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Abstract
Neural models of a distributed system for face perception implicate a network of regions in the ventral visual stream for
recognition of identity. Here, we report a functional magnetic resonance imaging (fMRI) neural decoding study in humans
that shows that this pathway culminates in the right inferior frontal cortex face area (rIFFA) with a representation of
individual identities that has been disentangled from variable visual features in different images of the same person. At
earlier stages in the pathway, processing begins in early visual cortex and the occipital face area with representations of
head view that are invariant across identities, and proceeds to an intermediate level of representation in the fusiform face
area in which identity is emerging but still entangled with head view. Three-dimensional, view-invariant representation of
identities in the rIFFA may be the critical link to the extended system for face perception, affording activation of person
knowledge and emotional responses to familiar faces.
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Introduction
Humans arguably can recognize an unlimited number of face
identities but the neural mechanisms underlying this remark-
able capability are still unclear. Studies using functional mag-
netic resonance imaging (fMRI) have consistently shown that,
as compared to non-face objects, faces elicit an increased
response in a distributed set of brain areas. According to a
functional model, originally proposed by Haxby et al. (2000),
brain regions involved in face processing can be subdivided
into 2 systems, the core and the extended systems. The occipi-
tal face area (OFA), the fusiform face area (FFA) and the poster-
ior superior temporal sulcus (pSTS) are part of the core system,
which plays a role in the visual analysis of faces. The extended
system consists of brain areas that are not face-selective that
can act in concert with the core system to extract meaning

from faces. The distributed cortical fields in the core system for
the visual analysis of faces and the computations performed in
this system are a matter of intense investigation and contro-
versy (Haxby et al. 2000; Ishai et al. 2005; Gobbini and Haxby
2007; Haxby and Gobbini 2011; Collins and Olson 2014;
Duchaine and Yovel 2015), in particular the neural underpin-
nings for recognition of identity. Some studies with fMRI in
humans have shown the importance of the FFA and more
extended regions in the ventral temporal cortex for identity
recognition (Natu et al. 2010; Nestor et al. 2011; Anzellotti et al.
2014; Axelrod and Yovel 2015), as well as face-identity discrim-
ination in more anterior portions of the temporal lobes
(Kriegeskorte et al. 2007; Anzellotti et al. 2014; Nestor et al. 2011),
while the more posterior areas are tuned more to viewpoint per-
ception of faces (Natu et al. 2010; Kietzmann et al. 2012, 2015).
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A coherent overview of the role of the different face processing
brain regions is missing.

Freiwald and Tsao (2010) analysed the neural population
responses in cortical face patches in macaque temporal lobes
identified with fMRI. While population codes in the more pos-
terior face areas, middle lateral (ML) and middle fundus (MF)
represent face view that is invariant across identities, popula-
tion codes in the most anterior face-responsive area, anterior
medial (AM), represent face identity that is almost fully view-
invariant. A face patch located intermediately, anterior lateral
(AL), is tuned to mirror symmetric views of faces.

Here we show, for the first time, a progressive disentangling
of the representation of face identity from the representation
of head view in the human face processing system with a
structure that parallels that of the macaque face patch system
(Freiwald and Tsao 2010). While early visual cortex (EVC) and
the OFA distinguish head views, view-invariant representation
of identities in the human face perception system is fully
achieved in the right inferior frontal face area (rIFFA). A frontal
face area has been described in both the human and monkey
brain (Tsao et al. 2008b; Rajimehr et al. 2009; Axelrod and Yovel
2015; Duchaine and Yovel 2015), but has not previously been
linked to view-invariant representation of identity. The
representation of faces in the FFA revealed an intermediate
stage of processing at which identity begins to emerge but is
still entangled with head view.

Materials and Methods
Subjects

We scanned 13 healthy right-handed subjects (6 females; mean
age = 25.3 ± 3.0) with normal or corrected-to-normal vision.
Participants gave written informed consent and the protocol of
the study was approved by the local ethical committee.

Stimuli

4 undergraduates (2 females) from Dartmouth College served
as models for face stimuli. We took still pictures and short vid-
eos of each model. The short video of our models were taken
while we briefly explained to the models the experiment and
asked them to look around the room so that we could capture
their head in all angles. The video covered the subject’s head
and shoulders. All our subjects were wearing a black T-shirt
provided by us. During the video, subjects were behaving nor-
mally while conversing and listening to us explain the experi-
ment. We selected 4 15 s clips for each identity to be used for
the training session such that each 15 s clip contained at least
one sweep of models looking around the room. Still face images
were color pictures taken with 5 different head views: left and
right full profile, left and right half profile, and full-frontal view
(see Supplementary Fig. S1). To assure consistent image qual-
ity, all pictures were made in the same studio with identical
equipment and lighting conditions. All still images were
cropped to include the hair. Each image was scaled to a reso-
lution of 500×500 pixels. Before training, we confirmed that par-
ticipants did not know any of the identities shown in the
experiment.

Training Session before the fMRI Experiment

Subjects were visually familiarized with the identities of the 4
stimulus models on the day before the scanning session through
a short training held in our laboratory. Subjects passively

watched 4 15 s videos without audio of each identity, then per-
formed a face identity matching task in which they saw 2 stimuli
in succession with 0.5 s interstimulus interval. Stimuli were still
images of the 4 models at different head views (presented for 1 s)
or 2 s video clips randomly selected from the aforementioned
15 s video clips. Subjects indicated if the identity was the same
or different using a keyboard. There were 360 trials in total, with
matching identity in half, and subjects were provided their
accuracy as feedback every 30 trials. All the subjects performed
the task successfully and expressed no difficulty in identifying
the models from the images of different head views.

Scanning

During scanning, each subject participated in 10 functional runs
of the main experiment. Each run had 63 trials (60 stimulus trials
and 3 fixation trials), and started and ended with a 15 s of fixation
of black cross on a gray background. Each stimulus trial was 5 s
long and started with a stimulus image presented for 500ms fol-
lowed by a 50ms gray screen, repeated 3 times, followed by
3400ms of fixation (Fig. 1). The 3 repetitions on each trial were of
the same identity and head view but with the image size and
location jittered (±50 pixels equivalent to 1.25° degree variations
in image size and ±10 pixel variations in the horizontal and verti-
cal location). Each face image subtended approximately 12.5° of
visual angle. Subjects performed a one-back repetition detection
task based on identity, pressing a button with the right index fin-
ger for ‘same’ and the right middle finger for ‘different’.

Localizer

In addition to the main experiment, 4 runs of a functional loca-
lizer were interleaved with the experimental runs. Each locali-
zer run had 2 blocks each of faces, objects, and scenes with 8 s
of fixation separating them. During each presentation block,
subjects saw 16 still images from a category with 900ms of

Figure 1. Schematic of the main experiment with an example of the trial struc-

ture. fMRI study had 10 runs of the main experiment and 4 runs of localizer

interspersed. Each run of the main experiment had 63 trials—60 stimulus trials

and 3 fixation trials. Each trial started with one of the 20 face images presented

3 times at variable size and location with 50ms of ISI between presentations,

and ended with a 3400ms fixation. Subjects performed a 1-back identity match-

ing task to keep their attention to the stimuli.
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image presentation and 100ms of ISI. Subjects performed a
one-back repetition detection task. Each run started with 12 s of
fixation at the beginning and ended with 12 s of fixation. None
of the faces used for the localizer were part of the set of stimuli
used for the fMRI experiment on head view and identity.
Stimuli and design for the localizer have been used previously
(Guntupalli et al. 2016) and are published online (Sengupta
et al. 2016).

fMRI protocol

Subjects were scanned using a Philips Intera Achieva 3T scan-
ner with a 32 channel head coil at the Dartmouth Brain
Imaging Center. Functional scans were acquired with an echo
planar imaging sequence (TR = 2.5 s, TE = 30ms, flip angle = 90°,
112 × 112 matrix, FOV = 224mm × 224mm, R-L phase encoding
direction) every 2.5 s with a resolution of 2 × 2mm covering the
whole brain (49×2mm thick interleaved axial slices). We
acquired 140 functional scans in each of the 10 runs. We
acquired a fieldmap scan after the last functional run and a
T1-weighted anatomical (TR = 8.265ms, TE = 3.8ms, 256 ×
256 × 220 matrix) scan at the end. The voxel resolution of ana-
tomical scan was 0.938mm × 0.938mm × 1.0mm.

Data Preprocessing

Each subject’s fMRI data was preprocessed using AFNI software
(Cox 1996). Functional data was first corrected for the order of
slice acquisition and then for the head movement by aligning
to the fieldmap scan. Functional volumes were corrected for
distortion using fieldmap with FSL-Fugue (Smith et al. 2004).
Temporal spikes in the data were removed using 3dDespike in
AFNI. Time series in each voxel was filtered using a high-pass
filter with a cutoff at 0.00667Hz, and the motion parameters
were regressed out using 3dBandpass in AFNI. Data were then
spatially smoothed using a 4mm full-width at half-max
Gaussian filter (3dmerge in AFNI). We ran a GLM analysis to
estimate beta and t-statistic values for each of the 20 stimulus
images using TENT function of 3dDeconvolve in AFNI resulting
in 7 estimates from 2.5 s to 17.5 s after stimulus onset. In the
end, we obtained 7 estimates per voxel per stimulus image in
each subject. We used the first 5 of those 7 response t-statistic
estimates in all our analyses (Misaki et al. 2010). Thus, in each
searchlight or region of interest (ROI) we measured a pattern of
response to each stimulus image as a vector whose features
were 5 timepoints for each voxel. We extracted cortical surfaces
from the anatomical scans of subjects using FreeSurfer (Fischl
et al. 1999), aligned them to the FreeSurfer’s cortical template,
and resampled surfaces into a regular grid with 20 484 nodes
using MapIcosahedron in AFNI. We implemented our methods
and ran our analyses in PyMVPA (Hanke et al. 2009) unless
otherwise specified (http://www.pymvpa.org).

Definition of Face-selective ROIs

We used the same preprocessing steps for face localizer data
and estimated the contrast for faces greater than objects using
GLM analysis to define face-selective regions. Clusters of voxels
with stronger responses to faces were assigned to OFA, FFA,
pSTS, and anterior temporal face area (ATFA) based on their
anatomical locations (Haxby et al. 2000). We used faces greater
than objects contrast with a threshold of t = 2.5 to 3 for bilateral
FFA, OFA, and right pSTS face areas, and 2–2.5 for right ATFA.
For the ATFA and pSTS face areas, only the right hemisphere

yielded robust ROIs in all subjects, whereas FFA and OFA were
identified bilaterally in all subjects but one who had no identifi-
able OFA at our threshold range. These criteria based on
responses to still images of unfamiliar faces did not identify a
consistent face-selective cluster in the rIFFA even though
MVPA (classification and similarity analyses) did reveal such a
cluster based on face-identity-selective patterns of response.
Post-hoc analysis of responses to the localizer stimuli in a
searchlight centered on the cortical node with peak accuracy for
classification of identity confirmed that also the rIFFA showed
face-selectivity based on the univariate contrast between faces
and objects (Supplementary Fig. S3). Table S1 lists the average
number of voxels and volumes of face-selective ROIs.

Multivariate Pattern Classification

Searchlight
We performed MVPC analyses to localize representations of
face stimuli in terms of head view, independent of identity,
and identity, independent of head view, using surface-based
searchlights (Oosterhof et al. 2011). We centered searchlights
on each surface node, and included all voxels within a cortical
disc of radius 10mm. Thickness of each disc was extended by
50% into and outside the gray matter to account for differences
between EPI and anatomical scans due to distortion. Identity
classifications were performed using a leave-one-viewpoint-out
cross-validation scheme, and viewpoint classifications were per-
formed using a leave-one-identity-out cross-validation scheme.
For example, each classifier for identity was built on responses
to all head views but one (16 vectors—4 head views of 4 iden-
tities) and tested on the left out head view (1 out of 4 classifica-
tion). This was done for all 5 data folds on head view. Similarly,
each classifier for head view was built on all identities but one
(15 vectors—5 head views of 3 identities) and tested on the left
out identity (1 out of 5 classification). MVPC used a linear support
vector machine (SVM) classifier (Cortes and Vapnik 1995). The
SVM classifier used the default soft margin option in PyMVPA
that automatically scales the C parameter according to the norm
of the data. Classification accuracies from each searchlight were
placed into their center surface nodes resulting in one accuracy
map per subject per classification type. We also performed an
identical analysis but using permuted labels, 20 per subject per
classification type, for significance testing. To compute signifi-
cant clusters across subjects, we performed a between-subject
threshold-free cluster enhancement procedure (Smith and
Nichols 2009) using our permuted label accuracy maps. We then
thresholded the average accuracy map with correct labels across
subjects at t > 1.96 (P < 0.05, two-tailed, corrected for multiple
comparisons) for visualization.

Face-selective ROIs
In each face-selective ROI of each subject, we performed classi-
fication of identity and head view as described above. We used
a nested cross-validation scheme to perform feature selection
using ANOVA scores. In each fold, training data is used to com-
pute ANOVA scores and classification using different numbers
of top features within the training data. The set of features that
gave the best accuracy on training data is then used to classify
the test data. Both ANOVA scores and which features to use are
computed only from the training dataset. We performed signifi-
cance testing in each ROI for each classification type using per-
mutation testing using 100 permutations in each subject and
sampling them with replacement for 10 000 permutations
across subjects to compute the null distribution.
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Representation Similarity Analyses

We performed a RSA (Kriegeskorte et al. 2008) to model the rep-
resentational geometry—representational similarity matrices
(RSM)—in each searchlight using 3 models of representation: 1)
identity invariant to head view, 2) head view invariant to iden-
tity, and 3) head view with mirror symmetry (Supplementary
Fig. S2). Correlation is used to compute similarities between
patterns of response to different images. Both the neural and
the model similarity matrices are rank ordered before perform-
ing a ridge regression with α = 0.1 to fit the 3 model similarity
structures to the neural similarity structure. Beta values from
regression were assigned to the surface node at the center of
each searchlight. We performed permutation testing to assess
the significance of the beta values for each model regression at
each surface node using permuted labels and threshold-free
cluster enhancement method as described above. We then
thresholded the average beta maps with correct labels for each
model at t > 1.96 (corrected) for visualization. We performed a
similar modeling of representational geometry in each face-
selective ROI. To remove any possible confounds between mir-
ror symmetry and other models, we zeroed out any elements
in the mirror symmetry model that overlaps with the other 2
models. We assess the significance of model coefficients in
each ROI using permutation testing. We computed 100 model
coefficients in each subject using permuted labels, and sam-
pling them with replacement for 10 000 samples across subjects
to compute null distribution for each model coefficient in each
ROI.

Multidimensional Scaling

We performed multidimensional scaling in significant head
view and identity classification clusters and face-selective ROIs
to visualize the representation of face stimuli in each of those
regions. Since classification clusters were defined on surface,
we aggregated the data from all the voxels that participated in
searchlights with their center nodes in those clusters in each
subject. Data in each cluster of searchlights and each ROI were

reduced to a 20 principal component space (all components)
before computing distance matrices to account for variable
sizes. Pairwise correlation distance matrices were computed for
all 20 face stimuli for each cluster and ROI in each subject.
Distance matrices were first normalized in each subject by div-
iding by the maximum correlation distance within that subject
and were averaged across subjects to produce an average
distance matrix in each cluster and ROI. A metric MDS was per-
formed with 10 000 iterations to project the stimuli onto a
2-dimensional space. MDS solutions for face-selective ROIs
were also computed using the same procedure. Supplementary
Fig. S4 shows MDS plots for these ROIs.

Results
Subjects viewed 4 visually familiar identities, 2 males and 2
females, with 5 different head views, while performing a one-
back identity repetition detection task to ensure attention to
the stimuli. We performed multivariate pattern classification
and representational similarity analyses across the whole brain
using searchlights and in face-selective ROIs.

Classification Analyses

First, we used multivariate pattern classification (MVPC) in
surface-based searchlights to identify cortical areas that encode
faces in terms of view and identity (Haxby et al. 2001). For clas-
sification of identity invariant over face views, a classifier was
trained to classify 4 identities over 4 views and tested on the
left out view of the 4 identities. For classification of head view
invariant over identities, a classifier was trained to classify
head views over 3 identities and tested on 5 head views of the
left out identity. Results (Fig. 2A) show robust representation of
face identity invariant to head view in the right inferior frontal
cluster, the rIFFA, with a peak classification accuracy of 41.2%
(chance = 25%; 95% CI = [35.0%, 46.2%]), and representation of
view invariant to face identity in a large expanse of EVC that
includes the OFA and part of the right FFA with peak classifica-
tion accuracy of 65.4% (chance = 20%; 95% CI = [60.4%, 70.8%]).

Figure 2. Surface searchlight classification of faces. (A) Classification accuracies for face identity cross-validated over views (top) and head view cross-validated over

identities (bottom). Chance accuracy is 25% for face identity and 20% for head view classifications. Maps are thresholded at P < 0.05 after correcting for multiple com-

parisons using permutation testing. (B) MDS plots of representational geometries of responses to face stimuli in the identity cluster (top) and the head view cluster

(bottom). Faces of the same identity are colored the same, and faces with same head view have the same background or outline. Coloring based on the identity is

emphasized on the top and coloring based on the head view emphasized on the bottom.
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To visualize the representational geometries of responses to
face images with different identities and head views, we per-
formed a multidimensional scaling analyses (MDS) of patterns
response in these 2 clusters. MDS of the head view cluster
clearly shows a representation of faces arranged according to
head view invariant to identity with a circular geometry in
which adjacent head views are closer to each other and the left
and right full profiles are closer to each other (Fig. 2B). In con-
trast, MDS of the rIFFA identity cluster shows a representation
of faces arranged according to identity invariant to view with
the responses to each of the 4 identities clustered together for
most or all head views.

Representational Similarity Analyses

For an analysis of representational geometry across cortex, we
next performed a searchlight representational similarity ana-
lysis (RSA) (Kriegeskorte et al. 2008). We constructed 3 model
similarity structures capturing representation of 1) identity
invariant to view, 2) mirror symmetry of views, and 3) view
invariant to identity (Supplementary Fig. S2). We performed
ridge regression to fit these 3 model similarity structures in
surface-based searchlights, producing 3 coefficients in each
searchlight. Figure 3 shows cortical clusters with coefficients
for models capturing identity invariant to views and views
invariant to identity. Consistent with the classification results,
representational geometry in the right inferior frontal cluster is
correlated significantly with the face identity similarity model
and representational geometry in a large EVC cluster that
included OFA and part of the right and left FFAs correlated sig-
nificantly with the head view similarity model.

Classification Analyses and Representational Similarity
Analyses in Face-selective ROIs

Searchlight analyses revealed representation of head view in
posterior visual cortex and identity in the rIFFA but unlike
other reports these searchlight analyses did not find represen-
tation of identity in ventral temporal (VT) face areas (Haxby
et al. 1994; Kriegeskorte et al. 2007; Natu et al. 2010; Nestor
et al. 2011; Anzellotti et al. 2014; Axelrod and Yovel 2015). To

investigate further the representation of faces in the core face
system, we defined face-selective regions in all subjects with a
localizer. We defined the FFA, OFA, pSTS face area, and ATFA
(Fig. 4A). We then performed MVPC and RSA in each of these
ROIs. Classification of face identity, invariant to views, was sig-
nificant in FFA and ATFA with average accuracies of 36.5%
(Chance = 25%; 95% CI = [28.5%, 45.8%]) and 30.8% (95%
CI = [27.3%, 34.2%]) respectively, but was not different from
chance in OFA and pSTS (Fig. 4B). Classification of head view,
invariant to identity, was successful in OFA and FFA with aver-
age accuracies of 44.2% (Chance = 20%; 95% CI = [35.0%, 50.4%])
and 29.2% (95% CI = [20.8%, 38.1%]) respectively, but was not
different from chance in ATFA and pSTS (Fig. 4B). Analysis of
neural representational geometry showed that representational
geometry in the OFA correlated significantly only with head
view model (beta = 0.33; P < 0.001) (Fig. 4C). Representational
geometry in the FFA correlated significantly with head view
(beta = 0.12; P < 0.001), mirror symmetry (beta = 0.08; P < 0.01),
and identity models (beta = 0.16; P < 0.001) corroborating its
intermediate role in disentangling identity from head view and
mirror symmetry (Fig. 4C). Representational geometry in the
ATFA did not significantly correlate with any model and repre-
sentational geometry in the pSTS correlated only with the head
view model (beta = 0.07; P < 0.01).

Discussion
Our results show a progressive disentangling of the representa-
tion of face identity from the variable visual features of different
images of that face in a hierarchically organized distributed
neural system in occipital, VT, and inferior frontal human corti-
ces. Unlike previous reports (Kriegeskorte et al. 2007; Freiwald
and Tsao 2010; Natu et al. 2010; Nestor et al. 2011; Anzellotti et al.
2014; Axelrod and Yovel 2015), we show that this disentangling
process culminates in a face area in the right inferior frontal cor-
tex, the rIFFA. The representational geometry of rIFFA responses
to face images grouped images by identity and not by head
view. By contrast, the representational geometry in EVC and
the OFA grouped the same images by head view and not by iden-
tity. At an intermediate stage in the FFA, representational geom-
etry reflected both identity and head view. A view-invariant

Figure 3. Surface searchlight based modeling of representational geometry. Neural representation of faces in each searchlight was modeled with 3 model similarity

structures as regressors using ridge regression. Representational geometry in the rIFFA correlated with the identity model (top), whereas representational geometry in

EVC correlated with the head view model (bottom). Maps are thresholded at P < 0.05 after correcting for multiple comparisons using permutation testing. Correlation

with the mirror symmetry model did not reveal any significant clusters.
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representation of identity also was found in the ATFA but was
not as strong as the representation in the rIFFA. The representa-
tion of identity in the FFA was detected only in the ROI analysis,
presumably because definition of the FFA with a localizer in each
individual restricted analysis to a representation that may be
confined to this face-selective region. The representation of head
view, by contrast, appears to be more widely distributed in visual
cortices. Our results reveal an organization similar to that
described in monkeys based on single unit recording (Freiwald
and Tsao 2010) but these studies did not examine population
codes in the frontal face patch.

A face-responsive area in the inferior frontal cortex was first
reported in humans using functional brain imaging and mon-
keys using single unit recording (Haxby et al. 1994, 1995, 1996;
Courtney et al. 1996, 1997; Scalaidhe et al. 1997). Further reports
of this area followed in fMRI studies in humans (Ishai et al.
2002; Fox et al. 2009; Rajimehr et al. 2009; Pitcher et al. 2011;
Axelrod and Yovel 2015) and monkeys (Tsao et al. 2008a, 2008b;
Rajimehr et al. 2009; Dubois et al. 2015). The human neuroima-
ging studies have found this area to be face-responsive using
perceptual matching of different views of the same identity
(Haxby et al. 1994), face working memory (Haxby et al. 1995;
Courtney et al. 1996, 1997), retrieval from long-term memory
(Haxby et al. 1996), imagery from long-term memory (Ishai
et al. 2002), repetition–suppression (Pourtois et al. 2005), release
from adaptation (Rotshtein et al. 2005), and functional locali-
zers with dynamic face stimuli (Fox et al. 2009; Pitcher et al.
2011). There also is evidence from patients that support the
role of the IFG in face processing. For example, a patient with
implanted electrodes in inferior frontal cortex reported face-
related hallucinations after direct stimulation in prefrontal cor-
tex (Vignal et al. 2000). Other studies using intracerebral and
depth electrodes in patients have reported face-selective activ-
ity in IFG as early as 117ms slightly lagging the activity in the
fusiform gyrus (Halgren et al. 1994, Marinkovic et al. 2000,
Barbeau et al. 2008). Patients with damage to frontal lobe
regions have been reported to have face memory impairments
even for novel faces (Rapcsak et al. 2001) and false recognition
without prosopagnosia (Rapcsak et al. 1996). One study
reported correlation of activation in right IFG with the percep-
tual distortion of faces in a prosopagnosic (Dalrymple et al.
2014). Another study using transcranial magnetic stimulation
(TMS) implicated a more causal role of right IFG in configural
face processing (Renzi et al. 2013). Anatomical connection
strength between face-selective regions in the temporal cortex

and IFG has been shown to correlate with face-selective activa-
tion in fusiform gyrus (Saygin et al. 2012) and age-related
changes in face perception (Thomas et al. 2008).

As far as we know, a clear case of prosopagnosia with an
isolated lesion of the inferior frontal cortex has not been
reported in the literature. The main difficulty of having clear
cases of prosopagnosia with a right inferior frontal lesion might
arise from the fact that the face area in this location may be
intertwined with other functions in such a way that a lesion
there might not produce prosopagnosia without impairment of
other functions. Therefore, patients with right inferior frontal
lesions might have a constellation of symptoms that over-
shadow any impairment in face recognition. We hope that our
findings will encourage careful investigation of patients with
inferior frontal lesions for symptoms related to face-processing
impairments such as prosopagnosia.

Previous fMRI studies of identity decoding using multivariate
pattern classification, however, have mostly concentrated on the
ventral visual pathway in temporal cortex, using imaging
volumes or ROIs that excluded frontal areas (Kriegeskorte et al.
2007; Natu et al. 2010; Nestor et al. 2011; Anzellotti et al. 2014;
Ghuman et al. 2014), with the exception of a recent report
(Axelrod and Yovel 2015). Previous identity decoding studies
found identity information in the posterior VT cortex including
the FFA (Natu et al. 2010; Anzellotti et al. 2014; Axelrod and Yovel
2015) and anterior temporal areas, albeit with locations that are
inconsistent across reports (Kriegeskorte et al. 2007; Natu et al.
2010; Nestor et al. 2011; Anzellotti et al. 2014) and absent in one
(Axelrod and Yovel 2015). None of these reports analysed the
representation of face view or how the representation of identity
is progressively disentangled from the representation of face
view in the face processing system. In separate studies, represen-
tation of head view and mirror symmetry have been reported in
more posterior locations both in face responsive areas such as
the OFA but also in areas that are object-responsive such as the
parahippocampal gyrus and in the dorsal visual pathway
(Pourtois et al. 2005; Natu et al. 2010; Nestor et al. 2011;
Kietzmann et al. 2012). 2 studies reported representation of mir-
ror symmetry in the FFA (Kietzmann et al. 2012; Axelrod and
Yovel 2015). We find that view-invariance of the representation
of identity in FFA is limited as it is entangled with the represen-
tation of face view, including mirror symmetry, suggesting that
it may be more like the monkey face patch AL than ML/MF.
Identity-invariant representation of head view in EVC and OFA
suggests that ML/MF may be more like the OFA than FFA.

Figure 4. Classification and representational similarity analyses in face-selective ROIs. (A) Anatomical locations of face-selective ROIs as determined by localizer. (B)

Classification accuracies of face identity invariant to view and head view invariant to identity in regions of the core face system. (C) Modeling representational geom-

etry in ROIs. Asterisks indicate accuracies that were significant with permutation. Error bars indicate standard error (SEM).
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The rIFFA appears to be difficult to identify with localizers
that use static images without multiple views of the same iden-
tity. It is more consistently activated by tasks that involve
matching identity across views, dynamic images, or face mem-
ory. The increased sensitivity to dynamic face stimuli led
Duchaine and Yovel (2015) to conclude that this area is part of a
“dorsal face pathway” that is more involved in processing face
movement, but the review of the literature and our current
results suggest that this area plays a key role in the representa-
tion of identity that is integrated across face views. Dynamic
stimuli may enhance the response in this area because they pre-
sent changing views of the same identity in a natural sequence.
Dynamic visual features that capture how face images change
with natural movement may play an important role in building a
three-dimensional view-invariant representation (Blanz and
Vetter 2003; O’Toole et al. 2011). Prior to scanning, subjects saw
dynamic videos of the 4 identities to afford learning a robust,
three-dimensional representation of each identity.

We were able to replicate others’ findings in anterior temporal
cortex generally, but only with the ROI analysis. Identity decoding
accuracy in the ATFA was lower than accuracy in the FFA, but
that may be due to the larger number of voxels in the FFA ROI
and the greater reliability of identifying face-selective voxels there.
The rIFFA was identified initially with multivariate pattern ana-
lyses but also showed face-selectivity with univariate contrasts
(Supplementary Fig. S3), whereas the ATFA was identified only
with the localizer. Both the ATFA and rIFFA showed significant
decoding of identity and no trend towards decoding head view.
The nature of further processing that is realized in the rIFFA, and
how this area interacts with the ATFA, remains unclear. Single
unit recording studies of the representation of identity in the
monkey inferior frontal face patch (Tsao et al. 2008b) may further
elucidate the role of this face patch in representing face identity.
Such studies, however, may require familiarization with face iden-
tities using dynamic stimuli and/or a task that involves memory.

A view-invariant representation of a face’s identity may be
necessary to activate person knowledge about that individual
and evoke an appropriate emotional response (Gobbini and
Haxby 2007; O’Toole et al. 2011). Thus, the view-invariant
representation in rIFFA may provide a link to the extended sys-
tem for face perception, most notably regions in medial pre-
frontal cortex and temporoparietal junction for person
knowledge and the anterior insula and amygdala for emotion
(Haxby et al. 2000; Gobbini and Haxby 2007; Collins and Olson
2014), and thereby be critical for engaging the extended system
in the successful recognition of familiar individuals.

Supplementary Material
Supplementary material can be found at: http://www.cercor.
oxfordjournals.org/
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