatomical scan was a high-
resolution 3D T1-weighted sagittal whole-brain image using an
MPRAGE sequence. It was acquired with TR=2300ms;
TE =2.98 ms; flip angle =9 degrees; 160 slices; 1.10 mm thickness.

DTI Preprocessing
DTI is both highly sensitive to subject movement (Yendiki et al.
2013) and susceptible to directional eddy currents, which can cause

distortions in the brain volume (Jezzard et al. 1998). To address
these issues, we performed the following data preprocessing using
the FMRIB Software Library (FSL v5.0.8) (Smith et al. 2004, Jenkinson
et al. 2012). First, individual subject masks of the brain were created
with the brain extraction tool (Smith 2002) for use in later registra-
tion and correction tools, which require an accurate estimation of
the spatial extent of the brain. We applied the EDDY correction tool
(Andersson and Sotiropoulos 2016) which simultaneously models
both motion effects and eddy current distortions, and corrects
them relative to a b = 0 image collected at the beginning of the
scan.

Next, subject scans were transformed into a common space
to compare regional connectivity between subjects. Using
FMRIB’s linear image registration tool (Jenkinson and Smith
2001, Jenkinson et al. 2002), scans were registered to the anatom-
ical T1 image, and then the anatomical scan was in turn regis-
tered to the Montreal Neurological Institute (MNI) space MNI152
template using FMRIB’s nonlinear image registration tool
(FNIRT). Motion correction also impacts the effective b-matrix
directions since the rotated images are no longer aligned with
the scanner; therefore, we used the output of EDDY to rotate the
b-vectors to match the changes induced by the motion correc-
tion procedure (Leemans and Jones 2009).

Using DSI-Studio (http:/dsi-studio.labsolver.org), orienta-
tion density functions (ODFs) within each voxel were recon-
structed from the corrected scans in native diffusion space in
order to minimize sampling distortions (Cieslak and Grafton
2014). We then used the reconstructed ODFs to perform a
whole-brain deterministic tractography using DSI-Studio (Yeh
et al. 2013). We generated 1,000,000 streamlines per subject,
with a maximum turning angle of 35degrees (Bassett et al.
2011) and a maximum length of 500 mm (Cieslak and Grafton
2014). By holding the number of streamlines between partici-
pants constant, we use the number of streamlines that connect
brain region pairs as an estimate of the strength of the connec-
tion and examine individual variability in structural connectiv-
ity (Griffa et al. 2013).

Network Construction

To examine the relationship between structural connectivity
and individual differences in learning rate, we constructed net-
works for each subject where nodes are atlas regions and edges
are the measured connection strength between region pairs
(Hagmann et al. 2008).

The nodes of the network were derived from spatially
defined regions of a brain atlas, and we utilized 2 complemen-
tary atlas parcellations to confirm that our results are not spe-
cific to the particular regional boundaries chosen by one atlas.
First, we used the Harvard-Oxford atlas to allow for direct com-
parison to functional network studies of this same task (Bassett
et al. 2013, 2014, 2015), and we combined the Harvard-Oxford
cortical and subcortical atlases into a single 111-region atlas by
giving cortical labels precedence whenever a single voxel was
assigned to both cortical and subcortical regions. In our intrahe-
misphere vs interhemisphere analysis, we exclude the brain-
stem region from this atlas since it crosses the midline. As a
complementary parcellation, we chose the anatomically defined
automated anatomical labeling (AAL) atlas, originally developed
in statistical parametric mapping (Tzourio-Mazoyer et al. 2002),
which divides each brain hemisphere into 45 regions. For both
atlases, we used a version in MNI-space that was then warped
into subject-specific native space using FNIRT. Across both
atlases, the edges of the network were derived from streamlines
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that started and ended between the region pair and excluded
streamlines that passed through one or both of the regions.

Weighted connectivity matrices were then generated from the
atlases and DTI reconstructions such that the matrix W con-
tained elements Wj; whose values were equal to the number of
streamlines with end-to-end connectivity between regions i and j.
All diagonal elements in the matrix were set to 0 to eliminate
self-connections. To correct for differing region sizes, each matrix
element was divided by the sum of the volumes of regions i and j
(Hagmann et al. 2008). That is, Bj = Wj;/ (Uis, + ,U)-S) where v is the
number of voxels in region i for subject s. The resultant connectiv-
ity matrix for each subject and scan was then normalized to give
a connection strength A such that A; = B;/ Zi’j Bjj, ensuring that all
scans had identical total connection strength.

Network Statistics

Based on the functional analysis of this data set (Bassett et al.
2015), we examined whether individual variability in structural
connectivity among distributed regions of the motor and visual
systems was correlated with learning rate (Mattar et al. 2015).
For both of these systems, we calculated the mean connection
strength within the system by averaging the weights of all
edges connecting pairs of nodes within the system (see
Table 2). We report our results both at the single-scan level as
well as an average over the 4 scans of each subject. Results are
consistent in the 2 cases.

To analyze the impact of indirect connectivity between motor
and visual regions, we computed walk strength, a measure of the
connection strength between 2 regions that accounts for indirect
paths of varying walk lengths. Here, a walk is defined as a path
from one point in the graph to another that may pass along the
same edge more than once (Fig. 6A). Given a graph G and its
adjacency matrix A, A" provides the connection strength
between all pairs of nodes when examining walks of length n
(Estrada and Hatano 2007). For instance, streamlines directly
connecting primary visual cortex to primary motor cortex would
be a walk of length 1, whereas the combination of streamlines
connecting primary motor cortex first to thalamus and then to
primary visual cortex would be a walk of length 2. Note that the
term “length” is used in a topological sense, where walks with
more steps are considered to have longer length (Crofts and
Higham 2009). We base our analysis on a similar metric, commu-
nicability, which is defined such that walks of all lengths contrib-
ute to network communication, but longer walks increasingly
contribute less. For an unweighted graph, the network commu-
nicability is simply given as Y~  A"/n! (Estrada and Hatano
2007). In a weighted graph, an additional normalization is
needed to prevent highly connected nodes from unduly

Table 2 Brain areas in motor and visual systems derived directly fr-
om functional neuroimaging studies of the same task (Bassett et al.
2015)

Motor Visual

L,R Intracalcarine cortex
L,R Cuneus cortex

L,R Precentral gyrus
L,R Postcentral gyrus

L,R Superior parietal lobule L,R Lingual gyrus
L,R Supramarginal gyrus, anterior L,R Supercalcarine cortex
L,R Supplemental motor area L,R Occipital pole

L, Parietal operculum cortex
R, Supramarginal gyrus, posterior
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dominating the estimate (Crofts and Higham 2009). A typical
solution is to divide all weights A; by \/dl_d , where d; is the
degree of node i, given by di = Y ; Ax (Higham et al. 2007).
While communicability provides a single metric of communica-
tion between nodes, it does not provide information on the con-
tributions of specific walk lengths. To address this limitation, we
define the walk strength as the normalized strength of walks of
length n, which is given as S", where S=D"Y2AD-¥2 and
D = diag(d;), or the matrix whose diagonal is given by the values
d; (Crofts and Higham 2008).

Statistical Testing

Analysis was performed in Python using a collection of freely
available packages: Numpy/Scipy, Pandas, stastmodels, and
Jupyter. Correlations reported throughout the paper are
Pearson correlations at an « level of 0.05. Data were corrected
for multiple comparisons using Bonferroni, False Discovery
Rate (Benjamini and Hochberg 1995), and the form p < 0.05/n,
where n is the number of comparisons.

Results

Visual Streamline Connectivity Correlates with
Learning

Our general aim was to uncover the structural network corre-
lates of individual differences in learning rate for a common
visuomotor task (Wymbs and Grafton 2015). Because direct
connections between motor and visual cortices are not pre-
sent at this large scale, we separately consider connectivity
within motor areas and within visual areas previously identi-
fied in a functional analysis of this data set (Mattar et al. 2015,
Bassett et al. 2015) (see Table 2 and Fig. 1A, B). We explicitly
test the fundamental hypothesis that individuals with greater
mean structural connectivity in motor and visual cortices
would show faster learning rates (x; see Materials and
Methods) than individuals with less connectivity. We
observed a highly significant correlation between visual-vis-
ual streamlines and learning rate across all subjects (Pearson
correlation coefficient r = 0.50, with corresponding one-tailed
p value of p = 0.0125, significant after Bonferroni correction;
Fig. 3A). In contrast, we observed no significant correlation
between motor-motor streamlines and learning rate
(r =0.07, p = 0.389; Fig. 3B).

Within the subset of connections linking visual regions with
one another, we expected that connection strength within a given
hemisphere would be particularly relevant given that interhemi-
spheric transfer of information is not as relevant in this task as it
is in other tasks manipulating perceptual reference frames (Ber-
nier and Grafton 2010) or narrow visual fields (Doron et al. 2012).
Consistent with our hypothesis, we found that the observed cor-
relation between the visual-to-visual connection strength and
learning rate was largely driven by intrahemispheric streamlines
(Pearson correlation coefficient r = 0.68, p = 0.0005; Fig. 3C), while
no significant correlation was observed among interhemispheric
connections (r = 0.01, p = 0.512; Fig. 3D).

We verified these same relationships in the AAL atlas
(Fig. 3E-H). The structural connection strength among visual-vis-
ual region pairs accounts for individual variability in learning
rate. It is again more pronounced in both overall visual (r = 0.44,
p=0.027) and intrahemispheric visual-visual connectivity
(r = 0.62, p = 0.0002), while no significant correlation is observed
either in motor-motor connectivity (r = 0.03, p = 0.449) or in
interhemispheric visual connections (r = 0.10, p = 0.666).
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Figure 3. Correlations between mean connection strength and learning rate across all scanning sessions. (A) We observe a significant correlation between the average
strength of connections linking visual regions and the learning rate. (B) No such relationship is observed for connections linking motor regions. The correlation
between learning rate and visual-visual connectivity is largely driven by intrahemispheric (C) rather than interhemispheric (D) connections. (E-H) We observe the

same relationships in the AAL atlas as in the Harvard-Oxford atlas for each subset of connections.

Reliability of Connectivity-Based Predictors of Learning

Next, we asked whether individual differences in the white
matter connections that predicted learning rate would remain
constant (Le Bihan and Johansen-Berg 2012) or change appre-
ciably (Scholz et al. 2009, Blumenfeld-Katzir et al. 2011, Taubert
et al. 2012) over 6 weeks of practice. We performed the same
analysis as before but individually applied to each scan,
restricting ourselves to the set of visual intrahemispheric con-
nections (Fig. 4A-D). Across the 4 scan sessions, we observed a
positive relationship between the visual-to-visual connection
strength and learning rate: the p values for Scans 24 all pass a
Bonferroni correction for n = 4 tests and Scan 1 was close to sig-
nificant at p = 0.05. Pearson correlation coefficients and corre-
sponding p values for Scan 1 were r = 0.41, p = 0.050, for Scan 2
were r = 0.72, p = 0.0002, for Scan 3 were r = 0.61, p = 0.002,
and for Scan 4 were r = 0.71, p = 0.0003. These results suggest
that the connectivity-learning relationship remained constant
over 6 weeks of practice.

In addition to being robust across scanning sessions, the
connectivity-learning relationship is also robustly observed
when we segregated the brain into 90 (rather than 111) regions
using a separate atlas. Specifically, using the AAL atlas, we
observed a significant correlation between learning rate and
intrahemispheric visual connection strength across all 4 scan
sessions after Bonferroni correction for n = 4 tests (Fig. 4E-H).
Pearson correlation coefficients and corresponding p values for
Scan 1 were r=0.51, p=0.011, for Scan 2 were r = 0.62,
p = 0.002, for Scan 3 were r = 0.61, p = 0.002, and for Scan 4
werer = 0.54, p = 0.003.

The scan-independent relationship between learning rate
and visual-to-visual connectivity suggests the possibility that

visual-to-visual connectivity itself is consistent across the 6
weeks of training, consistent with previous reports in other
learning contexts (Le Bihan and Johansen-Berg 2012). To dir-
ectly assess the reliability of visual-to-visual connectivity, we
performed 2 separate analyses: first at the level of white matter
streamlines and the second at the level of FA across voxels.
First, we computed the intraclass correlation coefficient (ICC,
Shrout and Fleiss 1979) to assess the reliability of visual con-
nectivity across scanning sessions across the subset of subjects
present for all 4 scans (n = 17). Using a 2-way ANOVA on visual-
to-visual connection strength, we found no main effect of scan-
ning session (F34g = 1.35, p = 0.27). Furthermore, the ICC is
extremely high (ICC(1,1) = 0.83), which indicates the high reli-
ability of visual-to-visual connection strength across scanning
sessions. Additionally, we performed voxel-level univariate
analyses to test for reliability of FA across the whole brain over
the 6 weeks of learning. A repeated measures ANOVA was cal-
culated across the 4 DTI scan sessions. An f-omnibus test
demonstrated no significant effects (p > 0.05, FDR corrected). In
addition, a paired t-test between Scans 1 and 4 was performed.
There were no significant differences of FA values (p > 0.05,
FDR corrected). These results support the conclusion that white
matter microstructure remains consistent over the 4 scans,
supporting the observed inter-scan reliability of our results.

Anatomical Specificity of Connectivity-Learning
Relationship
To better understand the relationship between intrahemi-

spheric visual connectivity and variability in learning rate «, we
examined which visual region pairs were driving this effect.
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Figure 4. Connectivity-learning relationship by scan. (A-D) The structural connection strength between intrahemispheric visual-visual region pairs accounts for indi-
vidual variability in learning rate, and this relationship is stable across the 4 scanning sessions. This relationship is significant after Bonferroni correction for Scans 2,
3, and 4 in the Harvard-Oxford atlas, with near significance in Scan 1. (E-H) We replicated these results within the AAL atlas, showing significance in all 4 scan

sessions.

This examination had the added benefit of assessing whether
different connections predicted behavior differently: although a
positive trend was expected given the results in Figure 3, it is
possible that a few smaller regions might show the opposite
relationship. To address these questions, for each visual region
pair, we calculated the Pearson correlation coefficient between
the subject learning rate and the mean connection strength
between the 2 regions across scans (see Fig. 5A). We found sig-
nificant correlations (uncorrected) between learning rate and
individual differences in the connections between 5 pairs of
visual regions: right intracalcarine and right cuneal cortex
r = 0.64, p = 0.0012), right cuneal cortex and right occipital pole
r =0.42, p = 0.032), left intracalcarine and left cuneal cortex
r = 0.56, p = 0.005), left supracalcarine and left occipital cortex
r=0.38,p = 0.049), and left supracalcarine and left lingual
gyrus r = 0.4, p = 0.039). Only the first of these relationships
passed FDR correction for multiple comparisons (Fig. 5B).

Role of Indirect Connectivity in Learning Prediction

Our results have revealed structural correlates in direct connec-
tions within visual and motor regions; however, prior fMRI stud-
ies have linked changes in learning rate to functional
connectivity between motor and visual areas (Bassett et al. 2015,
Mattar et al. 2015). To examine structural predictors between
regions, we turn to recently developed mathematical techni-
ques in the domain of network science that allow us to directly
examine the effects of indirect connectivity (an estimate of
polysynaptic transmission potential across extended physical
distances) in brain networks. Specifically, we compute variable
walk lengths between any 2 nodes in a network. Direct connec-
tions are a walk length of 1, while connections that pass through
one intermediary region have a walk length of 2; connections

that pass through 2 intermediary regions have a walk length of
3, and so on (Fig. 6A). We hypothesized that as we examined suf-
ficiently long walk lengths, the connectivity between motor and
visual regions would become increasingly correlated with indi-
vidual differences in learning rate.

Our results confirm this hypothesis, demonstrating that the
length-specific connectivity between motor and visual regions
was increasingly correlated with individual differences in
learning rate as walk length increased. As shown in Figure 6, at
walks of length 15, individual differences in walk strength
between motor and visual regions were significantly correlated
with individual differences in learning rate (Pearson correlation
coefficient r = 0.39, p =0.004). As walk length continued to
increase, the correlation approached an asymptote which can
be observed at n = 40 with r = 0.56, p = 0.005. We confirmed
these assessments of statistical significance using a non-
parametric null model wherein we shuffled node assignments
to “visual” or “motor” sets, thereby choosing a random set of
pseudo visual-motor edges. We examined the correlation at
walks of n = 40 on repeated null model samples, and con-
structed a 95% threshold for the correlation coefficient from the
null distribution. We observed that walks of length n = 18 and
beyond all exceeded this threshold, and at n = 40 our data were
significant compared with the null model at p = 0.008. These
results indicate the importance of indirect connections
between motor and visual cortices in facilitating the learning of
a visuomotor task.

Discussion

In this study, we assess whether individual differences in struc-
tural connectivity can account for individual differences in
learning a visuomotor task. Participants practiced a set of
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10-element sequences over a 6-week period, and we collected
structural imaging data during 4 MRI scanning sessions spaced
2 weeks apart. We mapped structural connectivity between
brain regions in large networks of interest in motor and visual
systems, identified by prior assessments of functional neuroi-
maging data during task performance (Bassett et al. 2015). We
observed a significant correlation between visual (but not
motor) structural connectivity and learning rate across partici-
pants, and this relationship was consistent across the 4 scan-
ning sessions. Interestingly, this correlation was strongest in
direct connections among visual regions within the same
hemisphere. However, an assessment of network walk strength

also revealed a significant correlation between the strength of
indirect connections between motor and visual cortices and
individual differences in learning rate, suggesting the potential
importance of physically extended polysynaptic information
transmission for skill acquisition.

The relationship between white matter microstructure and human
behavior: Our primary hypothesis posited that individual vari-
ability in white matter microstructure connecting task-relevant
regions would account for individual differences in skill acqui-
sition. Consistent with our hypothesis, we observed a signifi-
cant relationship between intrahemispheric connections
among visual region pairs and variability in learning rate on a
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DSP task practiced over the course of 6 weeks. Previous studies
have offered preliminary evidence to suggest that structural
differences in specific brain regions (although not networks)
correlate with individual differences in skill learning (Tuch
et al. 2005, Tomassini et al. 2011). Our work extends these pre-
vious studies by demonstrating that the degree of connectiv-
ity within visual regions is correlated with individual
differences in learning rate on a simple motor-visual task.
While previous studies have focused on regional or tract-
specific changes in FA in white matter, we demonstrate that
tractography-based approaches capture individual differences
in white matter that directly support skill acquisition. Of note,
we do not observe longitudinal changes of FA in our study
population over the course of training, suggesting that our dif-
fusion measures of connectivity are remarkably stationary.
Not surprisingly then, we found a remarkably consistent rela-
tionship between individual differences of connectivity and
learning rate across all 4 DTI scanning sessions. While both
tractography and FA-based approaches can reveal important
structural differences, a tractography-based approach allows
us to leverage network-based tools to understand brain- and
system-wide dynamics.

Although we expected structural variability in both visual
and motor systems would correlate with individual variability
in learning rate, we only found a significant relationship with
intrahemispheric connections among visual regions. We specu-
late that this may be due to the nature of the motor task itself.
The participants learned to quickly press 1 of 5 buttons follow-
ing a visual cue. This specific action (a button press) is not a par-
ticularly novel movement for these participants, all of whom
have already developed a wide variety of dexterous skills such
as typing. Due to the ubiquity of this action over the course of
development, the structural connectivity within motor cortex
may already be at a ceiling, obscuring any correlation with
learning. Alternatively, it is possible that changes in motor con-
nectivity with learning may only be measured at smaller spatial
scales. In contrast to the simple button press, the more challen-
ging skill that the subjects mastered was the spatial mapping
between visual stimuli and motor commands. It is intuitively
plausible that the ability to learn this mapping efficiently is fun-
damentally dependent on visual resources for detailed encoding
of spatial information. Indeed, a wide range of visuomotor tasks
have demonstrated strong reliance on occipital areas in map-
ping arbitrary stimuli with specific motor responses as well as
sequences of responses (Grafton et al. 1994, 1995, Wiestler et al.
2014, Diedrichsen and Kornysheva 2015).

Structure is consistent across scanning sessions: Our results
demonstrated a relationship between individual variability in
learning rate and connection strength between visual regions
that was consistent across the 4 scanning sessions. This con-
sistency is particularly interesting in light of prior work show-
ing changes in brain network connectivity as a function of
experience-dependent plasticity (Pascual-Leone et al. 2005,
Lindenberger et al. 2006). Indeed, researchers actively debate
the time scales at which these structural changes occur (Holt-
maat and Svoboda 2009, May 2011, Keller and Just 2015)
and whether these changes can be detected using current diffu-
sion weighted imaging techniques (L6vdén et al. 2013, Thomas
and Baker 2013). Some of the most well-known experience-
dependent plasticity changes have been reported from motor
learning tasks (Zatorre et al. 2012). Using multiweek training
paradigms in juggling, some of these studies have identified
both volumetric changes in visual and parietal cortices (Scholz
et al. 2009, Draganski et al. 2004) and FA changes in the posterior
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intraparietal sulcus (Scholz et al. 2009). Complementary work
has examined structural correlates for professional piano
players, identifying volumetric differences in motor and par-
ietal regions (Gaser and Schlaug 2003) as well as structural con-
nectivity differences in DTI data within the corticospinal tracts
that connect motor cortex with the brainstem and spinal cord
(Bengtsson et al. 2005). These training induced changes may
arise from activity-dependent myelination (Fields 2015), which
in turn may contribute to the observed changes in functional
connectivity during long-term motor learning (Sampaio-Bap-
tista et al. 2015). However, unlike juggling or extensive piano
practice, our participants did not train on a complex visuo-
motor task, but instead, they learned a pairing between a visual
cue and a required finger movement for a set of 6 sequences. In
the context of this fine-motor training, we observed a stable
relationship between visual connectivity and subject learning
rate across all 4 scans, independent of the number of trials
practiced.

A putative role for physically extended polysynaptic connections:
Because prior work in functional neuroimaging has linked
changes in learning rate to functional connectivity between
motor and visual areas (Bassett et al. 2015, Mattar et al. 2015),
we directly assessed indirect connectivity defined as a variant
of network communicability that we called walk strength. This
metric computes variable walk lengths where paths between 2
nodes can have increasing numbers of intermediary steps. For
example, a 2-step walk could be taken from visual cortex
through thalamus to motor cortex. We found that as walk
length increased, individual differences in motor-visual con-
nectivity were increasingly correlated with learning rate. These
results suggest a role for physically extended sets of polysynap-
tic connections between motor and visual cortices that support
the acquisition of this visuomotor skill. Such a role is consist-
ent with previous work in computational neuroscience high-
lighting the role of highly structured circuits in sequence
generation and memory (Hermundstad et al. 2011, Rajan et al.
2016). Indeed, in computational models at the neuron level,
architectures reminiscent of chains (Levy et al. 2001, Fiete et al.
2010) and rings are particularly conducive to the generation of
sequences. Our results complement these insights at small spa-
tial scales to suggest that long-distance (chain-like) paths at
the large scale of white matter tractography are supportive of
sequence production. In future, it may be interesting to assess
the generalizability of these results across other sequential
learning tasks, and to determine the degree to which additional
measurements of indirect connectivity (Goni et al. 2014) may
differentially relate to learning rate, performance accuracy, and
reaction time (Tuch et al. 2005).

Methodological Considerations

First, it is important to note that in this study, we rely on DTI
and white matter tractography to estimate subject-specific and
whole-brain structural connectivity. However, it is important to
note that DTI-based tractographic reconstructions present a
number of limitations. Among these is the tendency of current
methods to present false positives and false negatives when
compared with histological studies (Thomas et al. 2014, Reveley
et al. 2015). However, diffusion imaging remains the only reli-
able method for studying human white matter structure nonin-
vasively. Moreover, we expect potential tractography biases to
be consistent across subjects, allowing us to accurately access
individual differences in white matter architecture and its rela-
tionship to behavior. Second, it is also important to note that it
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is not possible using these techniques to decipher the number
of synapses present along the tracts between 2 regions, nor is it
possible to decipher the number of synapses present along
long-distance paths in the network. Thus, while data support a
role for physically extended polysynaptic pathways, it do not
directly speak to their microstructure. Third, it is important to
note that while we hypothesized that interhemispheric connec-
tions would be less important for this task than for other tasks
that require the manipulation of perceptual reference frames
(Bernier and Grafton 2010) or that utilized a single visual hemi-
field (Doron et al. 2012), it is nevertheless possible that interhe-
mispheric connections also play a role. It will be important in
the future to implement higher resolution diffusion imaging to
clarify the potential role of interhemispheric connections in the
learning of this novel visuomotor skill. Fourth, it is interesting
to ask whether the structural drivers of individual differences in
learning rate are anatomically co-located with observed changes
in functional connectivity during task performance. In fact, evi-
dence suggests that this is not the case, and that instead regions
that show individual differences in structural connectivity that
are predictive of individual differences in learning rate are not
the same as the regions that display changes in functional con-
nectivity with training (Bassett et al. 2015). Together, these data
suggest that further study is needed to understand the relation-
ships between individual differences in structural connectivity
and functional connectivity, and how they relate to gross
changes in behavior or to individual differences in learning rate.
Finally, we note that the lack of longitudinal changes in the
strength of connectivity (measured both with FA and with the
number of reconstructed streamlines between pairs of large-
scale brain regions) could be explained either by neuroscientific
or methodological factors. It is important to note that with this
particular data set, we are unable to determine the origin of this
consistency with complete confidence.

Conclusion

We identified variability in structural connectivity that
accounts for individual differences in learning rate over 6 weeks
of training on a visuomotor skill. Our analysis revealed direct
connections among intrahemispheric visual regions as well as
indirect connections between visual and motor cortices that sug-
gest an underlying mechanism for differences in behavior.
Clinically, these results offer novel biomarkers that may prove
useful in predicting the time scales of motor rehabilitation fol-
lowing stroke and brain injury. In particular, because individuals
with greater visual connectivity show swifter learning rates, a
clinician may be able to predict the rate at which a patient will
relearn a motor skill after a stroke based on the degree to which
their visual system (and its indirect connections with the motor
system) remain intact. More generally, our results may inform
personalized training paradigms for healthy individuals; indivi-
duals with greater visual connectivity—and greater strength of
indirect connectivity between motor and visual systems—may
require less training to obtain the same proficiency as an indi-
vidual with lesser connectivity and greater training. While
speculative at this point, these possibilities motivate future work
in clarifying the utility of white matter architecture in optimizing
visuomotor training across healthy and injured populations.
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